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Abstra
t

Cluster-based data gathering is widely used in wireless sensor networks,

primarily to over
ome s
alability issues. While 
lustering is not the most e�-


ient means of gathering data, many 
lustering algorithms have attempted to

provide energy e�
ien
y as well. In this paper, we �rst demonstrate that the

general problem of optimal 
lustering with arbitrary 
luster-head sele
tion

is NP-hard. Next, we fo
us on randomized 
lustering in whi
h sensor nodes

form 
lusters in a distributed manner using a probabilisti
 
luster-head sele
-

tion pro
ess. In order to �nd tra
table and e�
ient solutions, we develop a

mathemati
al framework that 
arefully 
aptures the interplay between 
lus-

tering and data 
orrelation in the network. We further generalize this model

to allow heterogeneous-sized 
lusters in di�erent regions of the network. A
-


ording to this model, we observe that 
lusters tend to be
ome larger further

from the sink. We also present simulation results to quantify the energy

savings of joint 
lustering and 
ompression. The results demonstrate that:

1) optimal sele
tion of 
luster sizes with respe
t to the 
orrelation among

sensor data has a signi�
ant impa
t on energy 
onsumption of the network,

and 2) while non-uniform 
lustering slightly improves the energy e�
ien
y of

the network, simple uniform 
lustering is remarkably e�
ient and provides


omparable results for energy savings.
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1. Introdu
tion

A Wireless Sensor Network (WSN) is formed by a large 
olle
tion of


ooperative mi
ro-ele
troni
 sensing devi
es that are equipped with wire-

less 
ommuni
ation 
apability. These autonomous self-
on�gurable networks

have given rise to many types of appli
ations, from disaster management to

home automation, and from health 
ontrol to military missions [1℄. Some

WSN appli
ations require dense deployment of sensor nodes in harsh and

remote environments where human a

ess is impossible or inadvisable. Su
h

networks typi
ally have many nodes, be
ause of their geographi
 size, as well

as the need for robustness to node failures. Su
h deployments require e�-


ient ar
hite
tures that 
an easily s
ale with network size without signi�
ant

loss in performan
e.

Clustering is a well-established te
hnique that has primarily been adopted

to address s
alability issues in WSNs [2℄. With 
lustering, sensor nodes are

grouped into small disjoint sets that are 
oordinated by one of the 
luster

members known as Cluster-Head (CH). The CH is in 
harge of managing the

internal a
tivities of the 
luster, su
h as s
heduling nodes for intermittent

subje
t monitoring and data transmission.

Apart from providing a s
alable stru
ture, another advantage that 
lus-

tering 
an o�er is lo
al data 
ompression. Sin
e in most appli
ations, sensor

nodes are deployed densely within the environment, signi�
ant redundan
y is

likely to be present among the readings from adja
ent sensors. For instan
e,

in a 
amera sensor network, the same event may be dete
ted by multiple


amera sensors in a lo
al neighborhood [3℄. Likewise, for temperature moni-

toring, measurements reported by proximally-lo
ated sensors are likely to be

very similar. This dependen
e 
an be exploited to eliminate redundan
ies

and redu
e the volume of data transmitted in a WSN.

In a 
luster-based sensor network, individual sensors transmit their obser-

vations to their 
orresponding CH. The CH 
ompresses the whole 
luster data

and transmits a representative 
ondensed message (subje
t to some tolerable

distortion level) to the sink (the designated fusion 
enter). In this sense,


luster-based data gathering s
hemes 
an 
onstru
t a hierar
hy of nodes in

multiple levels to route the data from sour
es to the sink. The most trivial

implementation in
ludes a bi-level stru
ture 
omprising 
luster members and

CHs. In a similar fashion, CHs 
an form tier-2 super-
lusters whose members
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are tier-1 CHs and one of them may a
t as a tier-2 CH as well. Following this

strategy, data 
ompression 
an be performed in multiple levels. However, as

we shall see later, with spatial data 
orrelation, the dependen
y between ob-

servations rapidly de
ays with their geographi
al distan
e. As a result, the

amount of redu
tion in message size by applying more levels in the hierar
hy

would be negligible. Therefore, in this paper, we fo
us on a bi-level hierar
hy

in whi
h data 
ompression is only performed at the CH level. The model we

develop, however, 
an be extended to multi-level networks as well.

We should emphasize that 
luster-based data gathering and 
orrelated

data gathering have both been extensively studied in the past, though sep-

arately. Spe
i�
ally, the joint problem of optimal 
lustering and 
orrelated

data gathering is not fully addressed in the existing literature. On
e again, it

is noteworthy to highlight that 
lustering is essentially adopted as a means

to a
hieve s
alability in large WSNs and in that sense, is not intended to

serve as the most e�
ient method of data gathering in WSNs with 
orre-

lated data. Besides, as we shall show later, the problem of optimal 
lustering

for minimizing network energy 
onsumption is 
omputationally intra
table.

Still, viable frameworks 
an be 
onstru
ted and optimized to generate 
lus-

ters that provide maximum energy e�
ien
y while enabling s
alability, as

well.

There have been a number of works that studied optimal (energy-e�
ient)


lustering, but ignored the e�e
t of data 
orrelation and 
ompression on op-

timal 
luster sizing [4�10℄. A pioneering example of energy-aware 
lustering

proto
ols is LEACH [4℄ in whi
h ea
h node has a pre-determined 
han
e of

be
oming CH based on some probability fun
tion. The basi
 idea of LEACH

was qui
kly adopted and extended in many di�erent dire
tions by the re-

sear
h 
ommunity. EEHC [6℄, MOCA [9℄ and GESC [10℄ for instan
e are

randomized 
lustering proto
ols whi
h are based on a similar foundation as

LEACH. In all su
h works, although data fusion is performed to redu
e the

size of 
ommuni
ated data in the network, no notion of data 
ompression is

taken into a

ount while forming the 
lusters.

On the other hand, some resear
hers 
onsidered optimal data 
ompres-

sion in WSNs without expli
itly fo
using on the 
lustering aspe
t of the

problem [11�14℄. A seminal analysis of energy-e�
ient 
orrelated data gath-

ering is presented by Cristes
u et al. [11℄. In that work, the authors 
onsider

Slepian-Wolf Coding (SWC) [15℄, a well-known method of distributed sour
e


oding, for whi
h establishing the routing tree is easy, yet the data 
oding is


omplex and requires global network knowledge for optimal implementation.
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The authors prove that joint optimization of rate allo
ation and transmis-

sion stru
ture in distributed networks is NP-
omplete. Aside from energy-


onservation, e�
ient data gathering has also been investigated from other

perspe
tives, su
h as minimizing laten
y (e.g., GroCo
a [16℄) or improving

throughput and s
alability (e.g., Sele
tCast [17℄ and DDA [18℄).

There are only a few sporadi
 works that study optimal 
lustering in the

presen
e of data 
orrelation [19�22℄. For instan
e, [19℄ and [20℄ model and

analyze various 
on�gurations of a simple linear network topology and for-

mulate the optimal 
luster size with respe
t to the number of lo
ally similar

observations. Due to the 
omplexities of modeling the joint data 
ompres-

sion in 
orrelated data �elds, the authors make some simplifying assumptions,

e.g., trivial network topologies (linear or grid) and �xed rate of data redu
-

tion per sour
e after 
ompression, that inevitably in�uen
e the reliability and

a

ura
y of the out
omes under realisti
 situations.

Furthermore, a de fa
to approa
h sought after by resear
hers studying


lustering with data 
ompression (e.g., LEACH [4℄, EEHC [6℄, NOLBC [20℄

and MOCA [9℄ to name a few) attempts to �nd a globally optimal 
luster size

that minimizes the total network energy 
onsumption. In all su
h works,

for simpli
ity of model and analysis, the problem has intentionally been re-

stri
ted to �nd a uniform 
lustering pattern that results in 
lusters that


ontain, on average, the same number of nodes. However, the fundamental

question being overlooked here is whether uniform 
lustering is optimal for

total energy 
onsumption. In fa
t, although all foregoing proposals result

in some form of energy-e�
ient topology, their methodology for ta
kling the

problem inherently la
ks the �exibility to form independently-sized 
lusters

in di�erent areas of the network. This paper 
hallenges the existing belief

by introdu
ing a 
omprehensive model that 
olle
tively 
onsiders the joint

impa
t of all important network attributes in forming 
lusters.

In parti
ular, in a pre
ursor study [23℄, we demonstrated that for a sim-

ple single-
luster network model, the optimal size of the 
luster is dire
tly

proportional to its geographi
al distan
e from the sink. Su
h a proposition

intuitively promotes a non-uniform 
lustering strategy with larger 
lusters

at further distan
es from the sink. In this work, for the �rst time, we ex-

amine the foregoing hypothesis under more realisti
 
onditions and establish

that although the optimal 
luster size grows with the distan
e from the sink,

in pra
ti
e, uniform 
lustering - if 
arefully done - 
an perform reasonably


lose to any optimal non-uniform 
lustering s
heme. We verify su
h unex-

pe
ted behavior using both mathemati
al analysis and simulation validation
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throughout this paper.

In short, our 
ontributions in this paper 
an be summarized as follows:

• We provide a formal and general de�nition of the problem of optimal


lustering in distributed sensor networks with arbitrary CH sele
tion

and prove that this problem is NP-hard.

• In an attempt to 
ontrive e�
ient heuristi
 solutions for this problem,

we fo
us on randomized 
lustering and develop a framework to quantify

the energy 
onsumption of randomized uniform 
lustering with data


ompression. We further generalize this s
heme to allow non-uniform


lusters in the network.

• Using numeri
al analysis and simulation experiments, we validate our

models and demonstrate that a simple randomized uniform 
luster-

ing, on average, provides 
omparable results for energy 
onsumption

to the more 
ompli
ated non-uniform 
ounterparts, even though the


orresponding optimal 
luster sizes found in two 
ases are remarkably

di�erent.

The remainder of the paper is organized as follows. Se
tion 2 provides

mathemati
al preliminaries. Se
tion 3 presents a formal proof that optimal


lustering with data 
ompression is NP-hard. Se
tion 4 dis
usses optimal

uniform 
lustering, while Se
tions 5 and 6 explore non-uniform 
lustering.

Se
tion 7 provides some numeri
al simulations and Se
tion 8 dis
usses the

results. Finally, Se
tion 9 
on
ludes the paper.

2. System Model and Assumptions

We assume that individual sensor nodes within the WSN are statisti
ally

identi
al information sour
es, whose readings follow a zero-mean normal dis-

tribution with varian
e σ2
. The set of observations within a 
luster 
an thus

be represented by a multi-variate Gaussian distribution. This assumption

makes our analysis easier sin
e the analyti
al properties of Gaussian sour
es

are well-known. Furthermore, Gaussian sour
es are the worst 
ase in terms

of the required number of bits for 
oding [13℄. Thus, the results from Gaus-

sian �elds 
an be interpreted as a bound for other types of sour
es. Similar

assumptions have been used in prior related work [11, 24℄.
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2.1. Distributed Randomized Clustering

In many WSN appli
ations, sensor nodes are randomly dispersed over

the area of interest in an un
ontrolled manner (e.g., using a heli
opter) and

form an ad-ho
 network. Su
h a spontaneous stru
ture requires appropriate

me
hanisms to be able to self-organize itself into an e�
ient, s
alable and

fault-tolerant ar
hite
ture in a distributed manner and without relian
e upon

any 
entral administrative entity.

A distributed randomized 
lustering is able to address all the foregoing


on
erns in a WSN as long as 
ertain elements are observed during its 
on-

stru
tion. In su
h a s
heme, nodes be
ome CHs based on a probability fun
-

tion. CHs publi
ly advertise themselves within their proximal neighborhood

and the non-CH nodes join their geographi
ally 
losest CH member. This ob-

servation is important to ensure 
ost-e�
ient 
luster assignments and avoid

overlapping 
lusters. In this sense, with distributed 
lustering, we essen-

tially perform a Voronoi tessellation of the network with CHs representing

the Voronoi nu
lei. Cluster members send their readings to their CH and

then
eforth, CH is the only node being in 
harge of 
olle
ting and reporting

the 
luster data to the sink. This pro
edure relieves individual 
luster mem-

bers from maintaining and 
onsistently updating 
omplex data stru
tures for

routing purposes, making the network stru
ture more s
alable and robust.

Several well-known distributed 
lustering algorithms have been built on

this general framework, ea
h of whi
h seeking to optimize the network per-

forman
e from a parti
ular perspe
tive and subje
t to di�erent assumptions.

For example, Heinzelman et al. [4℄ 
onsider a pre-spe
i�ed probability fun
-

tion for CH sele
tion that is oblivious of the data 
orrelation degree in the net-

work; Bandyopadhyay and Coyle [6℄ and Younis et al. [7℄ negle
t the impa
t

of data 
ompression while forming their 
lusters; whereas Ghiasi et al. [5℄

solve the optimal distributed 
lustering problem for a pre-spe
i�ed number

of 
lusters in the network.

In the present work, we relax all su
h assumptions and propose a general

model that allows 
lusters to form freely in di�erent regions of the network.

To ensure maximum energy e�
ien
y, we assume that CHs 
ompress the


olle
ted data from the 
luster members and only submit one 
ondensed

redundan
y-free message to the sink during ea
h data 
olle
tion 
y
le. The


lusters indu
ed by our model are optimized to enable maximum data 
om-

pression while minimizing the 
ost of data 
olle
tion and reportage subje
t

to the 
luster size and distan
e from the sink.
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2.2. Data Correlation Model

In a Gaussian �eld of N sour
es, the pair-wise data dependen
y between

sensor readings 
an be expressed using a symmetri
 positive-de�nite 
ovari-

an
e matrix Σ = [σij ]N×N . Depending on the physi
al properties of the ran-

dom �eld under study, several types of 
ovarian
e models 
an be de�ned [25℄.

The information 
olle
ted from physi
al events often has an exponential au-

to
orrelation fun
tion [24℄. Therefore, in this paper, we use a spe
ial type

of Power Exponential 
orrelation model with the elements of the 
ovarian
e

matrix given by:

σij = σ2 exp(−αd2ij) , (1)

where α is the 
orrelation exponent and dij denotes the Eu
lidean distan
e

between sensor nodes i and j. For brevity, we de�ne W = exp(−α) as the
normalized data 
orrelation degree. The limiting values, W = 0 and W = 1
represent un
orrelated and highly 
orrelated data �elds, respe
tively.

2.3. Data Compression Model

In order to dis
retize the 
ontinuous-valued sensor readings, the 
luster

members lo
ally quantize their observations and transmit them to the CH.

Sin
e the originally transmitted data is quantized, the re
onstru
ted version

of data at the CH is subje
t to some distortion D. We assume that sensor

readings, denoted by S, are dis
retized by a uniform quantizer of step size

∆. To a
hieve the target distortion D, we set ∆ =
√
12D [23℄. The entropy

of the quantized sour
es, denoted by H(SD
N ), is then given by [14℄:

H(SD
N ) ≈

1

2
log2(

πe

6D
)̺(Σ)|Σ|+ , (2)

where |Σ|+ and ̺(Σ) denote the produ
t of non-zero eigenvalues and the rank
of Σ, respe
tively. Equation (2) gives the lower-bound for the net size of the

joint 
luster data after quantization/
ompression. For individual sour
es

(i.e., isolated CHs or individual 
luster members), Equation (2) redu
es to:

H(SD
1 ) ≈

σ2

2
log2(

πe

6D
) . (3)

In this paper, for the sake of brevity, we use bn and b1 to respe
tively

denote number of bits required for en
oding the entire 
luster data after


ompression and that of an individual sour
e. These quantities are 
al
ulated

from Equations (2) and (3), respe
tively.

7



Table 1: Table of notations

Symbol Usage

b1 Size of an individual sensor reading (bits)

bn Size of data from a 
luster of n nodes after 
ompression (bits)

C Cost of 
luster-based data 
olle
tion

C̄(n) Amortized energy 
ost of a 
luster of size n
D Distortion level (bit/symbol)

D RV for the distan
e of a 
luster to the sink

E∗
Optimal network energy 
onsumption

ext Shorthand for exterior region

int Shorthand for interior region

φ(n) The 
ompression ratio fun
tion for a 
luster of size n
ℓ RV for the distan
e of a 
luster member to the CH

L RV for the 
umulative distan
e of nodes in a 
luster to their CH

m Number of regions in the network

N RV for the number of nodes in a 
luster

pi Probability of CH sele
tion in region i
〈p∗1, · · · , p∗m〉 Ve
tor of optimal CH probabilities in regions 1 through m
ρ Node density (nodes/unit area)

ri Width of region i
R The network radius

R Radio range of a node

s RV for the number of 
lusters in the network

W Normalized data 
orrelation degree

2.4. Energy Model

Cluster members observe some spatial sto
hasti
 pro
ess, quantize their

observations, and transmit them to the CH (or sink), either dire
tly (single-

hop) or via intermediate sensor nodes (multi-hop). We assume a large-s
ale

fading 
hannel between ea
h transmitter and re
eiver, in whi
h the re
eived

power is inversely proportional to the square of the distan
e between the

transmitter and the re
eiver. Therefore, the energy P required to transmit b
bits over distan
e d is given by [26℄:

P = γ b d2 , (4)
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where γ is a 
onstant that represents the minimum power level required for

su

essful transmission of one bit of data over one unit of distan
e

1

For

simpli
ity and without loss of generality, hereafter we assume that γ = 1
J/bit/m

2
. While in real world, transmission energy and sensor 
ommuni-


ation range follow more 
ompli
ated patterns, su
h simpli�ed assumptions

enable us to develop tra
table models that provide useful insights and ap-

proximate results on the performan
e of WSNs.

For 
onvenient referen
e, Table 1 summarizes the most frequently used

notations introdu
ed above as well as the ones to follow. �RV� is used as an

abbreviation for random variable.

3. Optimal Clustering

There have been many prior works on optimal 
lustering in a WSN [5, 6,

19�21℄. The problem of Optimal Clustering is to dis
over a 
lustering

of the network su
h that the total energy required for 
olle
ting data from

the whole network is minimized as 
ompared with other possible 
lustering

patterns. In this paper, we �rst demonstrate that the general problem of

Optimal Clustering with arbitrary CH sele
tion is NP-hard. Then we


onstru
t a framework to tame the 
omplexity of the problem and provide

some tra
table heuristi
 solutions for it.

First, let us begin with a formal de�nition of our problem.

De�nition 1. Network Clustering

Given a network of nodes as an undire
ted graph H = (W,F ), where W
denotes the set of nodes and F is the set of possible 
onne
tions between

node pairs within radio range of ea
h other, the goal is to sele
t a subset

of nodes W ′ ⊆ W,W ′ 6= ∅ as CHs that form a Voronoi tessellation of the

network.

Optimization Problem: Given H , the set of rates, and the internode dis-

tan
es, determine a 
lustering of the network that results in the minimum

energy 
onsumption. We 
all su
h 
lustering of the network the Optimal

Clustering.

1

We ignore the energy spent on re
eiving a message as it is independent of the distan
e

over whi
h the message is delivered.
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As a matter of 
onvenien
e, in the 
ourse of our proof, we shall restri
t

our attention to the following de
ision problem.

De
ision Problem: Given H , the set of rates, internode distan
es, and a

positive real number B, is there a 
lustering of the network whose energy


onsumption is no more than B?

We observe that, so long as our energy fun
tion is relatively easy to

evaluate, the foregoing de
ision problem is no harder than the 
orresponding

optimization problem. In other words, if we 
ould solve the optimization

problem in polynomial time, we would readily have an answer for the de
ision

version, simply by 
omparing the output of the optimization problem with

the given bound B.

Theorem 1. Optimal Clustering is NP-hard.

Proof. We show that the problem of �nding a p-Median, whi
h is known

to be NP-
omplete [27℄, is polynomial-time redu
ible to the problem of Op-

timal Clustering.

Given an undire
ted graph G = (V,E), we asso
iate ea
h node v ∈ V
with a positive number s(v) 
alled the weight of v, and ea
h edge e ∈ E with

a positive number l(e) denoting its length. Let Xp ⊆ V be a subset of p
verti
es. We de�ne the distan
e between any vertex v ∈ V and the set Xp

as follows:

D(v,Xp) = min
xi∈Xp

{D(v, xi)} ,

where D(v, xi) denotes the length of the shortest path between v and xi. The

distan
e-sum of the set Xp is given by:

C(Xp) =
∑

v∈V −Xp

s(v) ·D(v,Xp) .

The set X∗
p is 
alled a p-Median of G if C(X∗

p ) = min
Xp⊆V

{C(Xp)}. The de
ision
version of the p-Median problem is to determine whether there exists any

Xp ⊆ V su
h that C(Xp) ≤ C, where C is a given target bound.

Now, let us 
on
entrate on Optimal Clustering. Consider a network

as an undire
ted graph H = (W,F ). Ea
h node w ∈ W en
odes its obser-

vations at a rate r(w). A pair of nodes are within radio range of ea
h other

if there exists an edge f ∈ F that 
orresponds to them. Let k(f) denote

the length of this edge. To obtain a better understanding of the problem,
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we break it into two subproblems, namely, Intra-Clustering and Inter-

Clustering. For any given set of CHs, the Intra-Clustering refers to

the problem of 
olle
ting data from within the 
lusters and forwarding it to

the 
orresponding CHs given an energy budget of β1 ∈ R
+
. The Inter-

Clustering problem, likewise, des
ribes the pro
ess of data forwarding

from CHs to the sink with a budget of β2 ∈ R
+
. The Optimal Cluster-

ing problem involves the joint optimization of these two subproblems su
h

that β1 + β2 ≤ B, where B denotes the target energy bound.

First, we fo
us on the problem of Intra-Clustering. Let Xch be an

arbitrarily 
hosen subset of p nodes to a
t as CHs. We de�ne the squared

distan
e between any node w and a set Xch by

d2(w,Xch) = min
xi∈Xch

{d2(w, xi)} ,

where d2(w, xi) is the square of the Eu
lidean distan
e between w and xi ∈
Xch. We de�ne our 
ost fun
tion for intra-
luster data 
olle
tion as

C1(Xch) =
∑

w∈W−Xch

r(w) · d2(w,Xch) .

Similarly, we de�ne the 
ost fun
tion for Inter-Clustering problem as

follows:

C2(Xch) =
∑

xi∈Xch

r(xi) · d2(xi, sink) .

Our goal is to �nd an optimal subset X∗
ch su
h that C1(X∗

ch) + C2(X∗
ch) ≤ B.

Now 
onsider an instan
e of the p-Median problem des
ribed by an

undire
ted graph G = (V,E), the set of weights s(v), ∀v ∈ V , the set of

lengths l(e), ∀e ∈ E and the target bound C. We 
onstru
t a polynomial

transformation from su
h instan
e of p-Median to an instan
e of Optimal

Clustering of H = (W,F ) by letting W := V and F := E. Also, we let

r(w) = s(v), ∀w /∈ Xch; r(w) = 0, ∀w ∈ Xch; k(f) = l2(e), ∀f ∈ F ; and
target bound B = C. This transformation 
an be done in O(|V | + |E|). It

simply 
an
els out the 
ost of data 
olle
tion from CHs and simpli�es the

Optimal Clustering as an instan
e of Intra-Clustering. It is now


lear that any solution of the Optimal Clustering provides a solution for

p-Median. Thus, p-Median ≤P Optimal Clustering 
on
luding that

Optimal Clustering 
annot be solved in polynomial time unless P = NP.

Corollary 1. Optimal Clustering remains NP-hard even if no data


ompression is done in the network.
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Sin
e Intra-Clustering is hard, regardless of whether or not any data


ompression is performed at the CH level, i.e., CHs merely forward the ag-

gregated data to the sink, �nding the optimal 
lustering stru
ture remains

NP-hard.

Having shown that the Optimal Clustering is inherently intra
table,

we seek to develop a framework that enables forming arbitrary-sized 
lusters

that provide �good� energy 
onsumption. In parti
ular, we fo
us on a spe
ial


lass of 
lustering algorithms that are simple and 
an be implemented in a

distributed manner. Su
h algorithms are randomized in the sense that ea
h

node independently de
ides to be
ome a CH a

ording to some probability

p. The main problem to be addressed is then how to determine the optimal

probability of CH sele
tion (p) for di�erent nodes, whi
h is the problem to

be investigated in the remainder of this paper. Hen
eforth, the 
on
ept of

optimality is only dis
ussed in the 
ontext of solutions that are heuristi
ally

optimal and should not be interpreted in its stri
t mathemati
al sense.

4. Randomized Uniform Clustering

In this se
tion, using the mathemati
al preliminaries dis
ussed in the

previous se
tion, we develop a model for the 
ost of data 
olle
tion in a


luster-based sensor network and investigate the e�e
t of 
luster size on en-

ergy usage.

We 
onsider a planar disk-shaped network of radius R and assume that

sensor nodes are s
attered over the network area randomly a

ording to a

Poisson pro
ess of intensity ρ. For simpli
ity of analysis, let us assume that

the sink is pla
ed at the 
enter of the disk. However, the a
tual pla
ement

of the sink is immaterial to our results. We study a randomized 
lustering

model in whi
h nodes be
ome CH with some probability p. Therefore, by

thinning of Poisson pro
esses, non-CH and CH nodes 
an be 
onsidered as

two independent Poisson pro
esses Π0 and Π1 with intensities ρ0 = (1 −
p)ρ and ρ1 = pρ, respe
tively. On
e the CHs are spe
i�ed, ea
h region is

partitioned into 
lusters resembling Voronoi 
ells with CHs representing the

nu
lei. Non-CH nodes are then assigned to the CH that is geographi
ally


losest to them, forming a Voronoi tessellation of the region.

For a Voronoi pro
ess related to a bivariate Poisson pro
ess, Foss and

Zuyev [28℄ have derived the following 
losed-forms for N , the number of Π0

parti
les in ea
h Voronoi 
ell and L, the 
umulative length of all segments

12




onne
ting Π0 parti
les to the Voronoi nu
leus in ea
h 
ell.

E[N ] =
ρ0
ρ1

, Var(N ) =
ρ0
ρ1

+ 0.280
ρ20
ρ21

,

E[L] = ρ0

2ρ
3/2
1

, Var(L) = ρ0
πρ21

+ 0.147
ρ20
ρ31

.

Adopting their results and 
onsidering Π0 and Π1 parti
les in ea
h Voronoi


ell as 
luster members and CHs respe
tively, we 
an easily infer the follow-

ing expression for the average distan
e between a 
luster member and its


orresponding CH.

E[ℓ] =
E[L]
E[N ]

=
1

2
√
ρ1

=
1

2
√
pρ

.

4.1. Single-Hop Communi
ation

Dire
t transmission to the sink is used in some WSN appli
ations to avoid

the 
omplexities of routing and Medium A

ess Control (MAC) [29℄. In this

s
heme, individual sensors quantize their observations into messages of length

b1 (
omputed from Equation (3)) and transmit them to their CH. A

ording

to Equation (4), energy 
onsumption is a quadrati
 fun
tion of the distan
e

over whi
h data transmission o

urs. We know that L is a random variable

de�ned as the summation of the distan
es between all 
luster members and

their CH. Let random variable ℓi denote the distan
e between the ith 
luster
member and the CH. We know that ℓi's are iid. The number of nodes in a


luster, N , is also a random variable. The law of total varian
e requires that

Var(L) = E[Var(L|N )] + Var(E[L|N ])

= E

[

Var
(

N
∑

i=1

ℓi

∣

∣

∣
N
)]

+Var
(

E

[

N
∑

i=1

ℓi

∣

∣

∣
N
])

= E[NVar(ℓ)] + Var(NE[ℓ])

= Var(ℓ)E[N ] + E[ℓ]2Var(N ) .

(5)

Rearranging Equation (5) and 
onsidering that Var(ℓ) = E(ℓ2)− E(ℓ)2 gives

E(ℓ2) =
Var(L)
E[N ]

+
(

1− Var(N )

E[N ]

)

E[ℓ]2 . (6)
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Equation (6) gives the average squared distan
e of nodes to their CH that


omes in handy for estimating the total intra-
luster energy 
ost (between


luster members and the CHs).

On
e the CH 
olle
ts the data from all 
luster members, it eliminates the

redundan
ies present in the data using lossless 
ompression, and transmits

the 
ompressed data to the sink over the shortest path. The inter-
luster data


olle
tion 
ost refers to the energy spent by the CHs to perform this task.

In order to estimate the inter-
luster 
ost, we need to measure the average

squared distan
e from the 
lusters to the sink, E[D2]. This 
an easily be


al
ulated as

E[D2] =

∫ R

0

x2 · 2πx
πR2

dx =
1

2
R2 .

The mean number of nodes in a 
luster is inversely proportional to the

probability of being a CH in the region to whi
h the 
luster belongs. As

dis
ussed in Se
tion 2.3, the size of the 
ompressed 
luster data subje
t to

some distortion level D 
an be quanti�ed by the joint entropy of the 
luster.

For a 
luster of size n, let bn denote the size (in bits) of the message that the

CH transmits to the sink (note that bn 
an be 
omputed from Equation (2)

for n = 1/p).
The average total network energy 
onsumption, E[Csh], 
an be broken

into the energy spent for intra-
luster and inter-
luster (between CHs and

the sink) data 
olle
tion. In symbols,

E[Csh] = E[s]
(

b1E[N ]E[ℓ2] + bnE[D2]
)

, (7)

where, E[s] = ρpπR2
is the expe
ted number of 
lusters in the network.

4.2. Multi-Hop Communi
ation

In this s
enario, we use a bit-hop metri
 to quantify the network energy


onsumption. Let R denote the radio range of a sensor node. Sin
e we

assume that all sensor nodes have the same radio range, the energy required

to transmit one bit of information from a node to any other node in its radio


overage (one hop distan
e) is �xed and proportional to the square of the

node's radio range, R2
. Although this 
ommuni
ation poli
y ignores the

energy di�eren
es due to transmission over variable-range hops, it is more

pra
ti
al for implementation.

In order to 
ompute the expe
ted transmission energy, we need to es-

timate the total number of hops taken to 
ommuni
ate sensor readings to

14



the CHs or the sink. Within any given 
luster, the total number of hops

traversed is at least ⌈E[L]/R⌉. Likewise, for inter-
luster data transmission,

⌈E[D]/R⌉ gives the minimum number of hops to deliver the 
luster data to

the sink, where

E[D] =

∫ R

0

x · 2πx
πR2

dx =
2

3
R

gives the average 
luster distan
e from the sink. One may argue that the

suggested approa
h for 
al
ulating the number of hops underestimates the

a
tual steps required to deliver the data to the destination in a real network.

We emphasize that, in this paper, we are interested in dense networks, sin
e

the data 
orrelation in the network would be negligible otherwise. In su
h

networks, the shortest path between a pair of nodes is 
losely approximated

by a straight line segment between them. A similar assumption has been

made in other prior work (e.g., [6℄). Furthermore, the good agreement be-

tween our mathemati
al model and the Monte Carlo simulations in Se
tion 7

supports this 
laim.

Using this approximation, the total energy spent on data transmission in

the multi-hop s
enario is given by

E[Cmh] = E[s]E[N ]b1R2
⌈

E[L]
R

⌉

+ E[s]bnR2
⌈

E[D]

R
⌉

≈ RE[s]
(

b1E[N ]E[L] + bnE[D])
)

.
(8)

4.3. Numeri
al Analysis

Equations (7) and (8) des
ribe the average total network energy usage as

fun
tions of various network properties, su
h as node density, data 
orrelation

degree, and 
luster size. One important obje
tive here is to �nd the optimal


luster size that minimizes the average network energy 
onsumption. To this

end, we numeri
ally analyze the given energy fun
tions. We 
onsider a disk-

shaped network of radius 15 on whi
h nodes are s
attered a

ording to a

Poisson pro
ess with an intensity of either 0.75 or 1.50. We 
hange the data


orrelation degree from W = 0.15 (low) to W = 0.90 (high) and study the

e�e
t of 
hanging the 
luster size on the total network energy 
onsumption.

We examine both single-hop and multi-hop 
ommuni
ation strategies. In

single-hop 
ommuni
ation, nodes adjust their power level appropriately to

rea
h their destination. In the multi-hop s
heme, nodes always transmit at

full power, 
overing a radio range of 0.75 units in our simulations.
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(a) Single-Hop, ρ = 0.75
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(b) Single-Hop, ρ = 1.50

0 5 10 15 20 25
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

Average Number of Nodes per Cluster

A
ve

ra
ge

 T
ot

al
 N

et
w

or
k 

E
ne

rg
y 

C
on

su
m

pt
io

n

 

 

W = 0.15
W = 0.40
W = 0.65
W = 0.90

(
) Multi-Hop, ρ = 0.75
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(d) Multi-Hop, ρ = 1.50

Figure 1: Average total network energy 
onsumption in uniform 
lustering with di�erent


orrelation degrees

Fig. 1 illustrates the average network energy 
onsumption for di�erent

sizes of 
lusters and 
orrelation degrees. In both single-hop and multi-hop

s
enarios, the stronger the data 
orrelation is, the larger the optimal size of

the 
luster be
omes. This observation is quite intuitive in the sense that by

forming larger 
lusters, more redundan
y 
an be removed (provided that a

reasonable degree of data 
orrelation exists among the original observations).

The impa
t of 
hanging the 
luster size on total energy 
onsumption is

more pronoun
ed in single-hop 
ommuni
ation than in multi-hop s
heme.

This is mainly due to the fa
t that the energy fun
tion is proportional to the

square of the distan
e over whi
h data transmission is done and this distan
e

16



for the single-hop 
ommuni
ation is often longer than that for the multi-hop


ase. When a new node is added to a 
luster, the 
luster is able to save some

energy via data 
ompression. On the other hand, the data provided by the

new node �rst has to be sent to the CH and then from the CH to the sink.

If no data 
ompression is performed, this transa
tion 
learly is more energy-

intensive than if the node individually transmits its data to the sink (possibly

over a shorter path). Likewise, even with data 
ompression, the amount of

redu
tion per message a
hieved via making larger 
lusters should 
ompensate

for the extra energy spent on data 
ommuni
ation on longer distan
es. With

multi-hop 
ommuni
ation, however, sin
e all nodes transmit at the same

power level, this issue be
omes less 
ru
ial. In parti
ular, when the data


orrelation degree is high, 
luster sizes show a wider range of values. This is

also the reason why the optimal 
luster size in multi-hop 
ommuni
ation gets

larger than that of single-hop approa
h as data 
orrelation degree in
reases.

For example, when W = 0.90 and ρ = 0.75, with multi-hop 
ommuni
ation,

the energy 
onsumption of 
lusters of size 9 to 25 are within 5% of the

optimal, whereas in single-hop 
ommuni
ation, su
h optimal range is only

from 7 to 12.

5. Randomized Non-Uniform Clustering

Our previous uniform 
lustering model provides some useful insights as

to how various degrees of data 
orrelation and di�erent transmission poli
ies

a�e
t the optimal 
luster sizing and energy 
onsumption. However, the major

downside of su
h a uniform 
lustering model is its inability to form variable

size 
lusters in di�erent regions of the network. In fa
t, by for
ing the 
lusters

to 
ontain similar number of nodes, our model negle
ts any potential impa
t

that distan
e 
an pose on optimal 
luster sizing.

In previous work [23℄, we demonstrated that in 
orrelated data �elds,

the optimal size of 
lusters is dire
tly proportional to the 
luster distan
e

to the sink. Our previous analysis, however, was based on a very simple

single-
luster model.

In this se
tion, we 
on
entrate on the e�e
t of distan
e on forming optimal

sized 
lusters in a realisti
 network made of possibly many 
lusters. We

develop an elaborate model that allows 
lusters of arbitrary size to form

freely in di�erent regions of the network.

To be 
onsistent with our previous model, we start with the same network

topology as des
ribed in Se
tion 4. In order to study the impa
t of distan
e

17



on the optimal size of the 
lusters, we split the network into two 
on
entri


ring-shaped areas: namely, the interior and the exterior regions (See Fig. 2a).

By 
onvention, in this se
tion, we use subs
ripts int and ext to denote the
analyti
al properties of the interior and exterior regions, respe
tively. The

radius of the interior region, rint, is a fra
tion of the total network radius.

That is to say,

rint = κR , 0 < κ < 1 . (9)

We 
ontinue with our probabilisti
 
lustering strategy. However, we let

the probability of CH sele
tion in the interior region (denoted by pint) be
independent of that for the exterior region (denoted by pext). Therefore, in

any of the des
ribed regions, non-CH and CH nodes 
an be 
onsidered as

two independent Poisson pro
esses Π0 and Π1 with intensities ρ0 = (1− p)ρ
and ρ1 = pρ, respe
tively (for the interior region, p = pint, while p = pext for
the exterior region).

The expe
ted number of 
lusters in the interior region is:

E[Nint] = pint · ρπκ2R2 ,

and likewise, for the exterior region:

E[Next] = pext · ρπ(1− κ2)R2 .

In this analysis, we only 
onsider the multi-hop 
ommuni
ation poli
y,

sin
e it is more general and pra
ti
al than the single-hop s
heme. In order

to 
ompute the intra-
luster data 
olle
tion 
ost in the interior region, we

a
t in the same way as our uniform 
lustering model. The intra-
luster data


olle
tion 
ost for su
h a 
luster is given by

E[C∗
int] = b1R2⌈E[Lint]

R ⌉ ≈ b1RE[Lint] .

Therefore, the mean total intra-
luster data 
olle
tion 
ost for the whole

interior region is given by

E[Cintra
int ] ≈ b1RE[Nint]E[Lint] .

Similarly, for the exterior region, it is obtained that:

E[Cintra
ext ] ≈ b1RE[Next]E[Lext] .
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Figure 2: Non-uniform 
lustering in a disk-shaped network.

Next, we fo
us on �nding the inter-
luster data 
olle
tion 
ost. In order

to 
ompute the energy required for this transmission, we only need to know

the distan
e between the CH and the sink. Similar to our previous model,

the mean distan
e of nodes in the interior region to the sink (
enter of the

network) is 
omputed as:

E[Dint] =

∫ rint

0

x · 2πx

πr2int
dx =

2

3
κR .

Considering that the mean number of hops to rea
h the sink from the

interior region is given by ⌈E[Dint]/R⌉, the mean total 
ost of transmitting

data from all the CHs in the interior region to the sink is readily 
al
ulated

as:

E[Cinter
int ] ≈ bnint

RE[Nint]E[Dint] .

Likewise, the expe
ted 
ost of inter-
luster data 
olle
tion for the exterior

region is:

E[Cinter
ext ] ≈ bnext

RE[Next]E[Dext] ,

where,

E[Dext] =

∫ R

rint

x · 2πx

π(R2 − r2int)
dx

=
2

3
R ·

(

1 +
κ2

1 + κ

)

.

19



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Location of the Border (κ)

O
pt

im
al

 P
ro

ba
bi

lit
y 

of
 C

H
 S

el
ec

tio
n 

(p* )

 

 

p
int
*

p
ext
*

(a) ρ = 0.75

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
pt

im
al

 P
ro

ba
bi

lit
y 

of
 C

H
 S

el
ec

tio
n 

(p* )

 

 

Location of the Border (κ)

p*
int

p*
ext

(b) ρ = 1.50

Figure 3: Optimal probability of CH sele
tion vs. lo
ation of the border

The total 
ost of 
olle
ting data from the WSN is the sum of inter-
luster

and intra-
luster 
osts over both regions:

E[Ctotal] = E[Cintra
int ] + E[Cinter

int ] + E[Cintra
ext ] + E[Cinter

ext ] . (10)

While the boundary between the two regions is �xed, E[Ctotal] is a fun
tion
of pint and pext. We use p∗int and p∗ext to denote the optimal values of pint and
pext that minimize the total network energy 
onsumption for all possible

pla
ements of the border.

5.1. Experimental Analysis

We s
atter sensor nodes on a network of radius 15, on
e with a density

of 0.75 and on
e with 1.50 nodes per unit area. By varying κ from 0 to 1, we
gradually move the boundary between the two regions a
ross its full range.

For any parti
ular pla
ement of the border, we then �nd the pair 〈p∗int, p∗ext〉
over the unit square that minimizes Equation (10).

Fig. 3 illustrates the optimal probabilities of CH sele
tion in interior and

exterior regions for any value of κ between 0 to 1. As evident from this

�gure, p∗int is always greater than p∗ext for all values of κ. This suggests

that, regardless of the position where the interior and exterior regions are

separated, the probability of being CH in the interior region is always greater

than that of the exterior region. That is, 
lusters in the interior region are

smaller than in the exterior region.

Next, we analyze the e�e
t of 
hanging the border lo
ation on the network

energy 
onsumption. As Fig. 4 shows, the optimal position for the border
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Figure 4: Optimal network energy usage vs. lo
ation of the border

is about 0.5R for ρ = 0.75, and 0.7R for ρ = 1.5. We note that in the

former situation, the network is split into two equal-width regions, while in

the latter, we have equal-area regions.

6. Generalized Non-Uniform Clustering

In this se
tion, we extend our previous analysis to a general multi-region

network model. The dual-region network analysis showed that splitting the

network into two equal-area regions (κ = 0.7R) provides reasonably good

energy e�
ien
y. In this situation, nodes are equally divided between both

regions. Therefore, we have a fair balan
ing of resour
e allo
ation over both

regions. With our multi-region model, we also split the network into m 
on-


entri
 ring-shaped equal-area regions making ea
h region 
ontain the same

number of nodes (on average). Hen
e, 
hanging the 
luster size throughout

any region fairly a�e
ts the total energy 
onsumption sin
e all regions have

almost the same number of nodes. We emphasize that our analysis is general

and 
an easily be modi�ed to �t other s
enarios as well (e.g., equal-width

regions).

We assign ea
h region with a number i from 1 to m from the innermost

region all the way to the outermost one. The width of region i is denoted by

ri (See Fig. 2b). In region i, nodes be
ome CH with a probability pi. This

probability is identi
al and independent of that of other regions.

Going through the same steps as for the dual-region model, the mean

intra-
luster energy 
ost for data gathering from all the 
lusters of region i
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is obtained as:

E[Cintra
i ] ≈ b1RE[Ni]E[Li] ,

where E[Ni] = piρπr
2
is the mean number of 
lusters in region i, and Li is

the 
umulative distan
e of nodes to the CH in any 
luster in region i.
Sin
e the network is evenly divided into m regions all of the same area,

we 
an easily obtain the following expression for the width of region i:

ri =
(√

i−
√
i− 1

)

r , 1 ≤ i ≤ m . (11)

Sin
e all the 
lusters in region i are at a similar distan
e from the sink, the

approximate 
luster distan
es are:

E[Di] =

∫

√
i r

√
i−1 r

x · 2πx
πr2

dx =
2

3
r
(

i3/2 − (i− 1)3/2
)

.

Similar to the dual-region network model, the mean total 
ost of transmitting

data from all the CHs in region i to the sink is 
al
ulated as:

E[Cinter
i ] ≈ bni

RE[Ni]E[Di] .

The mean total 
ost of data gathering from the whole network is the sum of

the energy required for intra-
luster and inter-
luster data 
olle
tion over all

the regions. Thus, we obtain:

E[Ctotal] =
m
∑

i=1

E[Cintra
i ] + E[Cinter

i ]

= ρπr2R
m
∑

i=1

pi (b1E[Li] + bni
E[Di]) .

(12)

Equation (12) suggests a 
losed-form relation for the mean total 
ost

of data 
olle
tion in the network with respe
t to the probabilities pi, i ∈
{1, 2, . . . , m}. The goal is to determine the set of optimal pi's for whi
h the

total energy 
onsumption is minimized. Formally stated,

〈p∗1, · · · , p∗m〉 = argmin
{pi}

E[Ctotal]

s.t. 0 ≤ pi ≤ 1, ∀i ∈ {1, 2, . . . , m},
(13)

where 〈p∗1, . . . , p∗m〉 are the optimal CH probabilities in regions 1 through m.

Sin
e p∗i 's are independent, Equation (13) 
an be seen as the minimization of

ea
h summation term in Equation (12), separately. This 
an 
onveniently be

done using existing numeri
al methods [30℄. Some numeri
al examples are

provided in the next se
tion.
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7. Simulation Experiments

In this se
tion, we look at the optimization problem introdu
ed in Se
-

tion 6, trying to �nd the best 
on�guration for CH allo
ation over the network

regions.

7.1. Simulation Environment

We use MATLAB for both our numeri
al and experimental analyses. The

results reported for the model are the solutions of Equation (13) that are


al
ulated in MATLAB. The simulation environment used in our experiments

in
ludes a disk network of radius 15 on whi
h nodes are Poisson distributed

with a density of 0.75 nodes per unit area (roughly, a total of 530 nodes,

on average). The distortion level is set to 0.01 bits per sample. We assume

multi-hop 
ommuni
ation along the shortest path between pairs of nodes.

The radio range of ea
h node 
overs a radius of 0.75 units, and sin
e all

nodes transmit at the same power, the per-hop transmission 
ost is �xed per

every bit of information sent.

7.2. Impa
t of Data Compression and Distortion on Energy Usage

In this subse
tion, we demonstrate how 
areful 
onsideration of data 
or-

relation/
ompression in forming optimal-sized 
lusters helps redu
e the total

network energy 
onsumption. For this experiment, we tentatively ignore the

e�e
t of distan
e on optimal 
luster sizing and simply fo
us on a single-region

network.
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Figure 5: Analysis of energy usage in a single-region network (uniform 
lustering)
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Fig. 5a and 5b depi
t the network energy 
onsumption of Optimal Uni-

form Clustering (OUC) in simulation versus the results obtained by the

model. As evident from both �gures, simulation results are fully 
onsistent

with the proposed model. In Fig. 5a, in
reasing the 
orrelation degree (W )

throughout the �eld improves the network energy 
onsumption su
h that a

highly-
orrelated network is almost 42%more energy-e�
ient than a network

with the same topology but low data 
orrelation. Similarly, as Fig. 5b shows,

in
reasing the tolerable distortion (D) also results in enhan
ed energy usage

in the network. In order to ensure the fairness of CH sele
tion through all

areas of the network throughout our simulation experiments, 1000 random

network 
on�gurations are generated per ea
h value per independent variable

(W or D) and the average energy-
onsumptions are reported.

7.3. Impa
t of Data Correlation and Distortion on Optimal Cluster Sizing

For the next experiment, we 
onsider two s
enarios:

1. Optimal Uniform Clustering with no Data Compression (OUC/NC):

quantization on lo
al observations; data aggregation at the CHs with-

out 
ompression.

2. Optimal UniformClustering with Data Compression (OUC/WC): quan-

tization on lo
al observations; joint 
luster data 
ompression at the

CHs.

In the former s
enario, CHs aggregate the 
luster data and transmit it

to the sink without 
ompression, whereas in the latter, the CHs remove

the redundan
y present between data samples and transmit a 
ondensed

version of the 
luster data to the sink. Our goal is to investigate the e�e
t of

data 
orrelation/
ompression on optimal 
luster sizing and also on potential

energy savings when data 
orrelation is present.

For both 
ases des
ribed above, namely, OUC/NC and OUC/WC, Fig. 6a

and 6b respe
tively illustrate numeri
al analyses of the impa
ts of data de-

penden
e and distortion level on the optimal size of 
lusters.

As seen from both �gures, when no data 
ompression is performed at

CH level (aggregation only), the optimal 
luster size is always 1. This is

reasonable in the sense that without data 
ompression, no redu
tion in size

of the 
luster's aggregate data is attained. However, in 
lustering with data


ompression, as seen in Fig. 6a, in
reasing the 
orrelation degree redu
es the

optimal probability of be
oming CH in the network. In other words, the
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Figure 6: Analysis of optimal 
luster sizing in a single-region network (uniform 
lustering)

stronger the 
orrelations are between the sensor observations, the larger the


lusters be
ome.

As shown in [11℄, for any rate allo
ation, the shortest path tree (SPT) is

the optimal routing stru
ture for 
orrelated data gathering. It is, however,

interesting to note that forming 
lusters requires some nodes to send their

readings through their pre-spe
i�ed CH, whi
h is not ne
essarily part of the

SPT rooted at the sink. Therefore, 
luster formation is worthwhile only

if the amount of 
ompression ultimately a
hieved at the CHs 
ompensates

for the extra energy spent due to the transmission of data over suboptimal

paths. When the 
orrelation degree is very low (e.g., W = 0.1), no signi�
ant
redu
tion in 
luster data 
an be attained by forming 
lusters of multiple

nodes. Rather, similar to 
lustering without 
ompression, nodes tend to

form isolated 
lusters of size 1 and individually transmit their data over the

SPT. With a high 
orrelation degree (e.g., W = 0.9), however, more nodes

tend to join ea
h 
luster, whi
h provides greater redu
tion in the size of

the 
luster data after 
ompression. The optimal 
luster sizes found in this

experiment are 10 for W = 0.8 and 13 for W = 0.9.
Fig. 6b likewise demonstrates the impa
t of in
reasing the tolerable dis-

tortion level on optimal 
luster sizing. As seen, when a higher level of distor-

tion is allowed, readings from a broader lo
al neighborhood 
an pra
ti
ally

be 
ompressed into a single message at the CH level; thus larger 
lusters

be
ome more a�ordable.
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7.4. A Comparison of Uniform Clustering S
hemes

In this subse
tion, we present a 
omparison of three uniform 
lustering

s
hemes, namely Near-Optimal Lo
ation-Based Clustering [20℄ (NOLBC),

Energy-E�
ient Hierar
hi
al Clustering [6℄ (EEHC) and Optimal Uniform

Clustering (OUC) whi
h we presented in this paper, with a parti
ular fo
us

on their 
orresponding energy usages. NOLBC is proposed as a heuristi


s
heme for approximating optimal 
luster sizes as a fun
tion of number of

sensors in the network. A somewhat di�erent fun
tional relationship is es-

tablished between optimal probability of CH sele
tion, network size and node

density in EEHC where a multi-tier hierar
hy of 
lusters is formed.

We believe that these two frameworks are similar to OUC in various

aspe
ts. First, they all are based on a randomized foundation and thus, 
an

readily be implemented in real networks in a distributed manner. Se
ondly,

energy-e�
ien
y is the primary fo
us of all three s
hemes when forming the


lusters. Thirdly, they all 
onsider data 
orrelation in order for removing

data redundan
ies and saving energy. Based on all this, we believe that a

side-by-side ben
hmark of these three s
hemes 
an be a fair and meaningful


omparison.

Fig. 7 depi
ts the results of our simulations. For EEHC and OUC, re-

sults of both 
lustering with data 
ompression and without data 
ompression

(identi�ed by /WC and /NC su�xes respe
tively in the legend of Fig. 7) are

provided. The purpose for in
luding the latter is to provide a 
ompari-

son baseline that highlights how mu
h bene�t is solely 
ontributed by data


ompression itself. As seen, OUC generally yields better energy-e�
ien
y


ompared to the other two. However, as data 
orrelation degree in
reases,

the results of all three s
hemes be
ome more 
omparable.

The fundamental di�eren
e between the foregoing proposals (and their


orresponding energy usages) lies in the extent to whi
h they exploit data


orrelation. While all three s
hemes somehow implement data aggregation

and 
ompression, NOLBC and EEHC are oblivious of the impa
t of data


orrelation in forming optimal-sized 
lusters. In fa
t, in both s
hemes a

�xed near-optimal 
luster size is obtained to minimize the network energy


onsumption a
ross the entire range of data 
orrelation degrees. However,

a

ording to our �ndings in this paper, there exists a strong dependen
e be-

tween these two 
on
epts. This observation motivates the idea of 
orrelation-

aware 
luster sizing. It is interesting to note that in our simulations, NOLBC

and EEHC 
onstru
t 
lusters with �xed sizes of 32 and 11, respe
tively; while
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Figure 7: A 
omparison of energy 
onsumption between di�erent uniform randomized


lustering s
hemes.


lusters formed by OUC, 
omprise a variable average ranging from 1.1 to 13.8
nodes per 
luster as data 
orrelation degree in
reases.

The energy di�eren
es between NOLBC, EEHC/WC and OUC/WC 
urves,

as seen in Fig. 7, highlight the importan
e of 
areful adjustment of 
luster

sizes based on data 
orrelation. That the di�eren
es between energy usages

be
ome less evident in presen
e of high 
orrelation stems from the fa
t that


lusters formed by NOLBC and EEHC are inherently large enough to provide

maximum intra-
luster savings. In fa
t, it is in the absen
e of su�
ient data


orrelation where having su
h ex
essively large 
lusters breaks the optimal

routing stru
ture (SPT) and indu
es additional transmissions over longer

paths to the sink.

7.5. Non-Uniform Clustering in a Multi-Region Network

In this subse
tion, we �rst quantify the energy savings attained by using

non-uniform 
lusters throughout the network. We also study the e�e
t of

distan
e on optimal 
luster sizing by analyzing the solutions of a multi-region

network.

For the network 
on�guration des
ribed previously, Fig. 8 
ompares the

optimal network energy 
onsumption for various degrees of data 
orrelation

when di�erent number of regions are used. The upper 
urve 
orresponds to

a single-region network (uniform 
lustering), and the lower lines 
orrespond

to more regions, from 2 to 5, respe
tively (non-uniform 
lustering).
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omparison between uniform 
lustering (m = 1) vs.

non-uniform 
lustering (m > 1).

Table 2: Optimal probabilities of CH sele
tion and their 
orresponding energy usage

(model vs. simulation)

m E∗
mod E∗

sim 〈p∗1, . . . , p∗n〉
1 8292.96 8415.60 (0.0909)
2 8202.94 8318.63 (0.1000, 0.0556)
3 8196.12 8071.83 (0.1001, 0.0714, 0.0556)
4 8180.63 7890.37 (0.1668, 0.0909, 0.0556, 0.0556)
5 8169.44 7845.75 (0.2002, 0.1001, 0.0715, 0.0556, 0.0556)

Surprisingly, in
reasing the number of regions only slightly improves the

network energy 
onsumption. In order to interpret this unexpe
ted behavior,

let us have a look at Table 2 to see the optimal probability allo
ation over

the regions of a 
ertain realization. As evident from this table, the optimal

CH probabilities de
rease with the distan
e to the sink for all 
on�gura-

tions. For a 5-region network, for example, the 
lusters of the outermost

region are almost 4 times larger than the ones in the innermost region. How-

ever, the optimal theoreti
al network energy 
onsumption for su
h a setting

is only 1.5% better than that of uniform 
lustering in a single-region net-

work. Also, the simulation results demonstrate less than 7% enhan
ement

under the same 
onditions. In fa
t, both data 
orrelation degree and distan
e
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Figure 9: Realizations of two optimal 
lusterings

make the optimal size of the 
lusters larger. On the other hand, the larger a


luster be
omes, the more energy has to be spent on 
olle
ting data from the


luster periphery. These two fa
tors turn out to o�set ea
h other, yielding

only marginal improvements. More pre
isely, adding more nodes to a 
luster

initially helps a
hieve higher data 
ompression rates and better energy e�-


ien
y. Gradually, less and less energy savings are made as more nodes are

atta
hed to the 
luster. At some point, the 
luster gets �saturated�. That is

to say, the 
luster rea
hes its limit in terms of maximum energy saving. At

this point, additional nodes not only provide no extra savings, but also prove

detrimental to the total energy 
onsumption. Su
h phenomenon is often

referred to as �diminishing returns�. With optimal uniform 
lustering, not

all 
lusters are saturated, but most of them are 
lose to their limits. With

optimal non-uniform 
lustering, all 
lusters 
an rea
h their 
apa
ity limit.

However, the di�eren
e between the two stages is so small that in pra
ti
e,

optimal uniform 
lustering performs quite 
lose to any optimal non-uniform


lustering strategy.

Fig. 9 
ompares two optimal realizations of uniform 
lustering (single-

region network) against non-uniform 
lustering (multi-region network) on

an arbitrary network. As presented by Fig. 9, with non-uniform 
lustering,
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the optimal 
luster size grows with distan
e from the sink. Also, for this

parti
ular example, the non-uniform 
lustering saves 8.5% more energy than

the uniform 
lustering.

8. Further Results and Dis
ussion

In this se
tion, our obje
tive is to shed some light on why a basi
 uniform


lustering provides 
omparable energy savings to non-uniform s
hemes, even

though the average 
luster sizes are remarkably di�erent.

Consider a 
luster of nodes with radius r at an arbitrary distan
e d from

the sink (see Fig. 10). We want to see how the per-node data 
olle
tion 
ost


hanges as we expand the 
luster radius by ∆r. For simpli
ity, in the fol-

lowing, we 
onsider dire
t data transmission; however, as we showed earlier,

sin
e the relative energy savings for various 
luster sizes in the multi-hop

s
heme is no better than that of the dire
t 
ommuni
ation, we 
an 
onsider

the resulting savings as an upper bound for multi-hop 
ommuni
ation, as

well.

CH Sink 

d 
r 

∆ r�

Figure 10: A 
luster of radius r at distan
e d from the sink.

As explained in Se
tion 4.1, we 
an derive the following expressions for

the energy 
ost of data 
olle
tion from an arbitrary 
luster when it 
omprises

n and n +∆n nodes, respe
tively.

C(n) ≈ nb1(
1

2
r2) + bnd

2

C(n+∆n) ≈ (n +∆n)b1

(1

2
(r +∆r)2

)

+ b(n+∆n)d
2 . (14)
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Using Poisson approximation, we know that n ≈ ρπr2 and n+∆n = ρπ(r+
∆r)2. Therefore, we 
an rewrite Equation (14) as follows.

C(n) ≈ n2εb1 + bnd
2

C(n+∆n) ≈ (n+∆n)2εb1 + b(n+∆n)d
2 , (15)

where ε = 1/(2ρπ) ≈ 0.16ρ is a 
onstant independent of n.
Now, let C̄(n) denote the amortized energy 
ost of a 
luster of size n. We

have that:

C̄(n) =
C(n)
n

. (16)

In fa
t, C̄(n) 
an be seen as the average energy usage of an arbitrary node

when it is assigned to a 
luster of size n. Clearly, by expanding the 
luster

size we want

C̄(n+∆n) ≤ C̄(n) ⇒

(n+∆n)εb1 +
b(n+∆n)

(n+∆n)
d2 ≤ nεb1 +

bn
n
d2 ⇒

ε∆n

d2
≤ bn

nb1
− b(n+∆n)

(n+∆n)b1
. (17)

In previous work [23℄, we introdu
ed the metri
 
ompression ratio that

is de�ned as φ(n) = bn/(nb1). As mentioned earlier, CHs only forward a


ondensed message representing the entire 
luster information to the sink

after removing the redundan
ies. The 
ompression ratio is a normalized

measure that indi
ates what fra
tion of the 
olle
ted data from the 
luster

members is transmitted to the sink after 
ompression, and in this sense, the

less the 
ompression ratio, the better. The limiting values are 1 when exa
tly

the same 
opy is sent (i.e., a 
luster of size 1 or when no data 
orrelation

exists) and 0 for a highly 
orrelated �eld as n → ∞.

Using the notation of 
ompression ratio and from Equation (17), we 
an

readily infer that an additional node 
an be added to a 
luster of size n as

long as

|∆φ(n)| = |φ(n+1) − φ(n)| ≥
ε

d2
. (18)
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ifying the optimal 
luster size.

As shown in [23℄, φ(n) : N → [0 1] is a non-in
reasing 
onvex fun
tion

of n; therefore, ∀n ∈ N : 0 ≤ |∆φ(n)| ≤ 1. However, as Equation (18)

shows, assigning a new member to an existing 
luster is 
ost-saving only if

the resulting 
luster's 
ompression ratio is at least ε/d2 less than that of the


luster ex
luding the new member. Knowing their approximate distan
e to

the sink, CHs 
an use this 
riterion to de
ide whether or not 
omprising a

new member is bene�
ial.

For di�erent degrees of data 
orrelation, Fig. 11 illustrates that |∆φ(n)|
monotoni
ally de
reases with the 
luster size. The horizontal line shows the

required di�eren
e of 
ompression ratios for a 
luster at d = 3 to expand.

The interse
tions of the horizontal line with 
urves spe
ify the thresholds

for spe
ifying the optimal 
luster sizes (denoted by n∗
). That is to say, by

expanding the 
luster size beyond this limit, the per-node 
ost of data 
olle
-

tion in
reases. As the 
luster gets further from the sink (i.e., d in
reases), the

onstraint on the right-hand-side of the inequality (18) be
omes looser, set-

ting the horizontal line lower, implying that the optimal 
luster size in
reases

with distan
e (
on�rming our former results).

We next fo
us on how the amortized 
ost of the 
luster 
hanges with its

size. In parti
ular, we want to quantify the savings a
hieved by adding more

nodes to the 
luster while the same node density is maintained in the 
luster.

Expanding Equation (16), we 
an write

C̄(n) = b1(nε+ φ(n)d
2) . (19)
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The �rst term inside the bra
kets in Equation (19) (i.e., nε) 
orresponds

to the intra-
luster data 
olle
tion 
ost and is an in
reasing fun
tion of the


luster size (n). On the other hand, the se
ond term (i.e., φ(n)d
2
) 
ontributes

to the amount of savings obtained via 
ompressing the 
luster data and thus,

is a non-in
reasing fun
tion of the 
luster size. Analogous to anti-parallel

for
es, these two terms pull the 
luster boundaries in opposite dire
tions.

The latter is stronger when the 
luster size is small, but it gradually be
omes

weaker as the 
luster grows. Fig. 12 better explains this interesting behavior.

For a given degree of data 
orrelation (W ), Fig. 12 depi
ts the amortized


ost (C̄(n)) of a 
luster at a 
ertain distan
e (d) from the sink as a fun
-

tion of the 
luster size (n). As 
learly evident, expanding the 
luster size

�rst helps a
hieve a lower energy 
onsumption per node. Su
h savings are

more signi�
ant for 
lusters at further distan
es from the sink or when the

data 
orrelation degree is relatively high. By adding more nodes, the 
luster

eventually 
omes to its saturation limit. The amortized 
ost of the 
luster

begins to slightly in
rease by expanding the 
luster size beyond this point.

In fa
t, after the 
luster gets saturated, the extra 
ost from having additional

nodes in the 
luster turns out to o�set the savings due to a
hieving better

data 
ompression rates, su
h that the di�eren
e in the amortized 
ost of the


luster is barely noti
eable after this point.

The shaded areas in Fig. 12 show the 
luster sizes whose energy 
onsump-

tions are within 5% of the optimal. As seen, for 
lusters further away from

the sink, su
h optimal range is wider than for the 
loser ones. Moreover, for


lusters at various distan
es, these optimal ranges are overlapping. In other

words, even though the optimal 
luster size signi�
antly varies with distan
e,

it is always possible to �nd a globally optimal 
luster size that performs very

well a
ross the entire network. This result justi�es why even a simple uniform


lustering 
an perform reasonably 
lose to the more 
ompli
ated non-uniform

s
hemes.

9. Con
lusions and Future Work

In this paper, we showed that the general problem of Optimal Clus-

tering is NP-hard. We proposed a novel framework for modeling 
luster-

based data gathering in WSNs and optimized it to produ
e the best possible


lustering of the network in terms of energy 
onsumption.

We presented the �rst analysis of non-uniform 
lustering in WSNs and

demonstrated that heterogeneous-sized 
lusters are more energy-e�
ient in
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WSNs with spatial data 
orrelation. We further showed that due to the trade-

o�s indu
ed by physi
al 
hara
teristi
s of 
lusters, optimal uniform 
lustering


an also perform very well 
ompared to the more 
ompli
ated non-uniform


ounterparts.

In the spe
i�
 network 
on�gurations 
onsidered in our simulations, the

improvements a
hieved by non-uniform 
lustering are not signi�
ant. An

avenue for further resear
h is to study the spe
i�
 topologies (in
luding 
on-

trived and arbitrary 
on�gurations) whi
h might better bene�t from non-

uniform 
lustering.

Analyzing the network lifetime and investigating potential me
hanisms

(e.g., CH rotation) that 
an help fairly distribute the data 
olle
tion load

throughout the network is another interesting area of future study.

Last but not least, it is noteworthy to mention that our proposed frame-

work is originally tailored for stati
 
on�gurations. Nonetheless, mobility is

an ever-growing ne
essity in most re
ent trends of appli
ations. Extension of

the proposed s
heme to 
ope with mobility and its related 
hallenges is yet

another important problem whi
h remains for future work.
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