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Abstract—In speed scaling systems, the execution speed of a
processor can be adjusted dynamically under operating system
control to provide tradeoffs between response time, fairness, and
energy consumption. In this paper, we propose and evaluate
an approach called envelope-based turbocharging, applied in
conjunction with Fair Sojourn Protocol (FSP) scheduling and
job-count-based speed scaling. This approach restores the strict
dominance of FSP over Processor Sharing (PS) in speed scaling
systems, and preserves fairness. We evaluate our new approach
using analysis and simulation. The simulation results show that
Turbocharged FSP (T–FSP) outperforms PS in response time, and
often in energy consumption as well. Furthermore, the energy
consumption of T–FSP is typically within 15% of optimal.

Index Terms—Speed scaling; response time; energy efficiency

I. INTRODUCTION

Dynamic speed scaling provides tradeoffs between
execution-time performance and energy consumption in
modern computer systems [1]. Specifically, running the CPU
at higher speeds provides better response times, but consumes
more energy. Finding the right balance between these two
metrics is the primary challenge in speed scaling systems.

Fairness in dynamic speed scaling systems is also important.
In recent work by Andrew, Lin, and Wierman [2], the authors
illustrate the inherent tradeoffs between fairness, robustness,
and optimality in speed scaling systems. In particular, they
show that Processor Sharing (PS) remains fair under speed
scaling, since it provides the same expected slowdown for all
jobs. However, speed scaling can exacerbate the unfairness
of other scheduling policies, such as Shortest Remaining
Processing Time (SRPT) and First Come First Serve (FCFS).
While PS remains the benchmark for fairness, it performs
suboptimally on the other metrics [2].

In earlier work [3], we studied a speed-scaled version of the
Fair Sojourn Protocol (FSP) [4], seeking a scheduling policy
that improves upon the response time of PS, without being
unfair to any job. In single-speed systems, FSP is appealing
because of its dominance property; specifically, no job finishes
later under FSP than under PS. However, in a coupled (i.e.,
job-count-based) speed scaling model, we found that FSP’s
dominance over PS no longer holds [3].

In the same paper [3], we proposed decoupled speed scaling,
wherein the speed of the system is determined by an exter-
nal speed scaling function. This approach differs from the
prior literature on (coupled) job-count-based speed scaling,

in which the speed is determined dynamically based on the
current number of jobs in the system. Under decoupled speed
scaling, FSP again dominates PS [3]. However, there are many
technical challenges in implementing decoupled speed scaling,
since CPU speed changes may be required at arbitrary points
during the execution of a given job, rather than just at job
arrival and departure instants.

In this paper, we consider “turbocharging” as an alternative
approach to restoring the dominance of FSP over PS [5]. In
this approach, CPU speeds are scaled up so that jobs under
FSP complete no later than under PS. This approach is simpler
in that it once again couples CPU speed with instantaneous
system occupancy, so that speed changes (when required) only
occur at job arrival or departure points.

The key idea behind turbocharging is illustrated in Figure 1.
This example shows the execution behavior of a linear speed
scaling system handling two jobs, each of unit size. By running
at speed 2, as shown in the leftmost part of Figure 1, PS
completes both jobs at time 1. In contrast, speed-scaled FSP
completes the first job (with speed 2) at time 0.5, and the
second job (with speed 1) at time 1.5, as shown in the middle
diagram. Note that the latter event violates the dominance
property, since job 2 completes later under FSP than under
PS. However, turbocharging the FSP rates by a factor of 1.5
restores the dominance property on this particular example, as
shown in the rightmost part of Figure 1. The first job is run
at speed 3, completing at time 1/3, while the second job is
run at speed 1.5 to complete at time 1. Energy consumption
is arguably higher, but no job finishes later than it did under
PS.
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Fig. 1. Comparison of PS, FSP, and Turbocharged FSP (two jobs of size 1
at time 0, with linear job-count-based speed scaling)

In this paper, we investigate the idea of turbocharging in
speed scaling systems. In particular, we explore the conditions



under which turbocharging FSP can guarantee dominance over
PS. We first motivate our study through an example examining
the effect of turbocharging on the response time and energy
consumption under different scheduling policies. In particular,
we show that naive approaches to turbocharging do not suffice
to preserve the dominance property. However, we propose a
new model, called envelope-based turbocharging, that is able
to restore the dominance over PS. Finally, we compare our
approach to one in which we introduce deadlines for jobs in
the system based on their departure times in a PS system. We
show that in the case of batch arrivals, the algorithm introduced
by Yao, Demers, and Shenker [6] outperforms PS. Specifically,
we show that PS is suboptimal, not only in response time, but
also in energy consumption. Furthermore, Turbocharged FSP
typically outperforms PS on one or both of these metrics.

The remainder of the paper is organized as follows. Sec-
tion II reviews recent literature on CPU speed scaling sys-
tems. Section III presents an example to motivate our work.
Section IV presents our system model. Section V presents
our analytical results. Section VI presents simulation results.
Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Scheduling in Single-Speed Systems

Scheduling policies are often evaluated based on mean
response time, which measures the average time that a job
spends in the system between arrival and departure. Under this
metric, the optimal policy is Shortest Remaining Processing
Time (SRPT) [7]. SRPT is a preemptive policy that always
selects for service the pending job with the least remaining
work. Although SRPT minimizes the mean response time, it is
rarely used in practice, because it might be unfair. In particular,
large jobs may be starved if priority is given to small jobs.

The unfairness of SRPT has been studied extensively [8],
[9], [10], [11]. Under heavy load, SRPT may be unfair to
certain jobs [8]. However, in many cases, SRPT can provide
lower expected response times than PS for all job sizes [11].
Counter-intuitively, the jobs that receive unfair treatment under
heavy load are the medium-large jobs, not the largest jobs.
In fact, all scheduling policies asymptotically converge to the
same slowdown value for very large jobs [12].

The design of the Fair Sojourn Protocol (FSP) policy com-
bines the response time advantages of SRPT with the fairness
properties of PS [4]. FSP selects for service the pending job
that would complete the soonest under PS scheduling, and
then devotes full service to this job until the next arrival or
departure occurs. FSP relies upon a “virtual PS” queue in the
background, and recomputes its next scheduling decision upon
each job arrival or departure event.

An intriguing aspect of FSP is its strict dominance over PS.
Friedman and Henderson [4] define dominance as follows:

Definition 1: Scheduling policy p′ dominates policy p if

1) on any sample path, no job completes later under p′ than
under p, and

2) there exists a sample path such that some job on that
sample path completes earlier under p′ than under p.

Definition 1 provides a very strong notion for fairness.
Specifically, if a policy p dominates PS, then it is also fair.
However, a fair policy is not guaranteed to dominate PS.

B. Scheduling in Speed Scaling Systems

The literature on speed scaling systems includes both sys-
tems work and theoretical work. In the systems community,
speed scaling is known as Dynamic Voltage and Frequency
Scaling (DVFS). In such work, many practical constraints
arise due to limited voltage/frequency ranges, discrete speeds,
limited granularity of control, the overhead of CPU gover-
nors, and diverse job characteristics [13], [14], [15], [16].
Implemented policies in practice include (coarse-granularity)
threshold-based control, rush-to-idle, gated on-off, and Intel’s
Turbo Boost technology. In the theoretical community, speed
scaling is typically job-count-based, with a continuous and
unbounded range of speeds available. Since our work follows
the latter paradigm, we focus on this literature next, though we
do mention practical implementation issues later in the paper.

In speed scaling systems, the many tradeoffs between
service rate, response time, and energy consumption have
triggered extensive work on energy-efficient algorithms [1],
[17]. Yao, Demers, and Shenker [6] pioneered the analytical
study of dynamic speed scaling in a context where jobs have
deadlines and the service rate is unbounded. An alternative
approach has focused on minimizing the response time in
systems, given a fixed energy budget [18], [19].

A more practical approach aims at optimizing the tradeoff
between energy consumption and mean response time [20].
Several studies on this metric suggest that energy-proportional
speed scaling1 is near optimal [2], [21], [22]. The optimal
(coupled) policy is SRPT with s = P−1(nβ) as its job-count-
based speed scaling function [2].

The use of speed scaling may alter the fairness properties
of scheduling policies. Fairness under speed scaling was first
formally studied by Andrew, Lin, and Wierman [2]. They use
a similar definition for fairness in speed scaling systems as in
single-speed systems:

Definition 2: A policy p is fair if for all x

E[Tp(x)]

x
≤ E[TPS(x)]

x
.

Under this metric, speed scaling can magnify unfairness
for SRPT and non-preemptive policies such as FCFS. The
intuition is that large jobs receive lower service rates, since
they are only scheduled when the smaller jobs have left the
system (i.e., the system occupancy is lower).

Two observations about this fairness definition are worth
noting. First, fairness is defined in terms of expectation, rather
than in the strict per-job sense of dominance. Strict dominance

1In energy-proportional speed scaling, the power consumption P (s) when
the system is run at speed s is directly proportional to the number of jobs in
the system (e.g., P (s) = n).



implies fairness, but the converse is not necessarily true.
Second, Definition 2 ignores energy consumption, since it
only considers job response times. In [3], PS is proven to
be efficient under the coupled speed scaling model, while
it is conjectured that no other policy can be fair according
to Definition 2. With decoupled speed scaling, however, it
is possible to improve upon the response time of PS while
maintaining fairness [3].

III. MOTIVATING EXAMPLE

This section uses an example to build the intuition behind
turbocharged speed scaling. At time 0, a batch of three jobs
arrive (J1, J2, and J3), with sizes 1, 2, and 5, respectively.

In a single-speed system, PS would schedule the jobs
as shown in Figure 2, while FSP would schedule the jobs
as shown in Figure 3. In these diagrams, the vertical axis
represents CPU speed, while the horizontal axis represents
time. Since both systems run at the same fixed rate, they both
complete the same amount of work in the same amount of
time. However, FSP has a response time advantage over PS,
since some jobs (J1 and J2) complete sooner under FSP than
under PS, and no job completes later under FSP than it does
under PS. This example illustrates the dominance property.

J1
J2
J3

J2

J3
J3

0 3 5 8

1

Fig. 2. PS Scheduling (no speed scaling)

J1 J2 J3

0 1 3 8

1

Fig. 3. FSP Scheduling (no speed scaling)

Now consider a speed-scaling system, with job-count-based
speed scaling, and a linear speed scaling function. PS would
schedule the jobs as shown in Figure 4, while FSP would
schedule the jobs as shown in Figure 5. Because FSP com-
pletes the smaller jobs more quickly, it lowers the CPU speed
sooner than PS does, and ends up taking longer to complete
the entire batch of jobs. In particular, job J3 finishes later
under FSP than it does under PS. The extended duration of
the busy period leads to a violation of the dominance property.
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Fig. 4. PS Scheduling (speed scaling)
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Fig. 5. FSP Scheduling (speed scaling)

One possible solution to this problem is to turbocharge
FSP, based on the corresponding busy period durations. In this
particular example, we would scale all of the CPU speeds by
1.266667 (the ratio of 6 1

3 and 5). The result is the job schedule
in Figure 6. In this example, turbocharging is sufficient to
restore the dominance property: no job finishes later under
Turbocharged FSP (Figure 6) than it does under PS (Figure 4).

J1 J2 J3
0.26 1.05 5

3.80
2.53
1.27

Fig. 6. Turbocharged FSP Scheduling (speed scaling)

Does this property hold in general for Turbocharged FSP?
The answer turns out to be “no”, at least for naive turbocharg-
ing that merely aligns the busy period durations [5]. A more
elaborate example with 4 jobs (sizes 1, 1, 1, and 20) suffices
to illustrate this point. Figure 7 shows that PS completes all
the jobs in 20 time units, while FSP needs 21.083 time units
(Figure 8). However, scaling the speeds of FSP by 5.4% to
make the busy periods align in Figure 9 is not sufficient. While
this naive turbocharging approach does satisfy job J4, job J3
still encounters a violation (1.028 versus 1). A 2.8% higher
service rate is required to complete this job on time.

J1
J2
J3
J4 J4
0 1 20
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1

Fig. 7. PS Scheduling (4 jobs: 1, 1, 1, 20)

J4
1.083 21.083

4
3
2
1

Fig. 8. FSP Scheduling (4 jobs: 1, 1, 1, 20)

J4
1.028 20

4.21
3.16
2.11
1.05

Fig. 9. Naive Turbocharged FSP Scheduling (4 jobs: 1, 1, 1, 20)

The rest of this paper explores the conditions under which
turbocharging can work in speed scaling systems. In particular,
we propose and evaluate an envelope-based turbocharging
strategy that preserves the dominance property of FSP, and
quantify its response time performance and energy cost.

IV. SYSTEM MODEL

We consider a single-server system with dynamically ad-
justable service rates. We assume that the service rates are
continuous and unbounded, and there is no overhead incurred
for changing the service rate.



A sample path is a sequence of tuples specifying job arrival
times, job sizes, and possibly job deadlines. Let ai, wi and di
denote the arrival time, size, and deadline, respectively, for
job Ji. Size (work) of a job is equal to the time it takes to
service the job at unit rate. We let di = ∞ if job Ji has no
deadline. A batch of n jobs is a sequence of jobs arriving at
the same time. For our main results, we assume that all jobs
arrive in one batch (i.e., at the same time) and have arbitrary
sizes and no deadlines. For convenience, we assume that jobs
in a batch are sorted in non-decreasing order of job sizes, such
that w1 ≤ w2 ≤ · · · ≤ wn. A summary of our model notation
appears in Table I.

In this paper, we consider the class of work-conserving
batch scheduling policies. In batch scheduling, one batch of
jobs arrives at some time when no other jobs are in the system,
and no other jobs arrive before the entire batch has been
processed. The scheduler knows all of the job sizes upon their
arrival. We consider a preempt-resume model, where a job
may be preempted and resumed with zero context-switching
overhead.

A speed scaling function, r(t), specifies the rate of the
system at time t. Let P (r) denote the power required to run
at rate r. Then the total energy consumed by the system in
the time interval [0,τ ] is∫ τ

0

P (r(t))dt. (1)

For coupled speed scaling, the rate of the system at time t is
determined by the number of jobs remaining in the system
at time t, denoted by l(t), and thus is influenced by the
scheduling policy. To optimize a linear combination of mean
response time and energy consumption, the best known policy
uses the speed function r(t) = P−1(l(t)β), where β is a
weighting factor indicating the relative importance of response
time and energy consumption [2]. In this paper, we assume
β = 1. We consider P (s) = sα, which is commonly used in
the literature to model the power consumption of the CPU.
The typical value for the exponent is 1 ≤ α ≤ 3. Therefore,
in the coupled speed scaling model we use r(t) = l(t)

1
α . In

speed scaling with turbocharging, the speeds are scaled by a
positive factor b, such that r(t) = b(l(t)

1
α ).

In online scheduling, the scheduling decisions of a policy
are independent of future arrivals. As is conventional in the
performance modeling literature, we use the term busy period
to refer to a time period during which there is always at least
one job in the system

We use the PS scheduling policy as a baseline for compar-
ison. PS is the de facto standard for fairness because it treats
all jobs equally. At each point in time, PS gives equal service
to all active jobs in the system.

V. ANALYTICAL RESULTS FOR TURBOCHARGING

In this section, we present our analytical results for tur-
bocharged speed scaling systems. Our main focus is on FSP
and its relationship to PS, although the notion of turbocharging
is broadly applicable to any scheduling policy.

TABLE I
MODEL NOTATION

Symbol Description
n Number of jobs

f(n) CPU speed as a function of number of jobs
Ji Job i
ai Arrival time of job i
wi Work (size or service requirements) associated with job i
di Deadline (if any) for job i
Xi Departure time of job i
bi Turbocharging (boosting) rate of job i
t Time in seconds
r(t) CPU speed (rate) as a function of time
l(t) Number of jobs as a function of time
P (r) Power consumption when running at rate r
α Exponent used in power consumption function

A. General Formulation

Let Xπ
k denote the departure time of job Jk under policy

π. Under PS, the server is shared equally amongst all jobs in
the system. Under this policy, jobs complete and depart from
the system in order of size, with CPU speeds decreasing in
a staircase fashion (see Figure 4). Let f(n) denote the speed
that the server runs at when there are n jobs in the system.
Equation (2) shows the expression for the departure time of
job Jk under PS. The summation occurs over one or more
components of job execution, each with a different speed. For
notational convenience, we assume a job J0 with size w0 = 0.
While it does not affect the system, it simplifies the expression
for XPS

k . The denominator inside the summation represents
the system speed being used when there are n− i+1 jobs in
the system. The factor (wi−wi−1) in the numerator represents
the residual service time of the i-th job, once its immediate
predecessor has departed, while the factor (n−i+1) represents
the “stretch factor” from sharing the CPU in a PS fashion with
the other remaining jobs.

XPS
k =

k∑
i=1

(wi − wi−1)(n− i+ 1)

f(n− i+ 1)
(2)

Under the Fair Sojourn Policy (FSP), the server is dedicated
to one job at a time, in preferential order based on the virtual
PS completion times. By the definition of FSP, the order in
which jobs depart is the same as under PS. Therefore, the
departure time of job Jk under FSP is:

XFSP
k =

k∑
i=1

wi
f(n− i+ 1)

. (3)

The physical interpretation of this expression is quite straight-
forward. The waiting time for job Jk depends on the k − 1
smaller jobs that precede it, each of which is served at
progressively lower rates. To this waiting time, one must add
the service time of job Jk itself. See Figure 5 for an example.

Because FSP completes some jobs (i.e., jobs with smaller
remaining sizes) more quickly than they finish under PS, the
CPU speed is reduced earlier, which can lead to some jobs
(i.e., jobs with larger remaining sizes) finishing later under



FSP than they finished under PS (see Figure 5). Such an
occurrence violates the dominance property of FSP over PS.

To restore the dominance property, we ‘turbocharge’ FSP
(T–FSP). Define bk as the ratio between the two completion
times calculated for job k. That is, bk = XFSP

k /XPS
k .

In order to ensure that the last job, Jn, finishes at the same
time under FSP as under PS, it suffices to scale up the speed
function f(n) used by FSP by a factor of bn, where

bn =
XFSP
n

XPS
n

=

∑n
i=1

wi
f(n−i+1)∑n

i=1
(wi−wi−1)(n−i+1)

f(n−i+1)

(4)

Algebraic manipulation yields,

bn = 1 +

∑n
i=1 (n− i)wi(

1
f(n−i) −

1
f(n−i+1) )∑n

i=1 wi(
n−i+1

f(n−i+1) −
n−i

f(n−i) )
. (5)

For f(n) = n
1
α and α = 1, the foregoing expression

reduces to:

bn = 1 +
1

wn

n−1∑
i=1

wi
n− i+ 1

(6)

With these formulations, it is straightforward to compute the
turbocharging rate for each job in the batch a priori, given the
job sizes and the speed scaling function.

B. Insights and Observations

Several insights emerge from studying these formulations:
• The turbocharging rate bn can never be less than 1.

Since job sizes are positive, and f(n) is monotonically
increasing, all terms inside the summations are positive,
and so is the ratio. Therefore, bn ≥ 1. Equality occurs
only for n = 1. For n > 1, bn > 1 (i.e., the last job
under FSP always finishes later than under PS).

• bn has a direct linear dependence on the sizes of the
first n − 1 jobs, but is inversely dependent on the size
wn of the last job. The term wn appears only in the
denominator, and not in the numerator, so there is an
inverse relationship in the dependence on wn. That is,
if wn is huge compared to the other jobs, very little
turbocharging will be needed (since the last job will
consume most of the time in both PS and FSP).

• The speed scaling function f(n) has two different effects.
First, it shows up in the numerator of Equation (5), where
it represents the relative effect of a system speed change
between adjacent settings. Second, it shows up in the
denominator, where it represents the relative change in
the per-job share of the CPU in the PS case.

• When α > 1, the relative speed changes with growing
system occupancy are smaller, so bn is smaller as well.
Intuitively, both the PS schedule and the FSP schedule
become much longer, so that the acceleration factor re-
quired to preserve dominance becomes relatively smaller.

The following observations also arise from our analysis:
Normalization: Only relative job sizes matter, not their

absolute sizes. If the sizes of jobs are scaled by some arbitrary
factor c > 0, this factor can be moved outside the summations

TABLE II
GENERALIZED HARMONIC NUMBERS

n α = 1 α = 2 α = 3

1 1.000 1.000 1.000
2 1.500 1.707 1.794
3 1.833 2.284 2.487
4 2.083 2.784 3.117
5 2.283 3.232 3.702
6 2.450 3.640 4.252
7 2.593 4.018 4.775
8 2.718 4.371 5.275
9 2.829 4.705 5.756

10 2.929 5.021 6.220

and canceled, so there is no net effect on bn. We can use
this fact to consider only “normalized” job sequences where
w1 = 1, and all other job sizes are scaled relative to job J1.

Homogeneous Jobs: The worst case (largest) value of bn
occurs when all jobs are the same size. In such a system, PS
runs at full speed f(n) until all jobs complete simultaneously,
while FSP monotonically decreases the CPU speed as each of
the jobs depart. The growing discrepancy between the speed
of PS and the speed of FSP can make bn large.

Harmonic Numbers: When the speed scaling is linear
f(n) = n, then the homogeneous job case results in bn = Hn,
where Hn denotes the n-th Harmonic number. This is good
news for turbocharged speed scaling, since the Harmonic
numbers are a slowly growing function of n. For general α,
the homogeneous job case results in bn =

Hn,m

n
α−1
α

, where Hn,m

denotes the n-th generalized Harmonic number, with m = 1
α .

Table II summarizes the first 10 Harmonic numbers in each
of these sequences for several different values of α.

Monotonicity: In general, bn is an increasing function
of n for homogeneous job sizes. However, bn is also a
monotonically decreasing function of wn, when the sizes of
the first n− 1 jobs are fixed.

Job Size Variability: The converse of the earlier obser-
vation about homogeneous jobs being the worst case is that
variability in the job size distribution is beneficial, since
it lowers bn. This observation is consistent with a similar
property in single-speed systems, wherein SRPT scheduling
has its greatest advantage over PS when job sizes are highly
variable [8]. Furthermore, size-based scheduling policies tend
to be robust to inexact job size information [23], [24].

C. Naive Turbocharging

As our first result, we show that even in the simple case of
batch arrivals, naive turbocharging of FSP does not guarantee
dominance over PS. The intuition as to how to build these sce-
narios comes from the foregoing analysis. One can start with
n−1 homogeneous jobs, for a large value of n so that bn−1 is
large. Then the size of job Jn can be increased as needed to
make bn smaller than bn−1. This will create scenarios where
naive turbocharging fails to guarantee dominance.

To achieve dominance over PS, all departure times of jobs
under turbocharged FSP need to be no later than under PS.
This happens if and only if bk ≤ bn for all k ∈ [1, n].



Assuming w1 = w2 = . . . = wn−1 = 1 and wn > 1,
Equation (5) simplifies to:

bn = 1 +
Hn,m − n

f(n)

wn + n
f(n) − 1

= 1 +
Hn,1/α − n

α−1
α

wn + n
α−1
α − 1

.

(7)

In this setting, we have:

bn−1 =
XFSP
n−1

XPS
n−1

=

∑n−1
i=1

wi
(n−i+1)1/α∑n−1

i=1 (wi − wi−1)(n− i+ 1)
α−1
α

= n
1−α
α (Hn,1/α − 1).

(8)

Specifically, bn−1 will exceed bn, and break the dominance
of turbocharged FSP over PS, for all n and wn such that:

Hn,1/α ≥ 1 + n
α−1
α and wn >

(n
α−1
α − 1)(Hn,m − 1)

Hn,m − 1− nα−1
α

. (9)

When α = 1, these conditions reduce to Hn ≥ 2 and
wn = Hn−1

Hn−2 . For example, recall Figure 8, in which job J3
experienced a violation of dominance when α = 1, n = 4 and
wn = 20. The smallest integer value of wn for which such a
violation would occur is wn = 14 (i.e., wn > 13.05).

One corollary from the above analysis is that for linear
speed scaling, the smallest possible counter-example must
have at least 4 jobs (i.e., Hn ≥ 2). For larger values of α,
even more jobs are needed (e.g., 6 for α = 2, and 7 for
α = 3). In other words, when the system occupancy is low,
naive turbocharging cannot violate the dominance property.

D. Envelope-based Turbocharging

Naive turbocharging does not always suffice to guarantee the
dominance property. One reason why it could fail is that naive
turbocharging only aligns the end of the busy period to that
of PS. Under an arbitrary scheduling policy, this criterion is
not sufficient to guarantee dominance, since the jobs within the
busy period could complete in a different order than under PS.
For this reason, we restrict our focus to scheduling policies,
such as FSP, that complete jobs in the same order as PS.
However, even under FSP, as we have shown, it is possible
for some jobs (e.g., the second last job, or any earlier job) to
finish later under Turbocharged FSP than it did under PS.

The obvious solution to the violation problem is to identify
the critical job within the batch (i.e., the job Jk with the largest
bk value). For the example in Figure 8, the bk values are b1 =
1.0, b2 = 1.5, b3 = 1.833, and b4 = 1.054167, so job J3 is the
critical job with bmax = 1.833. Note, however, that we do not
need to turbocharge the entire batch by bmax. Rather, once the
critical job has been completed on time, one can recompute
the turbocharging rate for the remaining jobs in the batch. In
the example, the turbocharging rate can be reduced to b =

1.054167 again after time 1.0 to complete the remaining job
J4 by time 20. In fact, b = 1.05263 suffices for this purpose.

We call this approach envelope-based turbocharging. If
bmax = bn, then this approach is identical to naive turbocharg-
ing, with a single turbocharging rate for the entire busy period.
Otherwise, multiple turbocharging rates are used, with one
b value for the first part of the busy period, and envelope-
based turbocharging applied recursively on the remaining jobs
in the batch. This approach tightens the speed scaling profile
for the batch, while aligning the end of the busy period (i.e.,
the completion time of job Jn) to that of PS, so as to reduce
the energy consumption.

The key to envelope-based turbocharging is the notion of
virtual batches. One example of a virtual batch is mentioned
above, where a single job of size 20 needs to be completed
within 19 time units after the departure of the critical job.
The same idea can be used to extend our approach to online
(i.e., dynamic) arrivals of jobs within a batch. Upon each new
arrival, a recomputation of turbocharging rates is required. The
virtual batch excludes all previously completed jobs from the
batch, but includes the new job as well as all currently active
jobs (partially completed or not-yet-started) in the batch. New
PS completion deadlines are computed based on the residual
sizes of jobs at the arrival instant, as well as their inherited
deadlines from the former (physical or virtual) batch. Some
job deadlines may remain the same when new work is added,
while some may move forward into the future. However, with
linear or sub-linear speed scaling (for 1 ≤ α), the PS deadlines
can never move backwards in time.

VI. SIMULATION RESULTS

This section presents simulation results to demonstrate the
efficacy of turbocharged speed scaling, in comparison to other
scheduling and speed scaling strategies. Section VI-A presents
results for the simple case of a single static batch of jobs, while
Section VI-B presents results for more general workloads with
dynamic job arrivals.

A. Baseline Results

Consider a single server system, initially empty, to which
a batch of 10 jobs arrive. We use a simple discrete-event
simulation model of this system, with configurable schedul-
ing policies and workloads, and adequate instrumentation
to record job response time and energy consumption. We
use three different batch workloads to examine the behav-
ior of different schedulers with turbocharging. Workload 1
is a batch of 10 homogeneous jobs (all of size 1), while
workload 2 is a batch of 10 jobs with a linear progres-
sion of sizes (1, 2, 3, 4, 5, 6, 7, 8, 9, 10), and workload 3 is a
batch of 10 jobs with a multiplicative progression of sizes
(1, 2, 4, 8, 16, 32, 64, 128, 256, 512). These tests cover low (no)
variance, medium variance, and high variance workloads.

Figures 10, 11, and 12 show the simulation results for these
three batch workloads, when α = 2. In each figure, the left-
most column of graphs shows the instantaneous number of
jobs in the system, for the different scheduling and speed



scaling policies. The middle column of graphs shows the
instantaneous CPU speed of the system, and the right-most
column of graphs shows the instantaneous volume of work
remaining in the system, as well as the job departure points.

Under PS, jobs leave the system in the same order as under
SRPT [4]. By definition, FSP schedules jobs based on their
order of departure under PS. Therefore, in batch scheduling,
FSP is equivalent to SJF scheduling.

Table III, Table IV, and Table V provide a summary of the
results for mean response time and energy consumption under
the simulated policies. The tables represent the low variance,
medium variance, and high variance job size distributions,
respectively. Within each table, we also show the effect of α,
for 1 ≤ α ≤ 3. Beneath each α value, the two columns show
the mean response time (E[T ]) and mean energy consump-
tion (E[ε]) for each policy evaluated. Within each table, the
bold font shows the scheduling policy with the lowest mean
response time, which is often (but not always) Turbocharged
FSP (T–FSP).

The results show that the mean response time and energy
consumption of FSP are no worse than those of PS when
α = 1, and 20-30% lower than those of PS for larger
values of α. However, Figure 10 (a) shows that under FSP,
the last few jobs depart later than under PS, and hence FSP
does not guarantee dominance over PS. This is due to the
repeated reductions in the speed of the system under FSP
(Figure 10 (b)), leaving a larger backlog of remaining work
than under PS (Figure 10 (c)). Similar behavior is observed
for the other workloads in Figure 11 and Figure 12.

Turbocharging FSP restores the dominance over PS in these
examples, as shown in Figure 10 (d)), for example. For each
sample workload, we observe that T–FSP provides better
mean response time than PS. Compared to FSP, T–FSP has
much lower response time, since the system is running faster.
However, scaling up the speeds in T–FSP increases the energy
consumption, as evident when α > 1. Compared to PS, T–FSP
improves response time by 20-60%, though often with a slight
increase in energy consumption by 0-15%.

The simulation results for the sample workloads suggest
that T–FSP can improve upon the performance of PS, while
preserving dominance. In some cases, it improves upon both
response time and energy consumption compared to PS (see
Table V).

Two additional policies are shown in the tables as a point
of comparison. One is FSP–PS, as an example of decoupled
speed scaling [3]. By construction, this policy has the same
energy consumption as PS, while exploiting the size-based
scheduling of FSP to improve response time. In many of the
cases shown, T–FSP provides slightly better response time
than FSP–PS at slightly higher energy costs (Table III and
Table IV), or comparable response time with slightly lower
energy costs (Table V).

The second policy for baseline comparison is YDS, an
offline scheduling algorithm that optimizes energy consump-
tion while meeting job execution deadlines [6]. We use an
initial run of the PS scheduler to determine job deadlines, and

TABLE III
MEAN RESPONSE TIME AND ENERGY CONSUMPTION FOR DIFFERENT

POLICIES (10 JOBS, HOMOGENEOUS JOB SIZES)

Scheduling α = 1 α = 2 α = 3
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS 1.00 1.00 3.16 3.16 4.64 4.64
FSP 1.00 1.00 2.25 2.25 3.00 3.00

T–FSP 0.34 1.00 1.42 3.57 2.24 5.39
FSP–PS 0.55 1.00 1.74 3.16 2.55 4.64

YDS 0.55 1.00 1.74 3.16 2.55 4.64

TABLE IV
MEAN RESPONSE TIME AND ENERGY CONSUMPTION FOR DIFFERENT

POLICIES (10 JOBS, LINEAR JOB SIZES)

Scheduling α = 1 α = 2 α = 3
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS 5.50 5.50 14.3 14.3 19.8 19.8
FSP 5.50 5.50 10.4 10.4 13.3 13.3

T–FSP 2.48 5.50 7.17 15.2 10.4 21.6
FSP–PS 2.93 5.50 7.86 14.3 11.0 19.8

YDS 4.00 5.50 8.99 13.5 12.0 18.4

then use YDS to determine the minimum energy consumption
possible among all policies that meet2 the PS deadlines. This
value is shown in italics in the table.

Overall, the results show that T–FSP performs comparably
to FSP–PS and YDS. For example, T–FSP often improves
upon the response time of FSP–PS, with only a slight increase
in energy consumption. Furthermore, T–FSP is typically within
15% of the optimal energy consumption of YDS, while
providing mean response times 12-30% lower than YDS.

Based on these results, we argue that Turbocharged FSP
provides a promising approach for speed scaling systems. It
provides significant response time advantages over PS, while
preserving fairness (i.e., dominance property). In terms of
practical considerations, the turbocharging rates of T–FSP
can be computed directly from workload information, and T–
FSP incurs far fewer context switches than PS scheduling.
Furthermore, the energy consumption of T–FSP is only slightly
higher than that of the (offline) YDS algorithm, which provides
the (optimal) lower-bound for energy consumption among all
policies that meet the PS deadlines.

B. Additional Results

We next consider a single server system, initially empty, to
which jobs arrive at random times. In particular, we consider

2Note that in the tables, only PS, T–FSP, and YDS guarantee this property.

TABLE V
MEAN RESPONSE TIME AND ENERGY CONSUMPTION FOR DIFFERENT

POLICIES (10 JOBS, MULTIPLICATIVE JOB SIZES)

Scheduling α = 1 α = 2 α = 3
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS 102.3 102.3 168.1 168.1 202.9 202.9
FSP 102.3 102.3 137.6 137.6 155.1 155.1

T–FSP 73.80 102.3 115.0 164.7 137.2 198.3
FSP–PS 72.13 102.3 114.2 168.1 136.8 202.9

YDS 101.9 102.3 137.3 151.7 154.8 176.9
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Fig. 10. Simulation results for workload 1 (10 homogeneous jobs, α = 2)
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Fig. 11. Simulation results for workload 2 (10 linear jobs, α = 2)
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Fig. 12. Simulation results for workload 3 (10 multiplicative jobs, α = 2)

a Poisson arrival process, with an average arrival rate of one
job per second. Job sizes are exponentially distributed.

Since jobs can arrive dynamically at random times, the idea
of virtual batches (see Section V-D) is used to compute the
turbocharging rates for each envelope. In particular, upon each
job arrival or departure, the residual sizes of all remaining
active jobs are computed, based on the elapsed time (and
service discipline) since the most recent speed change. For the
subset of jobs that are still active under both PS and FSP, the
projected completion times under PS and FSP are calculated,
and these times are used to determine the turbocharging rate
required for envelope-based turbocharged FSP (ET–FSP) so
that no PS deadlines are violated.

We first consider a lightly loaded system, in which the
average job service time is 1.0 seconds. There are 1000 jobs
in total. Post-processing of this workload shows that there are
380 busy periods, with an average of 2.63 jobs per busy period.
The highest system occupancy observed under PS is 6 jobs,
while that under FSP and ET–FSP never exceeds 5 jobs.

Table VI shows the simulation results for PS, FSP, and
ET–FSP on this workload. When α = 1, ET–FSP provides
a 22% reduction in the mean response time compared to
PS, with no increase in energy consumption. When α = 2,
ET–FSP has 32% reduction in mean response time, with an
increased energy cost of 2.4% compared to PS. For α = 3, the
corresponding values are 38% lower response time for ET–FSP
compared to PS, with 6.9% higher energy consumption.

TABLE VI
MEAN RESPONSE TIME AND ENERGY CONSUMPTION FOR DIFFERENT

POLICIES (LIGHT LOAD, 1000 JOBS, EXPONENTIAL SIZES)

Scheduling α = 1 α = 2 α = 3
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS 1.006 1.006 1.513 1.513 1.966 1.966
FSP 1.006 1.006 1.331 1.331 1.566 1.566

ET–FSP 0.783 1.006 1.029 1.549 1.220 2.101

Finally, we consider a heavily loaded system, in which the
average job service time is 100.0 seconds. There are 100
jobs in total. Post-processing of this workload shows that
there is a single massive busy period. The highest system
occupancy observed under PS when α = 1 is 65 jobs, while
that under FSP is 42 jobs, and that under ET–FSP is 28 jobs.
By completing small jobs sooner, FSP and ET–FSP use lower
service rates than PS throughout much of the busy period.

Table VII shows the simulation results for PS, FSP, and
ET–FSP on this workload. When α = 1, ET–FSP is able to
provide a 60% reduction in the mean response time compared
to PS, with exactly the same energy consumption. For α = 2,
ET–FSP provides 59% lower mean response time than PS, but
an increased energy cost of 9.0%. For α = 3, ET–FSP is 56%
faster than PS, but with 15% higher energy consumption.

These results are similar to our baseline scenarios, and
show that the performance advantages of envelope-based tur-
bocharging are robust across the set of workloads considered.



TABLE VII
MEAN RESPONSE TIME AND ENERGY CONSUMPTION FOR DIFFERENT

POLICIES (HEAVY LOAD, 100 JOBS, EXPONENTIAL SIZES)

Scheduling α = 1 α = 2 α = 3
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS 105.0 105.0 695.2 695.2 1361.7 1361.7
FSP 105.0 105.0 470.4 470.4 827.8 827.8

ET–FSP 42.0 105.0 282.8 757.5 594.3 1565.1

VII. CONCLUSIONS

In this paper, we consider “turbocharging” in speed scaling
systems, and explore whether it can preserve the strong dom-
inance property of FSP over PS. The results show that naive
turbocharging of FSP does not suffice. To provide dominance
over PS, we propose envelope-based turbocharging, in which
deadlines are introduced for jobs based on their departure
times under PS. Our approach is initially demonstrated on
batch workloads, but extends naturally to online arrivals by
using virtual batches.

Our analytical and simulation results show that T–FSP pro-
vides response time performance that is superior to that of PS,
with little or no additional energy cost. Furthermore, T–FSP
provides better response time performance than FSP–PS and
YDS, with only slightly higher energy costs. The results
observed are quite robust across the mix of workloads con-
sidered.

Our ongoing work is focusing on a prototype implemen-
tation of speed scaling using the Running Average Power
Limit (RAPL) functionality on the Intel Ivy-Bridge architec-
ture [25], [26], [27]. This implementation will facilitate direct
experimental comparisons between coupled, decoupled, and
turbocharged speed scaling.
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