
Simulation Modeling for Speed Scaling Designs

[Extended Abstract]

Maryam Elahi Carey Williamson
Department of Computer Science, University of Calgary

Calgary, Alberta, Canada T2N 1N4
{bmelahi, carey}@ucalgary.ca

ABSTRACT
This paper introduces an extensible simulation tool for the
study of speed scaling designs for a single server with vari-
able service rates. This simulator facilitates detailed per-
formance analysis of scheduling and speed scaling policies
under different background settings. Our component-based
design separates the system configuration, like the power
consumption model and the incoming workload, from the
policy components for scheduling and speed scaling. Fur-
thermore, the simulator allows for custom implementations
of the data logger, so the instrumentation could be fine tuned
to the desired level of detail for each run of the simulation.
We present the design of the main components of our sim-
ulator. We then show example results to highlight the ver-
satility of the simulator for studying different speed scaling
configurations.

CCS Concepts
•Computing methodologies → Simulation tools;
•Mathematics of computing → Queueing theory;

Keywords
Speed Scaling, Scheduling, Energy Consumption, Discrete
Event Simulation

1. INTRODUCTION
Modern CPUs have over a dozen processing rates, which

enable system designers to balance speed and power con-
sumption based on the required performance. This tradeoff
is of interest both for mobile devices, which have limited
power, and for datacenters, for which heat and cost man-
agement are key considerations. Recently, there has been
increased attention to the study of scheduling policies for
servers with adjustable service rates both in the systems
and theory communities [2, 12].

For a single-speed server, several analytical and simulation
studies quantify the properties of different classes of schedul-

ACM ISBN X-XXXXX-XX-X/XX/XX.

DOI: http://dx.doi.org/10.1145/0000000.0000000

ing policies. In particular, commonly used scheduling polices
like First-Come-First-Serve (FCFS) and Processor Sharing
(PS) were compared to size-based scheduling policies like
Shortest-Remaining-Processing-Time (SRPT) with regard
to queueing delay, response time, and fairness [9, 14].

For datacenters, optimizing the monetary cost of opera-
tion is the main goal. This could be translated into some
combination of energy cost and the cost of losing customers
or money for violating the service level aggreements (SLAs).
These two metrics are inherently at odds with each other.
Running at lower speeds consumes less energy, but degrades
the performance. Furthermore, optimizing the average per-
formance could have undesirable side effects like poor tail
behavior, or decreased robustness in face of flash loads.

The tradeoffs between optimality, robustness, and fairness
in speed scaling was first studied in [12]. For the cost func-
tion represented by the linear combination of the average
response time and average energy consumption per job, [12]
shows that SRPT with queue-length-based speed scaling is
optimal in the worst case. The idea of queue-length-based
speed scaling (coupled speed scaling for the rest of this pa-
per), wherein the service rate is a function of the instan-
taneous system occupancy, was introduced in earlier litera-
ture [2]. In [12], the optimal speed function is shown to be
the inverse of the power-consumption function.

There are many interesting questions still remaining about
the interplay of scheduling and speed scaling. For exam-
ple, [12] shows that coupled speed scaling magnifies unfair-
ness for policies like SRPT and all the non-preemptive poli-
cies. However, the level of unfairness for these polices under
different types of workloads is unknown.

In spite of the growing interest in the study of speed-
scaling policies, to the best of our knowledge there is no
public-domain tool for the simulation of scheduling with
speed scaling. There are a number of simulation results pre-
sented for speed scaling designs in recent literature [7,12,13].
A recent public-domain simulation tool for a single speed
server has been developed to study size-based scheduling
when exact knowledge of job sizes is not available [5]. How-
ever, the simulator does not support variable service rates.

Our work: We have developed an extensible simulation
tool for the study of speed scaling designs, which facilitates
detailed performance analysis of scheduling and speed scal-
ing policies under different background settings.

Design of a speed scaling simulator has several challenges.
Special care is required to separate the scheduling and speed
scaling decisions in order to allow for simulation of new
approaches with minimal effort, and without introducing

Discrete
Event

Simulator

Object
Factory

Workload
Generator

Scheduler
Speed
Scaler

Power
Function

Data
Logger

Config.
Reader

Object creation and initialization

Event handling request from DES, new events added to DES

Statu
s

U
p

d
ate

Statistical
Analysis &

Visualization

In
stru

m
en

tatio
n

 D
ata

Figure 1: Data flow between the main components of the
simulator.

bugs or inconsistencies into the simulation. Decoupling the
scheduling decisions from speed scaling decisions was first
presented in [7]. The idea was presented in the context of
FSP with speed scaling, but was later generalized to other
policies [6–8].

We developed our simulation tool to study the interplay
between the speed scaler and the scheduler under different
load regimes and power consumption models. For this rea-
son, the extensibility of the simulation tool has been the
main design focus. Furthermore, due to high variability of
sampled metrics in many scenarios, long simulation runs are
necessary in order to obtain statistically significant results.
Therefore, efficiency in terms of run-time, memory, and stor-
age requirements was considered in the design.

The simulator has an abstract design that models a sin-
gle server with variable service rates. An infinite stream
of jobs arrive to the system to receive service in some or-
der specified by the scheduler and with some speed specified
by the speed scaler. Energy consumption of the system is
computed according to some power function. The entire op-
eration of the server is tracked by the logger. Each of these
components and the operation of the simulator is presented
in more detail in Section 2.2.

We have used this simulator to verify previous analytical
and simulation results presented in [13]. We have also gained
insight into the autoscaling effect of coupled speed scaling
systems under heavy load [6]. For cases where the analytical
study of policies is challenging, like the average busy period
length under coupled SRPT or average response time under
FSP, the simulation study can be used to investigate the
expected behavior of the system.

To illustrate the application of this abstract design, we
present selected simulation results for coupled and decoupled
speed scaling systems in Section 3.

2. SIMULATOR
This section provides an overview of the simulator (see

Figure 1). We briefly discuss the design choices and then
present the main components and their dependencies.

2.1 Design overview
The main focus in our design is two-fold: ease of extensi-

bility, and efficiency for large-scale simulations. Simulating
a new scheduling policy should only require the implementa-
tion of the abstract class Scheduler, without any changes to
other components or the core of the simulator. The abstract
design of the Logger class makes it possible to change the in-
strumentation targets and level of detail based on the focus

of the simulation study, again without any changes required
to other components. The ability to change the instrumen-
tation level is important in order to reduce the execution
time and storage requirements for long simulation runs.

Execution time for a single run of the simulator depends
on the following factors: (1) duration of the run; (2) ex-
pected queue length; (3) step complexity of the scheduler
and speed scaler components for handling each event; and
(4) complexity of the instrumentation by the logger. The
first three factors have direct dependence on the workload
and the simulated policies, and usually dominate the overall
complexity of the simulation. Memory usage is dominated
by the implementation of the logger. The minimum require-
ment depends on the expected queue length, since the logger
has to keep track of all jobs in the queue.

Our implementation of the simulator is written in C++,
and it only uses the C++ standard libraries. The current
code base is developed and compiled on a Windows machine,
but could be compiled on other platforms with minimal ef-
fort [1].

The simulation scenario specifications are all modified via
the configuration file, which is a human-readable text file
with easy-to-interpret value pair format.

2.2 Main components
A single run of the simulator is comprised of three stages.

First, the configuration file is read and the policy compo-
nents and the background component objects are created
and initialized. Second, the Discrete Event Simulator (DES)
and the Logger are initialized. Third, according to the user
specified configurations, the simulation is run until all the
first NMAX arrivals have departed the system, at which
point the simulation terminates. If jobs are serviced in the
order of their arrival (FCFS), this is at the time of departure
number NMAX . However, depending on the policies and the
workload, termination time could be much later.

For the probe-based sampling of the response times, the
third stage is repeated with a probe job inserted at random
into the workload stream (similar to the algorithm presented
in [9]). For each probe size, the probing is repeated until the
user-specified desired confidence interval is achieved. The
range of probe job sizes are also specified in the simulation
configuration.

Figure 1 illustrates the main components in our simula-
tor. Figure 2 shows selected abstract classes and example
implementations.

Simulator Configuration The Simulation scenario
specifications are read from a human-readable text file
(configuration.txt). These specifications include the
scheduling and speed scaling policies, the power function,
the workload, and their corresponding parameters. It also
specifies the logger and its parameters that include the met-
rics of interest and granularity of measurements.

Object Factory To make the simulator extensible, and
to separate different policies from the background settings,
all policy and background setting components are defined
by abstract classes. The configuration component calls the
Object Factory to create and initialize the objects required
to execute the specified simulation scenario.

Discrete Event Simulator (DES)
The DES maintains a priority queue of events. In each

iteration of the main loop, the event with the smallest time-
stamp is removed from the priority queue and passed on to

<<Abstract Class>>
Scheduler

FSPSRPT LRPT PS FCFSuses

implements

<<Abstract Class>>
SpeedScaler

Single
Speed

implements

Coupled
Speed

Shadow
Speed

Random
Speed

Gated
Static
Speed

uses

<<Abstract Class>>
Event

Speed ChangeArrival Departure

implements

Invalid…

uses uses

<<Abstract Class>>
Power Function uses

<<Abstract Class>>
WorkloadGenerator

PAPareto

implements

PAExponential BatchArrivalFile …

uses

Speed2Alpha

implements

<<Abstract Class>>
Data Logger

DESLogger

implements

Figure 2: Abstract classes and example implementations.

the proper handlers depending on the type of the event e.g.,
Arrival, Departure, Speed Change, etc. (see Figure 2). New
events may be generated as a result of handling the current
event. These are inserted into the priority queue. The loop
stops when all the first NMAX arrivals complete their work.

Logger The logger component keeps track of the changes
in the state of the system by receiving updates when other
components have a status change. It plays the role of the
omniscient observer. When other components need infor-
mation about the current status of the system, they call the
interfaces provided by the logger. For example, upon each
arrival and departure, the coupled speed scaler queries the
logger object for the number of jobs in the system in order
to set the speed. Our Comprehensive Logger implementa-
tion records the status of the entire queue upon each event.
For long simulations, however, the amount of data generated
could be several gigabytes. For this reason, we have other
implementations of the logger that only record a subset of
the instrumentation such as queue length and the remaining
work in the system upon each arrival and departure.

Workload Generator The arrival process is generated
by the workload generator in the form of arrival events. At
the initialization of the DES, the generator is asked for the
first arrival event. Upon removing an arrival from the prior-
ity queue, the DES asks the workload generator to create the
next arrival event. Each arrival event includes a timestamp
and a job object. The job object must be initialized with
the arrival time of the job, and optionally other properties
like deadline and priority. Different implementations of the
workload generator class allow alternative sources for the
arrival sequence. For example, the workload could be gener-
ated from a trace file, or could be a Poisson process with job
sizes drawn from an Exponential or a Pareto distribution.

Scheduler The scheduler component determines the or-
der in which jobs receive service. Our current implemen-
tations include First-Come-First-Serve (FCFS), Processor
Sharing (PS), Shortest Job First (SJF), Shortest Remain-
ing Processing Time (SRPT), Longest Remaining Process-

ing Time (LRPT), and Fair Sojourn Protocol (FSP).
Speed Scaler The speed scaling component decides the

rate at which the server is processing jobs at each point in
time during the simulation. This could be decided based on
the system status, such as the system occupancy, or could
be completely independent, like a single-speed system. The
current implementations include SingleSpeed, CoupledSpeed
(sets the speed to the inverse of the power function of the
number of jobs in the system), ShadowSpeed (determines the
speed based on the occupancy of a shadow scheduler that
works on the same arrival process).

Power Function The power function component com-
putes the energy consumption based on the speed of the
system. It has two interfaces: one that returns the energy
consumption as a function of speed, and one to compute the
inverse of the power function.

Statistical Analysis and Visualization The simulator
output depends on the implementation of the logger. Our
current implementations output three types of log files: met-
ric reports, job reports, and queue progress reports.

Metric reports are text files with timestamp and value
pairs. This type of log records the evolution of a metric over
time. For example, the speedprofile.txt records every
speed change event, and the byteprofile.txt records the
remaining work in the system at the time of every arrival,
departure and speed change event.

Job report logs are text files in which each line shows the
report of a job upon its departure. We record the size, ar-
rival, departure, energy consumption and time under execu-
tion for each job. Metrics like response time and slowdown
can be directly derived from the above. The logger could
generate this report for any subset of the jobs. For example,
the probereport.txt contains the job report for only the
probe jobs inserted into the workload stream.

Queue progress reports are text files in which every line
has a timestamp followed by the status of the queue at that
timestamp. This log records the evolution of the remaining
sizes of jobs in the queue. Figure 5 shows an excerpt from

0

0.5

1

1.5

2

0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00

E
[N

]/
L

ow
er

-b
ou

n
d

Load

PS

SRPT

Figure 3: Comparison of queue occupancy under heavy load
for coupled PS and SRPT with s(t) = P−1(n(t)). The job
sizes are Pareto(2.2)

this log.
We have implemented separate C++ programs to perform

further statistical analysis on the output, including mean,
variance, and frequencies for recorded metrics. We also have
implemented Matlab scripts for further statistical analysis
and generation of plots. A Java-based visualization of the
queue progress report has been implemented by an under-
graduate summer student.

3. EXAMPLE RESULTS
In this section, we show selected simulation results to

demonstrate the versatility of the simulation tool for the
study of a range of speed scaling policies under different
settings and with different metrics.

3.1 Occupancy under heavy load
It is well known that SRPT optimizes the average occu-

pancy, E[N], in single-speed systems [11]. In fact, given any
speed sample path, SRPT yields the minimal average occu-
pancy among all work conserving scheduling policies [3].

In coupled speed scaling systems, the speed s(t) at time t
is based on the number of jobs in the system. The interde-
pendency of average speeds and system occupancy results in
a lower-bound for the occupancy [6]. In order to guarantee
stability in the system, the average speed must be at least
that of the incoming load, s̄ ≥ ρ. In [13], it is observed that
if the power function is convex, then by Jensen’s inequality
we have E[N] = E[P (s(t))] ≥ P (E[s(t)]) ≥ ρ2.

With our simulation tool, we can investigate how far the
average occupancy is from the lower-bound. Figure 3 shows
the comparison of queue occupancy under heavy load for
coupled PS and SRPT. As load increases, the average oc-
cupancy under PS and SRPT both converge to the lower-
bound. This is in high contrast to the results in the single-
speed setting, where the average occupancy under PS grows
quickly in comparison to SRPT.

Figure 4 shows a snapshot of system occupancy under cou-
pled PS and SRPT, sampled at the same points in time when
the two systems work on the same workload stream. We see
that with the increase of load, the occurrences where SRPT
has higher occupancy than PS increases. This is counter-
intuitive, since SRPT in single-speed systems always runs
at lower queue occupancy (i.e., the sampled points would
always remain below the 45 degree line).

3.2 Queue Progress Log
In order to better understand why the queue occupancy

under SRPT exceeds that under PS, we investigate the de-
tailed queue progress log. Figure 5 shows an excerpt of this

Figure 4: Occupancy n(t) under coupled SRPT vs. coupled
PS when the two system work on the same workload stream.
Size of the marker indicates the frequency of sampled occu-
pancy.

log for PS and SRPT on the same workload stream with load
ρ = 4. In this short excerpt, the total remaining work under
PS is much lower than under SRPT. Furthermore, the num-
ber of jobs that have not even started service is larger under
SRPT. This hints at the compensation effect that PS bene-
fits from [6]. By running at higher occupancy prior to this
excerpt, PS can cope with the load in this episode at lower
speed. Conversely, SRPT needs to compensate for running
at lower speed prior to this excerpt in order to keep up with
the incoming load.

An interesting observation is the difference in the distribu-
tion of remaining sizes in the two queues. Not surprisingly,
SRPT tends to accumulate jobs with larger remaining sizes
in its queue. The surprising part is the large difference in
the work backlog in the two queues, and the high number of
jobs that have not started service under SRPT. This hints at
the possibility that coupled SRPT is nearly starving larger
jobs.

3.3 Remaining bytes in the system
We further investigate the byte backlog in the queue under

SRPT and PS by looking at the total remaining sizes vs. the
queue occupancy. Figure 6 and 7 show the remaining bytes
and the queue occupancy over time under SRPT and PS
respectively. These three workloads all have average load
ρ = 4 but with different job size distributions. For the case
of Pareto job sizes, the average job size is 1 (Figure 6(c) and
7(c)). For SRPT, the job size distribution greatly influences
the shape of the work backlog, while queue occupancy is
less sensitive to the job size distribution. Note that the
occupancy stays close to the lower-bound of ρ2 under all the
considered workloads for both SRPT and PS.

Figure 8 shows the average remaining bytes in the system
as a function of load. The backlog under coupled SRPT
grows very quickly with the increase of load, while the in-
crease is much more moderate under PS.

3.4 Fairness Study
Our simulation results for remaining bytes in the sys-

tem under coupled SRPT reconfirms the theoretical result
on adverse effect of coupled speed scaling on slowdown of
large jobs under SRPT [12]. It further shows that in com-
parison to coupled PS, the difference in the backlog grows
rapidly with the increase of load. This suggests that the
slowdown disadvantage of larger jobs under SRPT worsens
under heavy load.

We can study the slowdown of different policies with the

Time

Arrival (A)

Departure (D)

Preemption (P)

Num.

started

service

Num.

not yet

started

Sum of rem.

sizes started

service

Sum of rem. sizes

not started

service

876.991 P(0.032) 12 1 42.922 0.032 0.032 0.063 0.320 0.487 1.029 1.102 1.602 2.504 3.785 4.031 4.296 11.155 12.548

877.106 D 12 0 42.540 0.000 0.031 0.288 0.455 0.997 1.070 1.570 2.472 3.753 3.999 4.264 11.123 12.516

877.214 D 11 0 42.165 0.000 0.257 0.424 0.966 1.039 1.539 2.441 3.722 3.968 4.233 11.092 12.485

877.350 P(5.344) 11 1 41.716 5.344 5.344 0.216 0.383 0.925 0.998 1.498 2.400 3.681 3.927 4.192 11.051 12.444

878.098 D 11 0 44.467 0.000 0.167 0.709 0.782 1.282 2.184 3.465 3.711 3.976 5.128 10.835 12.228

878.611 P(4.979) 11 1 42.766 4.979 4.979 0.012 0.554 0.627 1.127 2.029 3.310 3.557 3.821 4.974 10.680 12.073

878.649 P(1.343) 12 1 47.611 1.343 1.343 0.001 0.543 0.616 1.116 2.018 3.299 3.545 3.810 4.962 4.968 10.669 12.062

878.653 D 12 0 48.942 0.000 0.542 0.615 1.115 1.342 2.017 3.298 3.544 3.809 4.961 4.967 10.668 12.061

880.532 D 11 0 42.434 0.000 0.073 0.573 0.800 1.475 2.756 3.002 3.267 4.419 4.424 10.126 11.519

880.773 D 10 0 41.633 0.000 0.500 0.727 1.402 2.683 2.929 3.194 4.346 4.352 10.053 11.446

880.877 P(2.398) 10 1 41.306 2.398 2.398 0.467 0.695 1.369 2.650 2.897 3.161 4.314 4.319 10.021 11.413

Time

Arrival (A)

Departure (D)

Preemption (P)

Num.

started

service

Num.

not yet

started

Sum of rem.

sizes started

service

Sum of rem. sizes

not started

service

876.991 P(0.032) 1 12 7.877 231.066 0.032 7.877 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

877.000 D 1 11 7.877 231.034 7.877 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

877.350 P(5.344) 1 12 6.666 236.378 5.344 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.611 A(4.979) 2 12 7.462 236.013 0.796 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.649 A(1.343) 2 13 7.318 237.356 0.652 1.343 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.818 D 1 13 6.666 237.356 1.343 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

879.177 D 1 12 6.666 236.013 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

880.558 D 1 11 6.666 231.034 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

880.877 P(2.398) 1 12 5.561 233.432 2.398 5.561 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

Remaining sizes of jobs in queue (SRPT)

Remaining sizes of jobs in queue (PS)

(a) PS

Time

Arrival (A)

Departure (D)

Preemption (P)

Num.

started

service

Num.

not yet

started

Sum of rem.

sizes started

service

Sum of rem. sizes

not started

service

876.991 P(0.032) 12 1 42.922 0.032 0.032 0.063 0.320 0.487 1.029 1.102 1.602 2.504 3.785 4.031 4.296 11.155 12.548

877.106 D 12 0 42.540 0.000 0.031 0.288 0.455 0.997 1.070 1.570 2.472 3.753 3.999 4.264 11.123 12.516

877.214 D 11 0 42.165 0.000 0.257 0.424 0.966 1.039 1.539 2.441 3.722 3.968 4.233 11.092 12.485

877.350 P(5.344) 11 1 41.716 5.344 5.344 0.216 0.383 0.925 0.998 1.498 2.400 3.681 3.927 4.192 11.051 12.444

878.098 D 11 0 44.467 0.000 0.167 0.709 0.782 1.282 2.184 3.465 3.711 3.976 5.128 10.835 12.228

878.611 P(4.979) 11 1 42.766 4.979 4.979 0.012 0.554 0.627 1.127 2.029 3.310 3.557 3.821 4.974 10.680 12.073

878.649 P(1.343) 12 1 47.611 1.343 1.343 0.001 0.543 0.616 1.116 2.018 3.299 3.545 3.810 4.962 4.968 10.669 12.062

878.653 D 12 0 48.942 0.000 0.542 0.615 1.115 1.342 2.017 3.298 3.544 3.809 4.961 4.967 10.668 12.061

880.532 D 11 0 42.434 0.000 0.073 0.573 0.800 1.475 2.756 3.002 3.267 4.419 4.424 10.126 11.519

880.773 D 10 0 41.633 0.000 0.500 0.727 1.402 2.683 2.929 3.194 4.346 4.352 10.053 11.446

880.877 P(2.398) 10 1 41.306 2.398 2.398 0.467 0.695 1.369 2.650 2.897 3.161 4.314 4.319 10.021 11.413

Time

Arrival (A)

Departure (D)

Preemption (P)

Num.

started

service

Num.

not yet

started

Sum of rem.

sizes started

service

Sum of rem. sizes

not started

service

876.991 P(0.032) 1 12 7.877 231.066 0.032 7.877 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

877.000 D 1 11 7.877 231.034 7.877 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

877.350 P(5.344) 1 12 6.666 236.378 5.344 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.611 A(4.979) 2 12 7.462 236.013 0.796 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.649 A(1.343) 2 13 7.318 237.356 0.652 1.343 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

878.818 D 1 13 6.666 237.356 1.343 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

879.177 D 1 12 6.666 236.013 4.979 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

880.558 D 1 11 6.666 231.034 6.666 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

880.877 P(2.398) 1 12 5.561 233.432 2.398 5.561 17.683 18.134 18.250 18.478 19.455 20.297 20.497 20.643 22.898 23.050 31.649

Remaining sizes of jobs in queue (SRPT)

Remaining sizes of jobs in queue (PS)

(b) SRPT

Figure 5: Comparison of queue progress log for coupled PS and SPRT given the same workload stream with load 4.

(a) EXP(1) (b) EXP(4) (c) Pareto(2.2)

Figure 6: The remaining bytes vs. queue occupancy in coupled SRPT given average load 4 with different job size distributions.

(a) EXP(1) (b) EXP(4) (c) Pareto(2.2)

Figure 7: The remaining bytes vs. queue occupancy in coupled PS given average load 4 with different job size distributions.

0

1

2

3

4

5

6

0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00

A
vg

. R
em

ai
n

in
g

B
yt

es

x
10

00
0

Load

SRPT

PS

Figure 8: Comparison of average remaining bytes under cou-
pled SRPT and PS, Pareto(2.2) job sizes.

help of our probe-based simulation. Figure 9 shows the slow-
down for 6 different policies when ρ = 2 with Pareto(2.2)
job sizes. Note that coupled PS is a symmetric queue and
therefore has constant slowdown for all job sizes [10,13]. In
Figure 9(a) the slowdown under SRPT for jobs larger than 5
is already more than double the slowdown under PS. Figure
9(b) highlights the slowdown disadvantage of SRPT. Un-
der SRPT with load 2, slowdown of jobs larger than 250 is
greater than slowdown of jobs under PS with load 64.

In Figure 9(a), SRPT-PS and FSP-PS dominate PS (i.e.,
always maintain slowdown no worse than that under PS).
These decoupled speed scaling policies determine the speed
based on the occupancy of a shadow PS scheduler that works
on the same arrival process. The analytical result in [7]
shows that for all load configurations, FSP-PS performs at
least as well as PS for both slowdown and the sum of average
response time and energy consumption (i.e., the cost). Fur-
ther investigation is required to quantify the improvement
under different load regimes.

3.5 Cost
We study the cost improvements under FSP-PS and

SRPT-PS in comparison to coupled PS. Figure 10 shows the
ratio of cost to the lower-bound. The cost is the linear com-
bination of average response time and energy consumption.
For load ρ, the lower bound max(2ρ, ρ2) is shown in [13].
Under heavy load, both FSP-PS and SRPT-PS greatly im-
prove the cost in comparison to PS. SRPT-PS has a slight
edge on FSP-PS, but there is a slowdown tradeoff for this
gain in cost (see Figure 9(a)).

4. CONCLUSIONS
This paper presented an extensible simulation tool for the

study of speed scaling designs. Through example results,
we have shown the versatility of the simulation tool for the
study of a range of policies under different speed scaling
configurations. We are further investigating the behavior of
coupled and decoupled SRPT under heavy load. For future
work, more policies can be implemented and studied. The
current implementation of FSP could be greatly improved
by incorporation of the algorithm proposed in [4].

Acknowledgments
Financial support for this work was provided by Canada’s
Natural Sciences and Engineering Research Council
(NSERC). The authors are grateful to Philipp Woelfel for
insightful discussions about speed scaling systems, and to
Jennifer Williamson for building a Java-based visualization
of our queue progress log output.

x
0 5 10 15 20 25 30 35 40 45

S
lo

w
d

o
w

n

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
SRPT
SJF
PS
FSP-PS
SRPT-PS
FCFS

(a)

x
0 50 100 150 200 250

S
lo

w
d

o
w

n

0

10

20

30

40

50

60

70

SRPT, Load 2
PS, Load 64

(b)

Figure 9: Slowdown under different coupled and decoupled
scheduling polices. (a) Load 2 and job sizes are Pareto(2.2).

0

0.5

1

1.5

2

2.5

0.50 1.00 2.00 4.00 8.00 16.00 32.00 64.00

C
os

t/
L

ow
er

-b
ou

nd

Load

PS

FSP-PS

SRPT-PS

Figure 10: Comparison of cost of Coupled PS and Decoupled
SRPT and FSP with speeds of PS. Pareto(2.2) job sizes.

5. REFERENCES
[1] Versatile Speed Scaling Simulator.

https://github.com/bmelahi/SpeedScalingSimulator.
[2] S. Albers. Energy-efficient algorithms. Commun. ACM,

53(5):86–96, May 2010.
[3] N. Bansal, H.-L. Chan, and K. Pruhs. Speed scaling with an

arbitrary power function. In Proc. ACM-SIAM Symposium
on Discrete algorithms (SODA), pages 693–701, 2009.

[4] M. Dell’Amico, D. Carra, and P. Michiardi. PSBS: practical
size-based scheduling. IEEE Trans. Computers,
65(7):2199–2212, 2016.

[5] M. Dell’Amico, D. Carra, M. Pastorelli, and P. Michiardi.
Revisiting size-based scheduling with estimated job sizes. In
MASCOTS, pages 411–420, 2014.

[6] M. Elahi and C. Williamson. Autoscaling effects in speed
scaling systems. In MASCOTS 2016 (preprint).

[7] M. Elahi, C. Williamson, and P. Woelfel. Decoupled speed
scaling: Analysis and evaluation. Perform. Eval., 73:3–17,
2014.

[8] M. Elahi, C. Williamson, and P. Woelfel. Turbocharged
speed scaling: Analysis and evaluation. In MASCOTS,
pages 41–50, 2014.

[9] M. Gong and C. Williamson. Revisiting unfairness in web
server scheduling. Comput. Netw., 50(13):2183–2203, 2006.

[10] F. Kelly. Reversibility and Stochastic Networks. Cambridge
University Press, 2011.

[11] L. Schrage. A proof of the optimality of the shortest
remaining processing time discipline. Oper. Res.,
16:678–690, 1968.

[12] A. Wierman, L. Andrew, and M. Lin. Speed scaling: An
algorithmic perspective. In Handbook of Energy-Aware and
Green Computing - Two Volume Set., pages 385–405. 2012.

[13] A. Wierman, L. Andrew, and A. Tang. Power-aware speed
scaling in processor sharing systems: Optimality and
robustness. Perform. Eval., 69(12):601–622, 2012.

[14] A. Wierman and M. Harchol-Balter. Classifying scheduling
policies with respect to unfairness in an M/GI/1. In Proc.
ACM SIGMETRICS, pages 238–249, 2003.

