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Abstract

Cluster-based data gathering is widely used in wireless sensor networks,
primarily to overcome scalability issues. While clustering is not the most effi-
cient means of gathering data, many clustering algorithms have attempted to
provide energy efficiency as well. In this paper, we first demonstrate that the
general problem of optimal clustering with arbitrary cluster-head selection
is NP-hard. Next, we focus on randomized clustering in which sensor nodes
form clusters in a distributed manner using a probabilistic cluster-head selec-
tion process. In order to find tractable and efficient solutions, we develop a
mathematical framework that carefully captures the interplay between clus-
tering and data correlation in the network. We further generalize this model
to allow heterogeneous-sized clusters in different regions of the network. Ac-
cording to this model, we observe that clusters tend to become larger further
from the sink. We also present simulation results to quantify the energy
savings of joint clustering and compression. The results demonstrate that:
1) optimal selection of cluster sizes with respect to the correlation among
sensor data has a significant impact on energy consumption of the network,
and 2) while non-uniform clustering slightly improves the energy efficiency of
the network, simple uniform clustering is remarkably efficient and provides
comparable results for energy savings.
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1. Introduction

A Wireless Sensor Network (WSN) is formed by a large collection of
cooperative micro-electronic sensing devices that are equipped with wire-
less communication capability. These autonomous self-configurable networks
have given rise to many types of applications, from disaster management to
home automation, and from health control to military missions [1|. Some
WSN applications require dense deployment of sensor nodes in harsh and
remote environments where human access is impossible or inadvisable. Such
networks typically have many nodes, because of their geographic size, as well
as the need for robustness to node failures. Such deployments require effi-
cient architectures that can easily scale with network size without significant
loss in performance.

Clustering is a well-established technique that has primarily been adopted
to address scalability issues in WSNs [2|. With clustering, sensor nodes are
grouped into small disjoint sets that are coordinated by one of the cluster
members known as Cluster-Head (CH). The CH is in charge of managing the
internal activities of the cluster, such as scheduling nodes for intermittent
subject monitoring and data transmission.

Apart from providing a scalable structure, another advantage that clus-
tering can offer is local data compression. Since in most applications, sensor
nodes are deployed densely within the environment, significant redundancy is
likely to be present among the readings from adjacent sensors. For instance,
in a camera sensor network, the same event may be detected by multiple
camera sensors in a local neighborhood [3|. Likewise, for temperature moni-
toring, measurements reported by proximally-located sensors are likely to be
very similar. This dependence can be exploited to eliminate redundancies
and reduce the volume of data transmitted in a WSN.

In a cluster-based sensor network, individual sensors transmit their obser-
vations to their corresponding CH. The CH compresses the whole cluster data
and transmits a representative condensed message (subject to some tolerable
distortion level) to the sink (the designated fusion center). In this sense,
cluster-based data gathering schemes can construct a hierarchy of nodes in
multiple levels to route the data from sources to the sink. The most trivial
implementation includes a bi-level structure comprising cluster members and
CHs. In a similar fashion, CHs can form tier-2 super-clusters whose members



are tier-1 CHs and one of them may act as a tier-2 CH as well. Following this
strategy, data compression can be performed in multiple levels. However, as
we shall see later, with spatial data correlation, the dependency between ob-
servations rapidly decays with their geographical distance. As a result, the
amount of reduction in message size by applying more levels in the hierarchy
would be negligible. Therefore, in this paper, we focus on a bi-level hierarchy
in which data compression is only performed at the CH level. The model we
develop, however, can be extended to multi-level networks as well.

We should emphasize that cluster-based data gathering and correlated
data gathering have both been extensively studied in the past, though sep-
arately. Specifically, the joint problem of optimal clustering and correlated
data gathering is not fully addressed in the existing literature. Once again, it
is noteworthy to highlight that clustering is essentially adopted as a means
to achieve scalability in large WSNs and in that sense, is not intended to
serve as the most efficient method of data gathering in WSNs with corre-
lated data. Besides, as we shall show later, the problem of optimal clustering
for minimizing network energy consumption is computationally intractable.
Still, viable frameworks can be constructed and optimized to generate clus-
ters that provide maximum energy efficiency while enabling scalability, as
well.

There have been a number of works that studied optimal (energy-efficient)
clustering, but ignored the effect of data correlation and compression on op-
timal cluster sizing [4-10|. A pioneering example of energy-aware clustering
protocols is LEACH [4] in which each node has a pre-determined chance of
becoming CH based on some probability function. The basic idea of LEACH
was quickly adopted and extended in many different directions by the re-
search community. EEHC [6], MOCA [9] and GESC [10] for instance are
randomized clustering protocols which are based on a similar foundation as
LEACH. In all such works, although data fusion is performed to reduce the
size of communicated data in the network, no notion of data compression is
taken into account while forming the clusters.

On the other hand, some researchers considered optimal data compres-
sion in WSNs without explicitly focusing on the clustering aspect of the
problem [11-14]. A seminal analysis of energy-efficient correlated data gath-
ering is presented by Cristescu et al. [11]. In that work, the authors consider
Slepian-Wolf Coding (SWC) [15], a well-known method of distributed source
coding, for which establishing the routing tree is easy, yet the data coding is
complex and requires global network knowledge for optimal implementation.



The authors prove that joint optimization of rate allocation and transmis-
sion structure in distributed networks is NP-complete. Aside from energy-
conservation, efficient data gathering has also been investigated from other
perspectives, such as minimizing latency (e.g., GroCoca [16]) or improving
throughput and scalability (e.g., SelectCast [17] and DDA [18]).

There are only a few sporadic works that study optimal clustering in the
presence of data correlation |[19-22|. For instance, [19] and [20] model and
analyze various configurations of a simple linear network topology and for-
mulate the optimal cluster size with respect to the number of locally similar
observations. Due to the complexities of modeling the joint data compres-
sion in correlated data fields, the authors make some simplifying assumptions,
e.g., trivial network topologies (linear or grid) and fized rate of data reduc-
tion per source after compression, that inevitably influence the reliability and
accuracy of the outcomes under realistic situations.

Furthermore, a de facto approach sought after by researchers studying
clustering with data compression (e.g., LEACH [4], EEHC [6], NOLBC [20|
and MOCA [9] to name a few) attempts to find a globally optimal cluster size
that minimizes the total network energy consumption. In all such works,
for simplicity of model and analysis, the problem has intentionally been re-
stricted to find a wniform clustering pattern that results in clusters that
contain, on average, the same number of nodes. However, the fundamental
question being overlooked here is whether uniform clustering is optimal for
total energy consumption. In fact, although all foregoing proposals result
in some form of energy-efficient topology, their methodology for tackling the
problem inherently lacks the flexibility to form independently-sized clusters
in different areas of the network. This paper challenges the existing belief
by introducing a comprehensive model that collectively considers the joint
impact of all important network attributes in forming clusters.

In particular, in a precursor study [23], we demonstrated that for a sim-
ple single-cluster network model, the optimal size of the cluster is directly
proportional to its geographical distance from the sink. Such a proposition
intuitively promotes a non-uniform clustering strategy with larger clusters
at further distances from the sink. In this work, for the first time, we ex-
amine the foregoing hypothesis under more realistic conditions and establish
that although the optimal cluster size grows with the distance from the sink,
in practice, uniform clustering - if carefully done - can perform reasonably
close to any optimal non-uniform clustering scheme. We verify such unex-
pected behavior using both mathematical analysis and simulation validation
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throughout this paper.
In short, our contributions in this paper can be summarized as follows:

e We provide a formal and general definition of the problem of optimal
clustering in distributed sensor networks with arbitrary CH selection
and prove that this problem is NP-hard.

e In an attempt to contrive efficient heuristic solutions for this problem,
we focus on randomized clustering and develop a framework to quantify
the energy consumption of randomized uniform clustering with data
compression. We further generalize this scheme to allow non-uniform
clusters in the network.

e Using numerical analysis and simulation experiments, we validate our
models and demonstrate that a simple randomized uniform cluster-
ing, on average, provides comparable results for energy consumption
to the more complicated non-uniform counterparts, even though the
corresponding optimal cluster sizes found in two cases are remarkably
different.

The remainder of the paper is organized as follows. Section 2 provides
mathematical preliminaries. Section 3 presents a formal proof that optimal
clustering with data compression is NP-hard. Section 4 discusses optimal
uniform clustering, while Sections 5 and 6 explore non-uniform clustering.
Section 7 provides some numerical simulations and Section 8 discusses the
results. Finally, Section 9 concludes the paper.

2. System Model and Assumptions

We assume that individual sensor nodes within the WSN are statistically
identical information sources, whose readings follow a zero-mean normal dis-
tribution with variance 0. The set of observations within a cluster can thus
be represented by a multi-variate Gaussian distribution. This assumption
makes our analysis easier since the analytical properties of Gaussian sources
are well-known. Furthermore, Gaussian sources are the worst case in terms
of the required number of bits for coding [13]. Thus, the results from Gaus-
sian fields can be interpreted as a bound for other types of sources. Similar
assumptions have been used in prior related work |11, 24].



2.1. Distributed Randomized Clustering

In many WSN applications, sensor nodes are randomly dispersed over
the area of interest in an uncontrolled manner (e.g., using a helicopter) and
form an ad-hoc network. Such a spontaneous structure requires appropriate
mechanisms to be able to self-organize itself into an efficient, scalable and
fault-tolerant architecture in a distributed manner and without reliance upon
any central administrative entity.

A distributed randomized clustering is able to address all the foregoing
concerns in a WSN as long as certain elements are observed during its con-
struction. In such a scheme, nodes become CHs based on a probability func-
tion. CHs publicly advertise themselves within their proximal neighborhood
and the non-CH nodes join their geographically closest CH member. This ob-
servation is important to ensure cost-efficient cluster assignments and avoid
overlapping clusters. In this sense, with distributed clustering, we essen-
tially perform a Voronoi tessellation of the network with CHs representing
the Voronoi nuclei. Cluster members send their readings to their CH and
thenceforth, CH is the only node being in charge of collecting and reporting
the cluster data to the sink. This procedure relieves individual cluster mem-
bers from maintaining and consistently updating complex data structures for
routing purposes, making the network structure more scalable and robust.

Several well-known distributed clustering algorithms have been built on
this general framework, each of which seeking to optimize the network per-
formance from a particular perspective and subject to different assumptions.
For example, Heinzelman et al. |4| consider a pre-specified probability func-
tion for CH selection that is oblivious of the data correlation degree in the net-
work; Bandyopadhyay and Coyle [6] and Younis et al. |7| neglect the impact
of data compression while forming their clusters; whereas Ghiasi et al. [5]
solve the optimal distributed clustering problem for a pre-specified number
of clusters in the network.

In the present work, we relax all such assumptions and propose a general
model that allows clusters to form freely in different regions of the network.
To ensure maximum energy efficiency, we assume that CHs compress the
collected data from the cluster members and only submit one condensed
redundancy-free message to the sink during each data collection cycle. The
clusters induced by our model are optimized to enable maximum data com-
pression while minimizing the cost of data collection and reportage subject
to the cluster size and distance from the sink.



2.2. Data Correlation Model

In a Gaussian field of N sources, the pair-wise data dependency between
sensor readings can be expressed using a symmetric positive-definite covari-
ance matriz ¥ = [0;;]nxn. Depending on the physical properties of the ran-
dom field under study, several types of covariance models can be defined [25].
The information collected from physical events often has an exponential au-
tocorrelation function [24]. Therefore, in this paper, we use a special type
of Power Exponential correlation model with the elements of the covariance
matrix given by:

Oij = o eXp(—O‘d?j) g (1)

where « is the correlation exponent and d;; denotes the Euclidean distance
between sensor nodes ¢ and j. For brevity, we define W = exp(—a) as the
normalized data correlation degree. The limiting values, W =0 and W =1
represent uncorrelated and highly correlated data fields, respectively.

2.3. Data Compression Model

In order to discretize the continuous-valued sensor readings, the cluster
members locally quantize their observations and transmit them to the CH.
Since the originally transmitted data is quantized, the reconstructed version
of data at the CH is subject to some distortion D. We assume that sensor
readings, denoted by S, are discretized by a uniform quantizer of step size
A. To achieve the target distortion D, we set A = /12D [23]. The entropy
of the quantized sources, denoted by H(SY), is then given by [14]:

1 me
H(SY) ~ = logy(==)2®) || 2
(SB) = 5 logy(Z) IS )
where |X|T and o(X) denote the product of non-zero eigenvalues and the rank
of 3, respectively. Equation (2) gives the lower-bound for the net size of the
joint cluster data after quantization/compression. For individual sources
(i.e., isolated CHs or individual cluster members), Equation (2) reduces to:

2
o e
H(SP) ~ —logy(——) . 3
(5P) = T logy(25) @
In this paper, for the sake of brevity, we use b, and b; to respectively
denote number of bits required for encoding the entire cluster data after
compression and that of an individual source. These quantities are calculated
from Equations (2) and (3), respectively.
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Table 1. Table of notations

Symbol Usage
by Size of an individual sensor reading (bits)
b, Size of data from a cluster of n nodes after compression (bits)

Cost of cluster-based data collection

Amortized energy cost of a cluster of size n

Distortion level (bit/symbol)

RV for the distance of a cluster to the sink

Optimal network energy consumption

Shorthand for exterior region

Shorthand for interior region

The compression ratio function for a cluster of size n

RV for the distance of a cluster member to the CH

RV for the cumulative distance of nodes in a cluster to their CH
Number of regions in the network

RV for the number of nodes in a cluster

Probability of CH selection in region ¢

pi, -+ ,ps)  Vector of optimal CH probabilities in regions 1 through m
Node density (nodes/unit area)

Width of region ¢

The network radius

Radio range of a node

RV for the number of clusters in the network

Normalized data correlation degree

o0
=
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<
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2.4. Energy Model

Cluster members observe some spatial stochastic process, quantize their
observations, and transmit them to the CH (or sink), either directly (single-
hop) or via intermediate sensor nodes (multi-hop). We assume a large-scale
fading channel between each transmitter and receiver, in which the received
power is inversely proportional to the square of the distance between the
transmitter and the receiver. Therefore, the energy P required to transmit b
bits over distance d is given by [26]:

P=qbd, (4)



where v is a constant that represents the minimum power level required for
successful transmission of one bit of data over one unit of distance ' For
simplicity and without loss of generality, hereafter we assume that v = 1
J/bit/m?. While in real world, transmission energy and sensor communi-
cation range follow more complicated patterns, such simplified assumptions
enable us to develop tractable models that provide useful insights and ap-
proximate results on the performance of WSNs.

For convenient reference, Table 1 summarizes the most frequently used
notations introduced above as well as the ones to follow. “RV” is used as an
abbreviation for random variable.

3. Optimal Clustering

There have been many prior works on optimal clustering in a WSN |5, 6,
19-21|. The problem of OPTIMAL CLUSTERING is to discover a clustering
of the network such that the total energy required for collecting data from
the whole network is minimized as compared with other possible clustering
patterns. In this paper, we first demonstrate that the general problem of
OPTIMAL CLUSTERING with arbitrary CH selection is NP-hard. Then we
construct a framework to tame the complexity of the problem and provide
some tractable heuristic solutions for it.

First, let us begin with a formal definition of our problem.

Definition 1. Network Clustering

Given a network of nodes as an undirected graph H = (W, F), where W
denotes the set of nodes and F s the set of possible connections between
node pairs within radio range of each other, the goal is to select a subset
of nodes W' C W, W' # 0 as CHs that form a Voronoi tessellation of the
network.

Optimization Problem: Given H, the set of rates, and the internode dis-
tances, determine a clustering of the network that results in the minimum
energy consumption. We call such clustering of the network the OPTIMAL
CLUSTERING.

!'We ignore the energy spent on receiving a message as it is independent of the distance
over which the message is delivered.



As a matter of convenience, in the course of our proof, we shall restrict
our attention to the following decision problem.

Decision Problem: Given H, the set of rates, internode distances, and a
positive real number B, is there a clustering of the network whose energy
consumption is no more than B?

We observe that, so long as our energy function is relatively easy to
evaluate, the foregoing decision problem is no harder than the corresponding
optimization problem. In other words, if we could solve the optimization
problem in polynomial time, we would readily have an answer for the decision
version, simply by comparing the output of the optimization problem with
the given bound B.

Theorem 1. OPTIMAL CLUSTERING s NP-hard.

PROOF. We show that the problem of finding a P~-MEDIAN, which is known
to be NP-complete [27], is polynomial-time reducible to the problem of Op-
TIMAL CLUSTERING.

Given an undirected graph G = (V| E), we associate each node v € V
with a positive number s(v) called the weight of v, and each edge e € E with
a positive number [(e) denoting its length. Let X, C V be a subset of p
vertices. We define the distance between any vertex v € V and the set X,
as follows:

D(v, X,) = min {D(v,z;)} ,
z, €EXp
where D(v, x;) denotes the length of the shortest path between v and x;. The
distance-sum of the set X, is given by:

C(X,)= Y s(v)-D(v,X,).

veV-X,

The set X is called a P-MEDIAN of G if C(X)) = ):gnicr‘l/{C(Xp)}. The decision

version of the P-MEDIAN problem is to determine whether there exists any
X, €V such that C(X,) < C, where C' is a given target bound.

Now, let us concentrate on OPTIMAL CLUSTERING. Consider a network
as an undirected graph H = (W, F). Each node w € W encodes its obser-
vations at a rate r(w). A pair of nodes are within radio range of each other
if there exists an edge f € F' that corresponds to them. Let k(f) denote
the length of this edge. To obtain a better understanding of the problem,
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we break it into two subproblems, namely, INTRA-CLUSTERING and INTER-
CLUSTERING. For any given set of CHs, the INTRA-CLUSTERING refers to
the problem of collecting data from within the clusters and forwarding it to
the corresponding CHs given an energy budget of 5; € RY. The INTER-
CLUSTERING problem, likewise, describes the process of data forwarding
from CHs to the sink with a budget of 5, € RT. The OPTIMAL CLUSTER-
ING problem involves the joint optimization of these two subproblems such
that 01 + B2 < B, where B denotes the target energy bound.

First, we focus on the problem of INTRA-CLUSTERING. Let X, be an
arbitrarily chosen subset of p nodes to act as CHs. We define the squared
distance between any node w and a set X., by

d*(w, Xop,) = min {d*(w,z;)} ,
Z; ch
where d?(w, r;) is the square of the Euclidean distance between w and z; €
X, We define our cost function for intra-cluster data collection as

CXen) = Y r(w)-d*(w, Xen) -

weW —-X.p

Similarly, we define the cost function for INTER-CLUSTERING problem as

follows:
Co(Xen) = Y r(a;) - d*(a;, sink) .
zi€Xep

Our goal is to find an optimal subset X7, such that Ci(X},) + C2(X}) < B.

Now consider an instance of the P-MEDIAN problem described by an
undirected graph G = (V, E), the set of weights s(v),Yv € V, the set of
lengths [(e),Ve € E and the target bound C'. We construct a polynomial
transformation from such instance of P-MEDIAN to an instance of OPTIMAL
CLUSTERING of H = (W, F) by letting W :=V and F' := E. Also, we let
r(w) = s(),Yw ¢ Xu; r(w) = 0,Yw € Xu; k(f) = 1?(e),Vf € F; and
target bound B = C. This transformation can be done in O(|V| + |E|). It
simply cancels out the cost of data collection from CHs and simplifies the
OPTIMAL CLUSTERING as an instance of INTRA-CLUSTERING. It is now
clear that any solution of the OPTIMAL CLUSTERING provides a solution for
P-MEDIAN. Thus, P-MEDIAN <p OPTIMAL CLUSTERING concluding that
OPTIMAL CLUSTERING cannot be solved in polynomial time unless P = NP.

Corollary 1. OPTIMAL CLUSTERING remains NP-hard even if no data
compression is done in the network.
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Since INTRA-CLUSTERING is hard, regardless of whether or not any data
compression is performed at the CH level, i.e., CHs merely forward the ag-
gregated data to the sink, finding the optimal clustering structure remains
NP-hard.

Having shown that the OPTIMAL CLUSTERING is inherently intractable,
we seek to develop a framework that enables forming arbitrary-sized clusters
that provide “good” energy consumption. In particular, we focus on a special
class of clustering algorithms that are simple and can be implemented in a
distributed manner. Such algorithms are randomized in the sense that each
node independently decides to become a CH according to some probability
p. The main problem to be addressed is then how to determine the optimal
probability of CH selection (p) for different nodes, which is the problem to
be investigated in the remainder of this paper. Henceforth, the concept of
optimality is only discussed in the context of solutions that are heuristically
optimal and should not be interpreted in its strict mathematical sense.

4. Randomized Uniform Clustering

In this section, using the mathematical preliminaries discussed in the
previous section, we develop a model for the cost of data collection in a
cluster-based sensor network and investigate the effect of cluster size on en-
ergy usage.

We consider a planar disk-shaped network of radius R and assume that
sensor nodes are scattered over the network area randomly according to a
Poisson process of intensity p. For simplicity of analysis, let us assume that
the sink is placed at the center of the disk. However, the actual placement
of the sink is immaterial to our results. We study a randomized clustering
model in which nodes become CH with some probability p. Therefore, by
thinning of Poisson processes, non-CH and CH nodes can be considered as
two independent Poisson processes Iy and II; with intensities pg = (1 —
p)p and p; = pp, respectively. Once the CHs are specified, each region is
partitioned into clusters resembling Voronoi cells with CHs representing the
nuclei. Non-CH nodes are then assigned to the CH that is geographically
closest to them, forming a Voronoi tessellation of the region.

For a Voronoi process related to a bivariate Poisson process, Foss and
Zuyev [28] have derived the following closed-forms for N, the number of Tl
particles in each Voronoi cell and £, the cumulative length of all segments
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connecting Il particles to the Voronoi nucleus in each cell.

Po Po 1%

EN] ==, Var(N) = — + 0.280 = ,
P1 P1 P1
2
Lo Po Po

E[L] = : Var(£) = —; +0.147= .
a2 20}/ T pi

Adopting their results and considering Il and II; particles in each Voronoi
cell as cluster members and CHs respectively, we can easily infer the follow-
ing expression for the average distance between a cluster member and its
corresponding CH.

EZ] 1 1
EW]  2vm 2V

4.1. Single-Hop Communication

E[f] =

Direct transmission to the sink is used in some WSN applications to avoid
the complexities of routing and Medium Access Control (MAC) [29]. In this
scheme, individual sensors quantize their observations into messages of length
by (computed from Equation (3)) and transmit them to their CH. According
to Equation (4), energy consumption is a quadratic function of the distance
over which data transmission occurs. We know that £ is a random variable
defined as the summation of the distances between all cluster members and
their CH. Let random variable ¢; denote the distance between the i*" cluster
member and the CH. We know that ¢;’s are iid. The number of nodes in a
cluster, V, is also a random variable. The law of total variance requires that

Var(L£) = E[Var(L|N)] + Var(E[£|N])

~sfva (5 f)] +vr(8[ S0

= E[N Var(¢)] + Var(NE[(])
= Var({)E[N] + E[(]*Var(N) .

M)

Rearranging Equation (5) and considering that Var(¢) = E(¢?) — E({)? gives

Var(L) N (1 _ Var(W)

E(¢?) = BN S )E[€]2 . (6)
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Equation (6) gives the average squared distance of nodes to their CH that
comes in handy for estimating the total intra-cluster energy cost (between
cluster members and the CHs).

Once the CH collects the data from all cluster members, it eliminates the
redundancies present in the data using lossless compression, and transmits
the compressed data to the sink over the shortest path. The inter-cluster data
collection cost refers to the energy spent by the CHs to perform this task.
In order to estimate the inter-cluster cost, we need to measure the average
squared distance from the clusters to the sink, E[D?. This can easily be

calculated as
1

2 ® o, 2mx 2
E[D]—/O x -Wde:B—QR .
The mean number of nodes in a cluster is inversely proportional to the
probability of being a CH in the region to which the cluster belongs. As
discussed in Section 2.3, the size of the compressed cluster data subject to
some distortion level D can be quantified by the joint entropy of the cluster.
For a cluster of size n, let b, denote the size (in bits) of the message that the
CH transmits to the sink (note that b, can be computed from Equation (2)
for n =1/p).
The average total network energy consumption, E[Cy,], can be broken
into the energy spent for intra-cluster and inter-cluster (between CHs and
the sink) data collection. In symbols,

E[C,s] = Els) (WEINIE[E] + b,E[DY) | (7)
where, E[s] = ppmR? is the expected number of clusters in the network.

4.2. Multi-Hop Communication

In this scenario, we use a bit-hop metric to quantify the network energy
consumption. Let R denote the radio range of a sensor node. Since we
assume that all sensor nodes have the same radio range, the energy required
to transmit one bit of information from a node to any other node in its radio
coverage (one hop distance) is fixed and proportional to the square of the
node’s radio range, R?. Although this communication policy ignores the
energy differences due to transmission over variable-range hops, it is more
practical for implementation.

In order to compute the expected transmission energy, we need to es-
timate the total number of hops taken to communicate sensor readings to
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the CHs or the sink. Within any given cluster, the total number of hops
traversed is at least [E[L]/R]. Likewise, for inter-cluster data transmission,
[E[D]/R] gives the minimum number of hops to deliver the cluster data to
the sink, where

R’ 2
E[D] = =2
(D] /0 T —pde 3R

gives the average cluster distance from the sink. One may argue that the
suggested approach for calculating the number of hops underestimates the
actual steps required to deliver the data to the destination in a real network.
We emphasize that, in this paper, we are interested in dense networks, since
the data correlation in the network would be negligible otherwise. In such
networks, the shortest path between a pair of nodes is closely approximated
by a straight line segment between them. A similar assumption has been
made in other prior work (e.g., [6]). Furthermore, the good agreement be-
tween our mathematical model and the Monte Carlo simulations in Section 7
supports this claim.

Using this approximation, the total energy spent on data transmission in
the multi-hop scenario is given by

2 ‘C 2
E[C,n] = E[SJE[N]0IR {%} 4 E[s]b.R {%] N
~ RE|s] (blE[N]E[ﬁ] + b,JE[D])) .

4.3. Numerical Analysis

Equations (7) and (8) describe the average total network energy usage as
functions of various network properties, such as node density, data correlation
degree, and cluster size. One important objective here is to find the optimal
cluster size that minimizes the average network energy consumption. To this
end, we numerically analyze the given energy functions. We consider a disk-
shaped network of radius 15 on which nodes are scattered according to a
Poisson process with an intensity of either 0.75 or 1.50. We change the data
correlation degree from W = 0.15 (low) to W = 0.90 (high) and study the
effect of changing the cluster size on the total network energy consumption.
We examine both single-hop and multi-hop communication strategies. In
single-hop communication, nodes adjust their power level appropriately to
reach their destination. In the multi-hop scheme, nodes always transmit at
full power, covering a radio range of 0.75 units in our simulations.
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Figure 1: Average total network energy consumption in uniform clustering with different
correlation degrees

Fig. 1 illustrates the average network energy consumption for different
sizes of clusters and correlation degrees. In both single-hop and multi-hop
scenarios, the stronger the data correlation is, the larger the optimal size of
the cluster becomes. This observation is quite intuitive in the sense that by
forming larger clusters, more redundancy can be removed (provided that a
reasonable degree of data correlation exists among the original observations).

The impact of changing the cluster size on total energy consumption is
more pronounced in single-hop communication than in multi-hop scheme.
This is mainly due to the fact that the energy function is proportional to the
square of the distance over which data transmission is done and this distance
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for the single-hop communication is often longer than that for the multi-hop
case. When a new node is added to a cluster, the cluster is able to save some
energy via data compression. On the other hand, the data provided by the
new node first has to be sent to the CH and then from the CH to the sink.
If no data compression is performed, this transaction clearly is more energy-
intensive than if the node individually transmits its data to the sink (possibly
over a shorter path). Likewise, even with data compression, the amount of
reduction per message achieved via making larger clusters should compensate
for the extra energy spent on data communication on longer distances. With
multi-hop communication, however, since all nodes transmit at the same
power level, this issue becomes less crucial. In particular, when the data
correlation degree is high, cluster sizes show a wider range of values. This is
also the reason why the optimal cluster size in multi-hop communication gets
larger than that of single-hop approach as data correlation degree increases.
For example, when W = 0.90 and p = 0.75, with multi-hop communication,
the energy consumption of clusters of size 9 to 25 are within 5% of the
optimal, whereas in single-hop communication, such optimal range is only
from 7 to 12.

5. Randomized Non-Uniform Clustering

Our previous uniform clustering model provides some useful insights as
to how various degrees of data correlation and different transmission policies
affect the optimal cluster sizing and energy consumption. However, the major
downside of such a uniform clustering model is its inability to form variable
size clusters in different regions of the network. In fact, by forcing the clusters
to contain similar number of nodes, our model neglects any potential impact
that distance can pose on optimal cluster sizing.

In previous work [23|, we demonstrated that in correlated data fields,
the optimal size of clusters is directly proportional to the cluster distance
to the sink. Our previous analysis, however, was based on a very simple
single-cluster model.

In this section, we concentrate on the effect of distance on forming optimal
sized clusters in a realistic network made of possibly many clusters. We
develop an elaborate model that allows clusters of arbitrary size to form
freely in different regions of the network.

To be consistent with our previous model, we start with the same network
topology as described in Section 4. In order to study the impact of distance
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on the optimal size of the clusters, we split the network into two concentric
ring-shaped areas: namely, the interior and the ezterior regions (See Fig. 2a).
By convention, in this section, we use subscripts ¢nt and ext to denote the
analytical properties of the interior and exterior regions, respectively. The
radius of the interior region, 7;,, is a fraction of the total network radius.

That is to say,
Tint = KR, O<k<l1. 9)

We continue with our probabilistic clustering strategy. However, we let
the probability of CH selection in the interior region (denoted by pj..) be
independent of that for the exterior region (denoted by pes;). Therefore, in
any of the described regions, non-CH and CH nodes can be considered as
two independent Poisson processes 1y and II; with intensities pg = (1 — p)p
and p; = pp, respectively (for the interior region, p = pjins, while p = pe,y for
the exterior region).

The expected number of clusters in the interior region is:

E[Mnt] = Dint * P7T/<02R2 )
and likewise, for the exterior region:
E[-/V‘ext] = Peaxt * Pﬂ'(l - H2)R2 .

In this analysis, we only consider the multi-hop communication policy,
since it is more general and practical than the single-hop scheme. In order
to compute the intra-cluster data collection cost in the interior region, we
act in the same way as our uniform clustering model. The intra-cluster data
collection cost for such a cluster is given by

| = R —=T = by RE[Lin] -

E[C;
[ R

wnt

Therefore, the mean total intra-cluster data collection cost for the whole
interior region is given by
E[C2] 2 by RE[Nnt ) E[Line] -

int

Similarly, for the exterior region, it is obtained that:

E[C2Y) x5 by RE[N o) E[Lewi] -

ext
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Interior Region

Exterior Region

(a) A dual-region network (b) A multi-region network

Figure 2: Non-uniform clustering in a disk-shaped network.

Next, we focus on finding the inter-cluster data collection cost. In order
to compute the energy required for this transmission, we only need to know
the distance between the CH and the sink. Similar to our previous model,
the mean distance of nodes in the interior region to the sink (center of the
network) is computed as:

Tint 2 2
E[Din] = / x - 77‘21’ dr = =kR .
0

Ty 3

Considering that the mean number of hops to reach the sink from the
interior region is given by [E[D;,;]/R], the mean total cost of transmitting
data from all the CHs in the interior region to the sink is readily calculated
as:

E[Cinmr] ~ bnintRE[Mnt]E[Dint] :

int
Likewise, the expected cost of inter-cluster data collection for the exterior
region is:
E[Cmter] ~ bneactRE[N ext]E[Dext] )

ext

where,

R
E[Desi] :/_ iy
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Figure 3: Optimal probability of CH selection vs. location of the border

The total cost of collecting data from the WSN is the sum of inter-cluster
and intra-cluster costs over both regions:

E[Ciota] = E[C;n"] + E[Cint”™] + E[Ceo™] + E[CHY™] - (10)

ext ext

While the boundary between the two regions is fixed, E[Ciota1] is a function
of pint and pey. We use p, and p? , to denote the optimal values of p;,, and

Pez¢+ that minimize the total network energy consumption for all possible
placements of the border.

5.1. Experimental Analysis

We scatter sensor nodes on a network of radius 15, once with a density
of 0.75 and once with 1.50 nodes per unit area. By varying « from 0 to 1, we
gradually move the boundary between the two regions across its full range.
For any particular placement of the border, we then find the pair (p},,, p’.;)
over the unit square that minimizes Equation (10).

Fig. 3 illustrates the optimal probabilities of CH selection in interior and
exterior regions for any value of x between 0 to 1. As evident from this
figure, p7,, is always greater than p! ., for all values of k. This suggests
that, regardless of the position where the interior and exterior regions are
separated, the probability of being CH in the interior region is always greater
than that of the exterior region. That is, clusters in the interior region are
smaller than in the exterior region.

Next, we analyze the effect of changing the border location on the network
energy consumption. As Fig. 4 shows, the optimal position for the border
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Figure 4: Optimal network energy usage vs. location of the border

is about 0.5R for p = 0.75, and 0.7R for p = 1.5. We note that in the
former situation, the network is split into two equal-width regions, while in
the latter, we have equal-area regions.

6. Generalized Non-Uniform Clustering

In this section, we extend our previous analysis to a general multi-region
network model. The dual-region network analysis showed that splitting the
network into two equal-area regions (x = 0.7R) provides reasonably good
energy efficiency. In this situation, nodes are equally divided between both
regions. Therefore, we have a fair balancing of resource allocation over both
regions. With our multi-region model, we also split the network into m con-
centric ring-shaped equal-area regions making each region contain the same
number of nodes (on average). Hence, changing the cluster size throughout
any region fairly affects the total energy consumption since all regions have
almost the same number of nodes. We emphasize that our analysis is general
and can easily be modified to fit other scenarios as well (e.g., equal-width
regions).

We assign each region with a number ¢ from 1 to m from the innermost
region all the way to the outermost one. The width of region 7 is denoted by
r; (See Fig. 2b). In region i, nodes become CH with a probability p;. This
probability is identical and independent of that of other regions.

Going through the same steps as for the dual-region model, the mean
intra-cluster energy cost for data gathering from all the clusters of region ¢
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is obtained as:
E[C;""*] ~ b RENGE(L]
where E[N;] = p;pmr? is the mean number of clusters in region i, and £; is
the cumulative distance of nodes to the CH in any cluster in region i.
Since the network is evenly divided into m regions all of the same area,
we can easily obtain the following expression for the width of region ¢:

r=(Vi-vi-1)r, 1<i<m. (11)

Since all the clusters in region ¢ are at a similar distance from the sink, the
approximate cluster distances are:

Vi 2 2
E[Di]:/ x-ifdx:—r(igﬂ—(i—l)gﬂ) :
Vi—lr wr 3
Similar to the dual-region network model, the mean total cost of transmitting
data from all the CHs in region ¢ to the sink is calculated as:
E[C;"] ~ by, REN]E[D;] .

The mean total cost of data gathering from the whole network is the sum of
the energy required for intra-cluster and inter-cluster data collection over all
the regions. Thus, we obtain:

E[Ctotal] = Z E[Cintra] + E[Cinter]

1=1

= p7r7’2722m:pi (0,E[L;] + b, E[D)]) .

i=1

(12)

Equation (12) suggests a closed-form relation for the mean total cost
of data collection in the network with respect to the probabilities p;,i €
{1,2,...,m}. The goal is to determine the set of optimal p;’s for which the
total energy consumption is minimized. Formally stated,

(p1,- -+ pn) = argmin E[Cioral]
{pi} (13)
st.0<p; <1, Vie{l,2 . ...,m},

where (p},...,p: ) are the optimal CH probabilities in regions 1 through m.
Since p}’s are independent, Equation (13) can be seen as the minimization of
each summation term in Equation (12), separately. This can conveniently be
done using existing numerical methods [30]. Some numerical examples are
provided in the next section.
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7. Simulation Experiments

In this section, we look at the optimization problem introduced in Sec-
tion 6, trying to find the best configuration for CH allocation over the network
regions.

7.1. Sitmulation Environment

We use MATLAB for both our numerical and experimental analyses. The
results reported for the model are the solutions of Equation (13) that are
calculated in MATLAB. The simulation environment used in our experiments
includes a disk network of radius 15 on which nodes are Poisson distributed
with a density of 0.75 nodes per unit area (roughly, a total of 530 nodes,
on average). The distortion level is set to 0.01 bits per sample. We assume
multi-hop communication along the shortest path between pairs of nodes.
The radio range of each node covers a radius of 0.75 units, and since all
nodes transmit at the same power, the per-hop transmission cost is fixed per
every bit of information sent.

7.2. Impact of Data Compression and Distortion on Energy Usage

In this subsection, we demonstrate how careful consideration of data cor-
relation /compression in forming optimal-sized clusters helps reduce the total
network energy consumption. For this experiment, we tentatively ignore the
effect of distance on optimal cluster sizing and simply focus on a single-region
network.
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Figure 5: Analysis of energy usage in a single-region network (uniform clustering)
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Fig. 5a and 5b depict the network energy consumption of Optimal Uni-
form Clustering (OUC) in simulation versus the results obtained by the
model. As evident from both figures, simulation results are fully consistent
with the proposed model. In Fig. 5a, increasing the correlation degree (W)
throughout the field improves the network energy consumption such that a
highly-correlated network is almost 42% more energy-efficient than a network
with the same topology but low data correlation. Similarly, as Fig. 5b shows,
increasing the tolerable distortion (D) also results in enhanced energy usage
in the network. In order to ensure the fairness of CH selection through all
areas of the network throughout our simulation experiments, 1000 random
network configurations are generated per each value per independent variable
(W or D) and the average energy-consumptions are reported.

7.3. Impact of Data Correlation and Distortion on Optimal Cluster Sizing

For the next experiment, we consider two scenarios:

1. Optimal Uniform Clustering with no Data Compression (OUC/NC):
quantization on local observations; data aggregation at the CHs with-
out compression.

2. Optimal Uniform Clustering with Data Compression (OUC/WC): quan-

tization on local observations; joint cluster data compression at the
CHs.

In the former scenario, CHs aggregate the cluster data and transmit it
to the sink without compression, whereas in the latter, the CHs remove
the redundancy present between data samples and transmit a condensed
version of the cluster data to the sink. Our goal is to investigate the effect of
data correlation/compression on optimal cluster sizing and also on potential
energy savings when data correlation is present.

For both cases described above, namely, OUC/NC and OUC/WC, Fig. 6a
and 6b respectively illustrate numerical analyses of the impacts of data de-
pendence and distortion level on the optimal size of clusters.

As seen from both figures, when no data compression is performed at
CH level (aggregation only), the optimal cluster size is always 1. This is
reasonable in the sense that without data compression, no reduction in size
of the cluster’s aggregate data is attained. However, in clustering with data
compression, as seen in Fig. 6a, increasing the correlation degree reduces the
optimal probability of becoming CH in the network. In other words, the
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Figure 6: Analysis of optimal cluster sizing in a single-region network (uniform clustering)

stronger the correlations are between the sensor observations, the larger the
clusters become.

As shown in |11], for any rate allocation, the shortest path tree (SPT) is
the optimal routing structure for correlated data gathering. It is, however,
interesting to note that forming clusters requires some nodes to send their
readings through their pre-specified CH, which is not necessarily part of the
SPT rooted at the sink. Therefore, cluster formation is worthwhile only
if the amount of compression ultimately achieved at the CHs compensates
for the extra energy spent due to the transmission of data over suboptimal
paths. When the correlation degree is very low (e.g., W = 0.1), no significant
reduction in cluster data can be attained by forming clusters of multiple
nodes. Rather, similar to clustering without compression, nodes tend to
form isolated clusters of size 1 and individually transmit their data over the
SPT. With a high correlation degree (e.g., W = 0.9), however, more nodes
tend to join each cluster, which provides greater reduction in the size of
the cluster data after compression. The optimal cluster sizes found in this
experiment are 10 for W = 0.8 and 13 for W = 0.9.

Fig. 6b likewise demonstrates the impact of increasing the tolerable dis-
tortion level on optimal cluster sizing. As seen, when a higher level of distor-
tion is allowed, readings from a broader local neighborhood can practically
be compressed into a single message at the CH level; thus larger clusters
become more affordable.
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7.4. A Comparison of Uniform Clustering Schemes

In this subsection, we present a comparison of three uniform clustering
schemes, namely Near-Optimal Location-Based Clustering [20] (NOLBC),
Energy-Efficient Hierarchical Clustering |6] (EEHC) and Optimal Uniform
Clustering (OUC) which we presented in this paper, with a particular focus
on their corresponding energy usages. NOLBC is proposed as a heuristic
scheme for approximating optimal cluster sizes as a function of number of
sensors in the network. A somewhat different functional relationship is es-
tablished between optimal probability of CH selection, network size and node
density in EEHC where a multi-tier hierarchy of clusters is formed.

We believe that these two frameworks are similar to OUC in various
aspects. First, they all are based on a randomized foundation and thus, can
readily be implemented in real networks in a distributed manner. Secondly,
energy-efficiency is the primary focus of all three schemes when forming the
clusters. Thirdly, they all consider data correlation in order for removing
data redundancies and saving energy. Based on all this, we believe that a
side-by-side benchmark of these three schemes can be a fair and meaningful
comparison.

Fig. 7 depicts the results of our simulations. For EEHC and OUC, re-
sults of both clustering with data compression and without data compression
(identified by /WC and /NC suffixes respectively in the legend of Fig. 7) are
provided. The purpose for including the latter is to provide a compari-
son baseline that highlights how much benefit is solely contributed by data
compression itself. As seen, OUC generally yields better energy-efficiency
compared to the other two. However, as data correlation degree increases,
the results of all three schemes become more comparable.

The fundamental difference between the foregoing proposals (and their
corresponding energy usages) lies in the extent to which they exploit data
correlation. While all three schemes somehow implement data aggregation
and compression, NOLBC and EEHC are oblivious of the impact of data
correlation in forming optimal-sized clusters. In fact, in both schemes a
fixed near-optimal cluster size is obtained to minimize the network energy
consumption across the entire range of data correlation degrees. However,
according to our findings in this paper, there exists a strong dependence be-
tween these two concepts. This observation motivates the idea of correlation-
aware cluster sizing. It is interesting to note that in our simulations, NOLBC
and EEHC construct clusters with fixed sizes of 32 and 11, respectively; while
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Figure 7: A comparison of energy consumption between different uniform randomized
clustering schemes.

clusters formed by OUC, comprise a variable average ranging from 1.1 to 13.8
nodes per cluster as data correlation degree increases.

The energy differences between NOLBC, EEHC/WC and OUC/WC curves,
as seen in Fig. 7, highlight the importance of careful adjustment of cluster
sizes based on data correlation. That the differences between energy usages
become less evident in presence of high correlation stems from the fact that
clusters formed by NOLBC and EEHC are inherently large enough to provide
maximum intra-cluster savings. In fact, it is in the absence of sufficient data
correlation where having such excessively large clusters breaks the optimal
routing structure (SPT) and induces additional transmissions over longer
paths to the sink.

7.5. Non-Uniform Clustering in a Multi-Region Network

In this subsection, we first quantify the energy savings attained by using
non-uniform clusters throughout the network. We also study the effect of
distance on optimal cluster sizing by analyzing the solutions of a multi-region
network.

For the network configuration described previously, Fig. 8 compares the
optimal network energy consumption for various degrees of data correlation
when different number of regions are used. The upper curve corresponds to
a single-region network (uniform clustering), and the lower lines correspond
to more regions, from 2 to 5, respectively (non-uniform clustering).
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Table 2: Optimal probabilities of CH selection and their corresponding energy usage
(model vs. simulation)

E:nod ‘ Eszm ‘ P15 ap;kz>

(p1
8292.96 | 8415.60 | (0.0909)
8202.94 | 8318.63 | (0.1000, 0.0556)
8196.12 | 8071.83 | (0.1001,0.0714, 0.0556)
(
(

8180.63 | 7890.37 | (0.1668,0.0909, 0.0556, 0.0556)
8169.44 | 7845.75 | (0.2002,0.1001,0.0715, 0.0556, 0.0556)

St s W N~

Surprisingly, increasing the number of regions only slightly improves the
network energy consumption. In order to interpret this unexpected behavior,
let us have a look at Table 2 to see the optimal probability allocation over
the regions of a certain realization. As evident from this table, the optimal
CH probabilities decrease with the distance to the sink for all configura-
tions. For a 5-region network, for example, the clusters of the outermost
region are almost 4 times larger than the ones in the innermost region. How-
ever, the optimal theoretical network energy consumption for such a setting
is only 1.5% better than that of uniform clustering in a single-region net-
work. Also, the simulation results demonstrate less than 7% enhancement
under the same conditions. In fact, both data correlation degree and distance
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Figure 9: Realizations of two optimal clusterings

make the optimal size of the clusters larger. On the other hand, the larger a
cluster becomes, the more energy has to be spent on collecting data from the
cluster periphery. These two factors turn out to offset each other, yielding
only marginal improvements. More precisely, adding more nodes to a cluster
initially helps achieve higher data compression rates and better energy effi-
ciency. Gradually, less and less energy savings are made as more nodes are
attached to the cluster. At some point, the cluster gets “saturated”. That is
to say, the cluster reaches its limit in terms of maximum energy saving. At
this point, additional nodes not only provide no extra savings, but also prove
detrimental to the total energy consumption. Such phenomenon is often
referred to as “diminishing returns”. With optimal uniform clustering, not
all clusters are saturated, but most of them are close to their limits. With
optimal non-uniform clustering, all clusters can reach their capacity limit.
However, the difference between the two stages is so small that in practice,
optimal uniform clustering performs quite close to any optimal non-uniform
clustering strategy.

Fig. 9 compares two optimal realizations of uniform clustering (single-
region network) against non-uniform clustering (multi-region network) on
an arbitrary network. As presented by Fig. 9, with non-uniform clustering,
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the optimal cluster size grows with distance from the sink. Also, for this
particular example, the non-uniform clustering saves 8.5% more energy than
the uniform clustering.

8. Further Results and Discussion

In this section, our objective is to shed some light on why a basic uniform
clustering provides comparable energy savings to non-uniform schemes, even
though the average cluster sizes are remarkably different.

Consider a cluster of nodes with radius r at an arbitrary distance d from
the sink (see Fig. 10). We want to see how the per-node data collection cost
changes as we expand the cluster radius by Ar. For simplicity, in the fol-
lowing, we consider direct data transmission; however, as we showed earlier,
since the relative energy savings for various cluster sizes in the multi-hop
scheme is no better than that of the direct communication, we can consider
the resulting savings as an upper bound for multi-hop communication, as
well.

x AT

Figure 10: A cluster of radius r at distance d from the sink.

As explained in Section 4.1, we can derive the following expressions for
the energy cost of data collection from an arbitrary cluster when it comprises
n and n + An nodes, respectively.

1
C(n) ~ nb1(§r2) + bnd2

1
Clnsan) & (n+ An)by (5(7« + A7)+ bsand® (14)
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Using Poisson approximation, we know that n =~ pmr? and n + An = pr(r +
Ar)?. Therefore, we can rewrite Equation (14) as follows.

C(n) ~ n26b1 + bnd2
C(n—I—An) ~ (TL + A71)25[)1 + b(n+An)d2 ) (15)

where € = 1/(2pm) ~ 0.16p is a constant independent of n.

Now, let C,,y denote the amortized energy cost of a cluster of size n. We
have that:

Cny = — . (16)

In fact, é(n) can be seen as the average energy usage of an arbitrary node
when it is assigned to a cluster of size n. Clearly, by expanding the cluster
size we want

Cintan) < Coy =

bnsan) by
- 7 < —
(n+ An)eb; + o n)d neby + - d =
eAn b, b(n+An)

< o _ndan)

In previous work [23|, we introduced the metric compression ratio that
is defined as ¢,y = b,/(nb1). As mentioned earlier, CHs only forward a
condensed message representing the entire cluster information to the sink
after removing the redundancies. The compression ratio is a normalized
measure that indicates what fraction of the collected data from the cluster
members is transmitted to the sink after compression, and in this sense, the
less the compression ratio, the better. The limiting values are 1 when exactly
the same copy is sent (i.e., a cluster of size 1 or when no data correlation
exists) and 0 for a highly correlated field as n — oo.

Using the notation of compression ratio and from Equation (17), we can
readily infer that an additional node can be added to a cluster of size n as
long as

g
|1Ady| = |Pns1) — Py | > R (18)
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Figure 11: The required threshold for specifying the optimal cluster size.

As shown in 23|, ¢,y : N = [0 1] is a non-increasing convex function
of n; therefore, Vn € N : 0 < |A¢py| < 1. However, as Equation (18)
shows, assigning a new member to an existing cluster is cost-saving only if
the resulting cluster’s compression ratio is at least £/d? less than that of the
cluster excluding the new member. Knowing their approximate distance to
the sink, CHs can use this criterion to decide whether or not comprising a
new member is beneficial.

For different degrees of data correlation, Fig. 11 illustrates that [Ag,|
monotonically decreases with the cluster size. The horizontal line shows the
required difference of compression ratios for a cluster at d = 3 to expand.
The intersections of the horizontal line with curves specify the thresholds
for specifying the optimal cluster sizes (denoted by n*). That is to say, by
expanding the cluster size beyond this limit, the per-node cost of data collec-
tion increases. As the cluster gets further from the sink (i.e., d increases), the
constraint on the right-hand-side of the inequality (18) becomes looser, set-
ting the horizontal line lower, implying that the optimal cluster size increases
with distance (confirming our former results).

We next focus on how the amortized cost of the cluster changes with its
size. In particular, we want to quantify the savings achieved by adding more
nodes to the cluster while the same node density is maintained in the cluster.
Expanding Equation (16), we can write

C(n) =b (ne + ¢(n)d2) . (19)
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Figure 12: The amortized cost of clustering vs. cluster size
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The first term inside the brackets in Equation (19) (i.e., ne) corresponds
to the intra-cluster data collection cost and is an increasing function of the
cluster size (n). On the other hand, the second term (i.e., ¢¢,)d?) contributes
to the amount of savings obtained via compressing the cluster data and thus,
is a non-increasing function of the cluster size. Analogous to anti-parallel
forces, these two terms pull the cluster boundaries in opposite directions.
The latter is stronger when the cluster size is small, but it gradually becomes
weaker as the cluster grows. Fig. 12 better explains this interesting behavior.

For a given degree of data correlation (W), Fig. 12 depicts the amortized
cost (Cmy) of a cluster at a certain distance (d) from the sink as a func-
tion of the cluster size (n). As clearly evident, expanding the cluster size
first helps achieve a lower energy consumption per node. Such savings are
more significant for clusters at further distances from the sink or when the
data correlation degree is relatively high. By adding more nodes, the cluster
eventually comes to its saturation limit. The amortized cost of the cluster
begins to slightly increase by expanding the cluster size beyond this point.
In fact, after the cluster gets saturated, the extra cost from having additional
nodes in the cluster turns out to offset the savings due to achieving better
data compression rates, such that the difference in the amortized cost of the
cluster is barely noticeable after this point.

The shaded areas in Fig. 12 show the cluster sizes whose energy consump-
tions are within 5% of the optimal. As seen, for clusters further away from
the sink, such optimal range is wider than for the closer ones. Moreover, for
clusters at various distances, these optimal ranges are overlapping. In other
words, even though the optimal cluster size significantly varies with distance,
it is always possible to find a globally optimal cluster size that performs very
well across the entire network. This result justifies why even a simple uniform
clustering can perform reasonably close to the more complicated non-uniform
schemes.

9. Conclusions and Future Work

In this paper, we showed that the general problem of OPTIMAL CLUS-
TERING is NP-hard. We proposed a novel framework for modeling cluster-
based data gathering in WSNs and optimized it to produce the best possible
clustering of the network in terms of energy consumption.

We presented the first analysis of non-uniform clustering in WSNs and
demonstrated that heterogeneous-sized clusters are more energy-efficient in
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WSNs with spatial data correlation. We further showed that due to the trade-
offs induced by physical characteristics of clusters, optimal uniform clustering
can also perform very well compared to the more complicated non-uniform
counterparts.

In the specific network configurations considered in our simulations, the
improvements achieved by non-uniform clustering are not significant. An
avenue for further research is to study the specific topologies (including con-
trived and arbitrary configurations) which might better benefit from non-
uniform clustering.

Analyzing the network lifetime and investigating potential mechanisms
(e.g., CH rotation) that can help fairly distribute the data collection load
throughout the network is another interesting area of future study.

Last but not least, it is noteworthy to mention that our proposed frame-
work is originally tailored for static configurations. Nonetheless, mobility is
an ever-growing necessity in most recent trends of applications. Extension of
the proposed scheme to cope with mobility and its related challenges is yet
another important problem which remains for future work.
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