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Abstract—NanoNets are networks of nanomachines at extremely
small dimensions, on the order of nanometers or micrometetsRe- ] Sersorctustr
cent advances in physics and engineering have made basic qmunt Processinglandcomml I
ing and communication feasible on nanomachines, and Nanohse Trans-  (—| Unit — Location|
are envisioned as an important emerging technology with brad R Storage Unit :Sy“em :
future applications. Traditional networking solutions require sig- T ==
nificant modifications for application in NanoNets. In this paper, | Power Unit —

we focus on routing algorithm design in NanoNets. Based on ¢h
salient features of a NanoNet, including low node cost and wg low
available power, we propose a new routing paradigm for unicat Fig. 1. The architecture of a nanonode.
and multicast data transmission in NanoNets. Our design, tened

Buddy Routing (BR), is enabled by latest advancements in physical

layer network coding, and argues for pair-to-pair data forwarding  jng periodical recharges [1], [4]. Consequently, directmaom-

in place of traditional node-to-node data forwarding. Through both 1, nication can only happen in very short distances, andrgt ve

analysis and simulations, we compare BR with point-to-poitrout- .

ing, in terms of raw throughput, error rate, energy efficiency, and |OW rates. In short, NanoNets present an entirely new nééwor

protocol overhead, and show the advantages of BR in NanoNets ~ ing paradigm that invites radical revolutions in networkiso-
lutions, including error detection/correction, routingdaMAC
algorithms [5].

|. INTRODUCTION By grouping nodes into collaborating pairs, pair-to-pair-f

NanoNetworks represent an emerging type of wireless sen¥@rding can breakthrough the fundamental nodal power con-
networks consisting of nanonodes — wireless nodes at egtyemstraint, enhancing the communication range and rate ofmano
small form factors, on the order of micrometers or nanonsetepdes, and is therefore a promising paradigm for exploration
This work aims to present the first routing/MAC protocol ggsi fouting algorithm design for NanoNets. Such routing altjonis
tailored for multi-hop NanoNets, by utilizing physical Ewynet- are best coupled with a simple MAC algorithm, such as TDMA,
work coding (PNC) for pair-to-pair routing that break thgbu SO that execution on nano processors does not become & bottle
the frugal nodal power limitation at nanonodes. neck.

As shown in Fig. 1, the structure of a nanonode resembles tha€ollaborative data forwarding among paired nanonodes can
of a wireless sensor node to a great extent. Recent advancdsd enabled by two different physical layer techniques: am-
physics and engineering technologies have made it possibleplify&forward (A&F), or physical layer network coding (PNC
manufacture storage, processor, radio antenna and popeliysu[6]. A detailed comparison between the two, in terms of error
at the nano-scale [1], [2]. For example, a typical nanotudsetd rate and capacity, is provided in Sec. Il. We choose PNC $or it
transmitter has a volume 8t9x10* nm3 [3]. Electromagnetic potential in higher communication rate. PNC is a recentrieth
communication between nanonodes can be enabled by eigher @gy that views the overlap of analog signals in the air asaline
guency modulation or phase modulation. Such invisibly $maiombination of source signals. PNC based mapping and demod-
nanonodes can be easily attached to everyday objects omhumlation can be applied to decode for a digital version of tieer
bodies, for sensing antigen molecules, the immune system,combination [6], [7].
other physical parameters of interest. Fig. 2 illustrates how PNC can enable pair-to-pair data for-

Compared with a wireless mesh network and a ‘regular’ wirevarding that underlies our proposal of Buddy Routing (BRy- A
less sensor network, a NanoNet has a number of salient feame the source packetfor transmission is broken into two
tures. Nanotube radiation is at Terahertz domain, leading équal-length sub-packets andz,. We pair up each of the Tx
wavelengths on the order 6f1 mm, and usually travels in line- node and Rx node with a nearby ‘buddy’ node. The Tx node
of-sight fashion. Nano-processors, nano-tranceiversraamib- sharesz; with its buddy, through a short intra-pair transmis-
power supply are usually of orders of magnitude weaker thaion. Next, the two Tx nodes simultaneously transmitand
their counterparts in wireless mesh networks. Due to litioites - respectivvely to the two Rx nodes, such that their signads ar
in nano-battery technologies, power supply is weak andtshaaligned at the buddy nodé\(1) in the Rx pair, which performs
lived, e.g., providing current att5 A per em?-um, and requir- PNC to demodulate;; + x», and forwards it to the Rx node




20 | - e
h12 7 sion ofx; + x2; in A&F, it transmits an amplified version of the
axxa @ hor @ X1+X2 receive_d ana!og signéhiayx1 + hayasxs. _ o
In this section, we compare these two enabling technolagies

h N //;@ PNC and A&F lies in the intra-pair transmission to the Rx node
. 1 4% from its buddy: in PNC, the Tx buddy transmits a digital ver-

hao N2 terms of multi-hop throughput potential (11-A), single4h8ER

. . . . . (lI-B), and protocol overhead.
Fig. 2.  Pair-to-pair based buddy forwarding enabled by PRf@coding is

performed at the Tx pair, for signal alignment at Nk a1 = h21a2. Hereh;;

is a complex number charactering channel fading from a nodleel Tx pair to a . i i
node in the Rx pair, which includes amplitude attenuatiod jaimase shift. A. PNCvs. A&F: Multi-hop Buddy Routing

Xi [ da % .
(N2). The Rx node can recover the original packdtom the Re><6>}<e>><e)mz
analog signal it receive$, a1z + hosasxo, and the encoded 23\Q ®XW s Qb
packet from its buddys, + =2, 9., through an adapted version
of Maximum-Likelihood (ML) decoding [7]. Higher communi- Fig. 3. BR transmission in a multi-hop unicast route enablg®NC
cation rate is targeted for data sharing within each paith @i
higher modulation rate. For example, BPSK modulation can beFig. 3 shows the pipeline operation of a multi-hop route dase
applied for the inter-pair transmission, and 16QAM fordapair. on pair-to-pair forwarding, enabled by PNC. Except at thase

Our main proposal, Buddy Routing (BR), is a PNC-enablgzhir, there is no need for half-packet sharing in subsedueidy

pair-to-pair routing solution, coupled with a tailored sstckam- pairs for subsequent pair-to-pair transmission. The topiver
lined TDMA MAC for simplicity and efficiency. The design of has already demodulated a digital half-packet (labeledyunr &)
BR targets both unicast and multicast applications. Foldatter, that can be directly used. As a result, all short hop (ina@)p
a multicast gadget enabled by PNC will be designed and ediliztransmissions can happen simultaneously along the enke B
(Sec. V, Fig. 16). We design and present the pipeline omeratiroute, without incurring severe interference.
for data forwarding along a BR route. Through theoreticallan
ysis, we obtain insights on the effect of key parameter selec L»@ P2 % X ® X Dl
on the performance of BR. We extend the geographical greedy p1( ><®>>>< >>>< )m
routing algorithm [8] to its pair-to-pair forwarding veesi, for NG @, Vs Oy —
computing a BR unicast route. Iterative MAC layer optimiaat
over both Tx power at nanonodes and lengths of time slotsein tfig. 4. BR Transmissions in a multi-hop unicast route ercbleA&F.
TDMA MAC are refined, for mitigating bottleneck interferemnc
and end-to-end capacity improvement. Simulation resatifyy ~ In contrast, Fig. 4 depicts the pipeline operation of a BReou
the theoretical analysis that BR has a potential to sukiatgnt enabled by A&F. We highlight that, in order to prepare for the

improve the end-to-end throughput of traditional poingtmnt pair-to-pair transmission, intra-pair sharing of a hafket is re-
routing. quired at each hop. This is an extra step of transmissioruties

We further extend the solution design from multi-hop uninot exist in the PNC-enabled BR route. As a result, an extra ti

cast to multi-hop multicast, by designing a pair-forwagimsed slotis required for scheduling such intra-pair half-paskering,
multicast tree construction algorithm, and adapting theative leading to a lower end-to-end data throughput.

MAC optimization algorithm from a unicast path to a multicas

tree. A two fold increase in multicast throughput is obsdrve B, PNC vs. A& F: One-hop BER

large scale network simulations. ) . . We first analyze the BER performance of PNC, and then com-
To our knowledge, BR represents the first multi-hop rOu“né’are with the BER of A&F. We ignore the BER for the Tx node

algorithm design for NanoNets, as well as the first such aIgR)- sharer; with its buddy, since it is the same for both schemes,
rithm that leverages PNC in collaborative multi-hop rogtikive and is relatively small, due to the short distance

believe that BR has a potential to breakthrough the power sup 1) BERof PNC: For the one-hop gadget in Fig. 2, the BER
ply bottleneck in NanoNets arathart dust [9] that are formed of erformance of PNC can be analyzed in two phasés. In phase
extremely small and extremely weak wireless nodes, edpeci ne, we study the BER a¥1, for decodingz,+x». In phase

when coupled with a simple and efficient MAC protocol, such a0 we study the BER a2 for decodingz; anda, assuming
TDMA. an adapted version of Maximum-Likelihood (ML) detectiof.[7

BER at N1. N1 can demodulate;+xz2 by applying ML de-
1. ENABLING BUDDY ROUTING: PNCVvs. tection and PNC mapping. Let = x; + 22 which is in the
AMPLIEY &F ORWARD {-2,0,2} domain according to PNC mapping under BPSK mod-
] ] ) ) o ulation. Letc; and ¢, be two possible transmit vectors, with
The pair-to-pair forwarding gadget depicted in Fig. 2, uhde i k < {1,2,3} being indices to{—2,0,2}. Assumec; is re-
ing the idea of Buddy Routing, can be enabled by either PNC egived, the probability tha¥1 incorrectly outputs:y, is:
Amplify&Forward (A&F). A number of virtual MIMO forward-

ing schemes recently proposed are in essence based on A&F- Pric; — ox) = Q dZ e Aikp1
enabled collaboration [10], [11]. The main difference bedw ' K 205 no_sa 2 )




where);; = (c; — cx)?(c; — ck), andp; is the received SNR  3) Simulation result of BER :  Fig. 5 shows the simulation

at N1. Functior) computes the area under the tail of a Gaussiaasults based on the BER analysis of PNC and A&F. We can

PDF. observe that the BER of PNC is almost the same as but slightly
The ternary values ifi—2, 0, 2} appear inc with probabilities  yorse than that of A&F, under the same SNR at the receiver side

of:c; = —2:25%,ce = 0:50%, c3 = 2 : 25%, assuming) C : - . -
and1 are equally possibile to appear in the original data packét.sm""II price in BER is paid by the PNC scheme, for involving

Pr(c; — cx) = 0 when bothc; andcy are in(£2,42)7. In two steps of demodulation.
other words, judging-2 to be+2 or vice versa does not lead to
an error inx; + x2. N1 wishes to demodulate the digital bits

x1 + xo. The average vector error probability, which is also the
bit error rate, forx; + x» is 107
Prs(z1 + 22) = Pry(z1 + x2) 10°
= 2P(c1)Pr(c1 — c2) + P(c2) Z Pr(cz = ¢i) !
i#2 £ 10

BER at N2. We apply adapted ML, a detection scheme tailored w
for collaborating PNC receivers recently proposed by ustfy] 0"
decoder; andz,. Before applying the normal min-distance cti- w0l e
terion in ML, it first filters out the enumerated vectors theg a o
not in agreement with the known values far+x», to reduce the ° ° SR (@®) *

computational complexity. Using 16QAM modulation, there a
16 such vectors, with dimensidh x 1. X; andxy are two dis- Fig.5. PNCuvs. virtual MIMO, ignoring error in collaborative steps.
tinct vector among the sixteen. L&t andA,, denote the events

that N2 receives the correct and wrong dataiin- x5 from N1, To conclude, A PNC-enabled BR route and an A&F enabled
respectively. The average vector error probability wher- z2  BR route have comparable BER performance, while the former
is correct is leads to a more efficient pipeline operation and a higher end-
6 16 . to-end throughput. In the rest of the paper, we focus on PNC
Pro(&|Ae) = 1 Z Z Q(, /M). as the enabling technology of BR routing. While the original
16 = k=1k£i 10 proposal of PNC requires an extra overhead in symbol-leveén

Here N, = (% — %i)7 (% — %), po is the received SNR at synchronization, recent advanc_es s_how that_ asynchrorm(ts P
node 2. In the constellation graph with ML decoding, whersaoi with only packet-level synchronization (required in the NIR
exceeds the decision threshold, only 1 bit will be in errdiug, MAC underlying both PNC-based and A&F based schemes) can
the approximate BER can be computed as achieve similar performance, especially when channelngpisi

Pry(X|Ac) = Prs(X|Ac)/4 appropriately designed [12].

We next analyze the case thai+zo transmitted from/N1
contains error. - We havér,(X) = Pry(X|A.)Pry(As) + . THEORETICAL ANALYSIS
Pry(X|Ay)Pry(z1 + x2). When information fromiV1 is wrong,
N2 outputs a wrong vector with probabilityi.e., Pry(X|A,) = A Systemmodel and parameters
1. Therefore the vector error rate of the overall PNC-based\ya consider a multi-hop BR route as shown in Fig. 6. Let

scheme |~S _ di = ady, P1 = BP,. For ease of analysis, we assume in this
Pry(X) = Pry(X[Ac)(1 = Pro(z1 + 22)) + Pro(z1 + 22). section that the distancg of each pair-to-pair hop is the same,
and the inter-node distandg is the same in each pair.
2) BEfR OLQEDH%&WVA/&Q dt The anallysi? OtthtERf petf)fOFj We can synchronize nodes in the network, and schedule two
mance for wi etetion is similar to that of a basi i .
2 % 2 MIMO link. N2 can decode andz» after receiving the CGtypes of time slots: long slots and short slots. In each long

amplified signal fromV 1. The vector error rate of A&F is: time slot, the long hop pair-to-pair transmissions happeris

, taneously every three hops, for mitigating interferenod gv-

4 m . . : .
Pro(A&F) = Z Z Q( /%)7 ing the two-hop interference range in the protocol intenfiee

> =

o model [13]). Therefore, three long time slots are requirgg;
, e L _ _ t12 andty3. Every (3k + 1)-st long hop transmits in slat,
whereX;, = (X; — Xi)" (X — %), X; andxy, are two possible eyery (3% + 2) — nd long hop transmits in slot;», and every
spatial source vectors andk € {1,...,4}. pis SNR at the (3k + 3)-rd long hop transmits in sldt 3. During short time slot
receiver side. Then the BER of A&F can be approximated as: ) ; e

to, all the intra-pair short hops transmit simultaneously.

PTb(A&F) ~ P’/‘b(A&F)/2.

During joint ML decoding atV1, two SNR values are involved, P 2 —
the SNR for the pair-to-pair transmission, and the SNR teivec P1(® ><)><®)>< ®)>< @)
the amplified signal. Correspondingly, we plot two BER lines 9 T 9 o v = v o ®?2
in the simulation: ‘A&F-upper’ assumes the pair-to-pairBE g 6 gRr system Model.

‘A&F’ assumes the average of the two SNR values.




B. The Capacity of A BR Route inter-pair transmissions. Whem > 0.39, the bottleneck be-

To analyze the end-to-end routing capacity of a BR route, Wwames the intra-pair links, whose capacity decreases; as-
first computeSN Rior¢ andSN Ryony, BER values in the short ¢r€ases
and long transmissions, respectively. Capacity with noise consideredWe next simulate the capacity
Assume the path loss factor is 3, and the distance betweeofa BR route with noise considered. Fig. 8 shows a decreasing
wireless Tx node and Rx node ds Then the power available trend of the BR route capacity as noise grows. In this set of
at the receiving antenna can be expressed by the power for shaulations, noise intensity varies frobrto 4 x 10~W, P, =
transmitting antenna and distance, whichPis= P;/d®. Con- 100uW, dy = 50dm,d; = 5dm. The bottleneck resides in the

sidering interference from immediate neighboring paioiglthe inter-pair transmissions, and changegis P, /P, has no affect
BR path, the SNR of the short hop can be approximated as: on capacity.

P/d3
SNRsphort = —5———F+——= 1
hort T G2 12 % Py [ dB @

Hereo? is the intensity of additive white Gaussian noise. Con-
sidering interference from the closest two pairs that trahson-
currently in the BR TDMA scheme, the SNR of the long hop can
be approximated as:

capacity (100Kbps)

02 4+2x Pg/(2d2)3

SNRjong =

According to the Shannon-Hartley Theorem, the capacity of a
wireless linkl is

P./P, noise (W)

Fig. 8. Capacity with the effect of noise, = 0.1. BR route bottleneck exists
C, = B, 10g2(1 i SNRZ), in inter-pair transmissiong?; / P is irrelevant.

The short hop becomes a bottleneck Wh&W Rt <
where(; is the channel capacity ips and B, is the bandwidth SN Ry,,,. Substituting (1) and (2) into this inequality, we ob-
of the channel in hertz. The capacity ofkehop BR route is tain the equivalent condition of
the bottleneck capacity among all the long (inter-pair) ahdrt
intra-pair) transmissions, at each ho
( pair) P o? < v,anda < (5)1/3;

= mi —i _i1<i<
CBR mln{clong [z Oshort z|1 1> k} or 0_2 > 'y,anda > (5)1/37
Capacity at very high SNR.We first simulate the BR route ca- (16-a~%) 22
pacity with noise ignored. Fig. 7 shows that the BR route ca-wherey = ———-=
pacity decreases whef /d, > 0.39. On the other hand, the  For the simulations in Fig. 9;2 varies from0 to4 x 107,
ratio betweenP, and P, has no significant effect on the capacpo — 100uW, d, = 50dm, d; = 30dm. Under such parameter
ity. In this set of simulationsB = 100K Hz, P2 = 100uW,  settings, the bottleneck switches to the intra-pair lin@s.erall

dz = 50dm. BR capacity decreases gradually as the noise level essalate

g
o

=
13

capacity (100Kbps)

capacity (100Kbps)
-
S

=
w

0.4

P./P noise (W)

Fig. 7. BR route capacity with different values 8% /P> andd /ds. . . . . .
Fig. 9. Capacity with the effect of noise, = 0.6. BR route bottleneck exists

Without background noise, with constaPt andds, inter-pair " nra-pair links, P /P, is relevant.

link capacity is constant and does not depend®pP,. When From Fig. 9, we can see the &5 increases, the BR route ca-
a = di/da < 0.39, the bottleneck of the BR route lies in thepacity increases. However, for the same amount of infoonati



routed, the total power consumption along the entire BRerouA. The BR Algorithms for Unicast
increases. We therefore face a fundamental tradeoff beteae

. . Table | presents the algorithms for BR unicast. Hgréadius
pacity and energy efficiency.

of smallest circle in Fig. 11) is the maximum distance betwae

pair of buddy nodes;,,;, (medium circle) and,,.. (large cir-

C. Power Consumption: BR vs. Point-to-Point Routing cle) are the minimum and maximum allowed distances between
Next, we compare the energy consumption, for routing tf@o neighbor buddy pairs, respectively.

same amount information, between Buddy Routing and tradi-

tional point-to-point schemes. Again, we assume that BP&K a

16QAM are selected for modulation in the long and short BR

TABLE |
BR UNICAST ALGORITHMS: ROUTING & MAC O PTIMIZATION

transmissions, respectively. For point-to-point routiagsingle

node relays the data packet at each hop, using BPSK mod{il&-Pair-to-pair greedy geographic unicast routing
tion. Lett be the time duration for one antenna to transmit ondind closest neighbo of source

packet with BPSK modulation, and be the number of (long)
hops from the source to the destination. At each hop, theggne
consumption ratio between BR and point-to-point routing is

Py

2Pyt + 2P} P
4P,

=1
Pot +

The ratio of total energy consumption along the entire rigite

k(2P2g) + (k+1)(Pig) _ 14 kDA end while
kPst 8k Py 2. lterative MAC layer optimization
Fig. 10 plots the energy consumption ratio computed abo qi,ﬁel(; S e

with P2 100puW, di = 5dm, « 0.1,d, = 50dm,;

k = [2,4,8,12,30,50,100] (each corresponding to a line in
the figure). The energy consumption ratio decreases when
is smaller, while the value df doesn't have a great influence o
the ratio. Overall, the extra power consumption overheaded
by BR is mostly below 20%, and further decreases to below 5
whenP; /P, < 0.5. Such a comprise can be well justified by th
potential capacity gain of a factor of

Energy ratio
I =
e In N
(5] N v

=
N

g
o
© G

4

0

log2(k) 0.4

Fig. 10. Energy consumption ratio fo the entire unicasten®&R vs point-to-
point routing.

IV. BUDDY ROUTING: UNICAST

pair = {source,u}
while destinatiorg pair do
if dist(pair, destination) < rmaz:
find closest neighbos of destination
Pairnest = {destination, v}
else:
find pairpext, such that i < dist(pair, pairnest) < Tmae
anddist(pairneqt, destination) as small as possible
end if
PNC-based pair-to-pair packet transmissipfir — pairpezt
PaiT = PaiTnext

=

2.1. adjust time slot lengths iny, t12, t13 andts

— so that the capacity in each time slot is equal
2.2. inter-pair power optimization

— adjustP; of bottleneck long BR hop & neighbor pairs

— achieve equal capacity at bottleneck link & 2 neibghbokdin
2.3. intra-pair power optimization

— adjustP; in bottleneck short BR pair & neighbor pairs

— achieve equal capacity at bottleneck pair & 2 neibghbarsp
— § + increment in end-to-end capacity due to 2.1-2.3
end while

(=]

%

&

The idea behind BR unicast routing is to extend the well-
known greedy geographical routing algorithm [8], which is
known for its light-weight and fully distributed nature rfo the
point-to-point domain to the pair-to-pair domain. At eatdpsin
the iterative forwarding process, the algorithm looks farext-
hop pair between the two co-axial circles of radilssandds,
which is closest to the destination. The routing algorittsn a
sumes a relatively dense network, such that the search tatdyb
within a pair and the search for a next-hop pair of buddies can
succeed. If the network density does not meet such a desired
property, a hybrid route that combines pair-to-pair BR iyt
and traditional point-to-point routing can be resorted to.

We now take an overview of the complexity of the BR algo-
rithms, for application in a NanoNet. The iterative powdimme-
ment is based on simple computation and neighbor communica-
tion only. The TDMA MAC is known for its low overhead, when
compared to random access based protocols. The greedy geo-

In this section, we complete the design of a routing/MAC praraphical routing is stateless and of light weight. Howeoér

tocol suite, for applying Buddy Routing for unicast in mtiop
wireless networks consisting of extremely power constedithe-

taining and maintaining location information at hnanonoohesy
constitute a considerable overhead, if the NanoNet caneist

vices, as exampled by NanoNets and smart dust [9]. We descnibobile nodes. Our current design of BR is therefore more suit

the overall routing solution, as well as a tailored power A
optimization module in Sec. IV-A, and present simulatiosules
in Sec. IV-B.

able for a relatively static network environment. Lasthhile
the original proposal of PNC requires symbol level synchro-
nization and accurate estimation of channel state infdonat



such requirements are relaxed in the latest developmeatyat 15 (100Kbps)
chronous physical layer network coding [12].
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Fig. 13. BR Unicast. Top: throughput at each round. Bottohroughput
increase at each round. Note that the throughput improvefran round 1 to

o round 2, although very small, is not zero.
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1.5
. . . . . I v
Fig. 11. BR unicast based on pair-to-pair greedy geographiciting. 1 BR-OPT
212 EPP
. . . . . s PP-OPT
Fig. 11 depicts a multi-hop unicast route found by the BR uni- E
cast routing algorithm. We have further enhanced the dlyori i
in Table | with a number of extra functionalities. First, hetcase 3 o
that the last pair of buddies in the BR route (excluding thetide T
nation pair) is too close to the destination, it will be distsd and 03
replaced by a new pair with roughly equal distance to thamkest
tion and the previous pair. Second, we further implemertied t 0 e
planar face routing module [8] to enable the greedy geogcaph Network size
rO_Utmg algorithm to be abl_e tO_ route around a large area obid Fig. 14. BR Unicast, end-to-end throughput comparisorty wétrying network
wireless nodes, as shown in Fig. 12. sizes.
o - p_oint—to—point routing. The underlying reason for such inga
50 i simple yet fundamental: the BR gadget in Fig. 2 has twice the
160 : capacity of a point-to-point link, under equal nodal powaedb
0L e L o
10 ; get. Such a significant gain in throughput can well justify 8%
120 @) to 20% overhead in power consumption observed in Sec. IlI-C.
E 100 ] ¢
= 80 I’ 15
P s ay EBR
s e - BR-OPT
40 =" e & 1o | P
» /‘I I PP-OPT |
0 @ 0.9

0 50 100 150 200
(dm)

0.6

Throughput(100Kbps)

Fig. 12. BR unicast with Greedy Routing, with planar facetimyimplemented.
0.3

B. Smulation Results: BR Unicast

Fig. 13 depicts the effectiveness of the MAC optimization ’ 80 100 120 140 160
module in part 2 of Table I. In this set of simulatio80 nodes P
are deployed in the network, each with maximum Tx power of _ _ a _
1204 W. The end-to-end capacity of the BR route monotonical&fdggbvfe? Unicast, end-to-end throughput comparisorh warying maximum
increases, and stabilizes after five rounds. The incremez#c¢h '

rt(:und 'r? mo_re or Iesshrangoml;lagd :cs no;m_onot(_)mc. End-tb-en Fig. 15 shows a similar throughput comparison as in Fig. 14,
throughput is more than doubled after the iterative powsdM ;i varying maximum node power instead of varying network

optimization. . e S .
Fig. 14 compares the end-to-end throughput of BR with tratﬁlzes.'.A similar thrqughput gan 1s observed, which appeats
sensitive to the choice of the maximum node power.

tional point-to-point routing, both with and without MACylar
optimization, in networks of various sizes. The maximum pow
available for each node i20,W. Each throughput is computed V. BUDDY ROUTING: MULTICAST

as the average of five executions of the routing algorithnuesg ~ The pair-to-pair forwarding mechanism works well in a uni-
tion, over different network topologies. We can see thaidlgh- cast path, which does not have branches. Multicast models a
put of buddy routing after optimization is almost twice oétlof class of one-to-many data dissemination, where a commen dat




TABLE Il

BR MULTICAST ALGORITHM STRUCTURE
1. Geometric Steiner tree construction

find closest receiver te, t*

processed = {s,t*}

active =T — {t*}

while active # {} :
pick t from active, st. total distance frons
to two closest nodes iprocessed is minimum
letu, v be the two closet nodes processed to t
connect to w andv through the Fermat point
if u or v has degre8: remove fromprocessed set
active < active — {t}; processed < processed + {t}

end while

2. For each edge in multicast tree built in 1:
for each node: in tree:
if degree ofu is 2: identify pair
else identify triple

item of interest is to be transmitted to a group instead ohglei
destinationg.g., along a multicast tree. For multi-hop multicast
routing, a new challenge is to replicate a data packet froopan
stream node pair to more than one pairs, for supporting hiagc
in the multicast tree. A multicast branching gadget baseN@
has been designed accordingly. We introduce this multBRst
gadgetin Sec. V-A, apply it to design BR multicast algorithim
Sec. V-B, and perform simulation evaluations in Sec. V-C.

A. The Multicast BR Gadget

aiXi+azXxe
avarage ) apply BR unicast algori.th.ms Tor routing between two ends.
asxq @ | 3. Iterative MAC layer optimization |
200 @ @
\"[/9519 /@3 _‘_@57
Fig. 16. PNC gadget for simultaneously group-to-multitgrdransmission, for 150 - (%"
BR multicast. -
~ ®
. . . 5 100 @45
As shown in Fig. 16, At each branching node, who has i
two downstream neighbor buddy pairs, we disseminate thee dat . BN
packet to three nodes in a collaborating group, two of whizép @m,»@n BTG 4
sessing the entire packet;(andz-), a third possessing half of @ 4670 @)
0

the packet{,). Precoding is performed at each node as illus- 0 S
trated, such that the following signal alignment [7] at thge hode

of each node Rx pairis achieved: Fig. 17. BR Multicast with geographic tree constructione¢a-three multicast.

hi1al + harasz + hzias = hi1az + haiay
hiial + hh a3 + hiias = hijas + hbjaq

algorithm, in Step 1 of Table Il. There a$60 nodes in Fig. 17,
For successfully align the perceived directionsand z» at and600 nodes in Fig. 18. 2-node group is_conne_cte_d into aline
both the top and bottom pairs simultaneously, we need at le§€9ment, @-node group at each branching point is connected

5 precoding variables, for the two equations above to have solnt0 @ triangle.

tions. Consequently, 3:node group is required at each branch- The BR multicast algorithm also contains an iterative MAC
ing point in the multicast tree. optimization module, after routing is performed. Tx powada

time slot lengths are adjusted for improving end-to-endivast
, , throughput. The operations here are similar to that in theast
B. BRAIgorithms: Multicast case. The main difference is that at a branching node group in
The BR multicast algorithms are summarized in Table Il. Wihe multicast tree, neighboring node pairs/triples aloiffgrént
design a two-tier solution, where a geometric multicast it branches of the tree are taken into consideration, wherstatu
gorithm computes the multicast tree topology at the higlellevpower and time slot lengths.
(Step 1), then the BR unicast algorithm from Table | is applie
at each tree branch for data forwarding (Step 2). An itegativ. )
power/MAC optimization module (Step 3) then follows, sianil C: Smulation Results
to the unicast case. Fig. 19 shows the end-to-end multicast throughput increase
The geometric Steiner tree algorithm starts by including twduring each round of the MAC layer optimization. Three out of
multicast terminals in the tree, then expands the tree onmertal 900 nodes in the network are multicast terminals. The maximum
at a time: a new terminal with shortest total distance to e t power available at each nodelig0W. A similar trend to that in
minals in the tree is selected, and connected using a loemle3t the unicast case is observed: the multicast throughputizesh
tree. The algorithm stops when all multicast terminals ane ¢ after a small number of rounds. The multicast throughputanon
ered by the tree. The algorithm guarantees that each note intonically increases during the optimization, althoughahsunt
tree has degree at mdsttherefore the one-to-two branching caef improvement in each round is not monotonic.
pability of the multicast gadget in Fig. 16 is always suffitie Fig. 20 shows the comparison of end-to-end multicast thineug
Fig. 17 (one-to-three multicast) and Fig. 18 (one-to-twdtmu put between BR multicast and point-to-point multicasthheith
cast) show the multicast trees built by the geometric Steiee and without MAC layer optimization. The maximum power
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Fig. 21. BR multicast: end-to-end throughput comparisoth \wdint-to-point
Fig. 18. BR Multicast with geometric tree construction, g4adwo multicast in ~ Schemes, under different maximum Tx power.
a network with large void.

(100Kbps) are900 nodes in the network, with three multicast terminals.
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0.8

# of Iterations

0.6

Throughput(100Kbps)

0.5

0.2
0
1 2 3 4 5 6
# of Iterations 0 I

Fig. 19. BR Multicast. Top: throughput at each round. Bottadhroughput
increase at each round. Fig. 22. BR Multicast, end-to-end throughput comparisothwgrowing multi-
cast group size.

Throughput Increment

w

5 7
# of Terminals

available at each node i$0uW. The number of terminals i3. Fig. 22 is throughput comparison with varying sizes of the
Network size varies frori50 to 950 nodes. Each data point is themulticast group. There a0 nodes in this network. The maxi-
average of five simulation runs. We can see that the througifipumum power available at each nodd &y W. An increase in the
BR multicast is close to twice of that of point-to-point maétst, number of multicast receivers, in the same network envirmmn
and that the MAC layer optimization significantly improvéet usually leads to a decrease in achievable multicast thimutgh
achievable throughput, through (a) mitigating interfereat bot- since the multicast tree involves more branches that in@nem
tleneck links, and (b) intelligently adjusting Tx time slehgths. severe interference. Nonetheless, in each case, BR nuiltian
Achievable multicast throughput appears to slightly imse2as still manage to achieve roughly twice the throughput of ptin
the network size grows, since more nodes in the network ipeint multicast.

plies better choices are possible for tree constructionrarte

pair/triple formation. VI. CONCLUSION

Fig. 21 shows a similar comparison of multicast throughput, Ney wireless sensor networks with extremely small and power

but under varying maximum Tx power instead of varying néfmjteq devices, exampled by the NanoNet, are envisiongthip
worksize. The throughputof BR multicastis roughly, SOmets 5 imortant role in our future lives. We proposed a new rauti

even higher than, twice of that of point-to-point routinghefe paradigm tailored for such type of networks, Buddy RoutiBg.
groups weak wireless nodes into groups for collaborativta da
forwarding, based on a recent technique of physical layer ne

Py work coding. By paying a moderate price in energy efficiency
2 %Eg*’” ] (energy consumed in per bit end-to-end transmission), B ha
1 I rp-oPT 1 a potential to break through the nodal power limit in Nana\et

substantially improving the unicast and multicast thrqughas
verified by our theoretical analysis and simulation results

Throughput(100Kbps)
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