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Abstract—NanoNets are networks of nanomachines at extremely
small dimensions, on the order of nanometers or micrometers. Re-
cent advances in physics and engineering have made basic comput-
ing and communication feasible on nanomachines, and NanoNets
are envisioned as an important emerging technology with broad
future applications. Traditional networking solutions require sig-
nificant modifications for application in NanoNets. In this paper,
we focus on routing algorithm design in NanoNets. Based on the
salient features of a NanoNet, including low node cost and very low
available power, we propose a new routing paradigm for unicast
and multicast data transmission in NanoNets. Our design, termed
Buddy Routing (BR), is enabled by latest advancements in physical
layer network coding, and argues for pair-to-pair data forwarding
in place of traditional node-to-node data forwarding. Through both
analysis and simulations, we compare BR with point-to-point rout-
ing, in terms of raw throughput, error rate, energy efficiency, and
protocol overhead, and show the advantages of BR in NanoNets.

I. I NTRODUCTION

NanoNetworks represent an emerging type of wireless sensor
networks consisting of nanonodes — wireless nodes at extremely
small form factors, on the order of micrometers or nanometers.
This work aims to present the first routing/MAC protocol design
tailored for multi-hop NanoNets, by utilizing physical layer net-
work coding (PNC) for pair-to-pair routing that break through
the frugal nodal power limitation at nanonodes.

As shown in Fig. 1, the structure of a nanonode resembles that
of a wireless sensor node to a great extent. Recent advances in
physics and engineering technologies have made it possibleto
manufacture storage, processor, radio antenna and power supply
at the nano-scale [1], [2]. For example, a typical nanotube based
transmitter has a volume of3.9×104 nm3 [3]. Electromagnetic
communication between nanonodes can be enabled by either fre-
quency modulation or phase modulation. Such invisibly small
nanonodes can be easily attached to everyday objects or human
bodies, for sensing antigen molecules, the immune system, or
other physical parameters of interest.

Compared with a wireless mesh network and a ‘regular’ wire-
less sensor network, a NanoNet has a number of salient fea-
tures. Nanotube radiation is at Terahertz domain, leading to
wavelengths on the order of0.1 mm, and usually travels in line-
of-sight fashion. Nano-processors, nano-tranceivers andnano-
power supply are usually of orders of magnitude weaker than
their counterparts in wireless mesh networks. Due to limitations
in nano-battery technologies, power supply is weak and short-
lived, e.g., providing current at45µA per cm2·µm, and requir-
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Fig. 1. The architecture of a nanonode.

ing periodical recharges [1], [4]. Consequently, direct nano com-
munication can only happen in very short distances, and at very
low rates. In short, NanoNets present an entirely new network-
ing paradigm that invites radical revolutions in networking so-
lutions, including error detection/correction, routing and MAC
algorithms [5].

By grouping nodes into collaborating pairs, pair-to-pair for-
warding can breakthrough the fundamental nodal power con-
straint, enhancing the communication range and rate of nanon-
odes, and is therefore a promising paradigm for explorationin
routing algorithm design for NanoNets. Such routing algorithms
are best coupled with a simple MAC algorithm, such as TDMA,
so that execution on nano processors does not become a bottle-
neck.

Collaborative data forwarding among paired nanonodes can
be enabled by two different physical layer techniques: am-
plify&forward (A&F), or physical layer network coding (PNC)
[6]. A detailed comparison between the two, in terms of error
rate and capacity, is provided in Sec. II. We choose PNC for its
potential in higher communication rate. PNC is a recent technol-
ogy that views the overlap of analog signals in the air as linear
combination of source signals. PNC based mapping and demod-
ulation can be applied to decode for a digital version of the linear
combination [6], [7].

Fig. 2 illustrates how PNC can enable pair-to-pair data for-
warding that underlies our proposal of Buddy Routing (BR). As-
sume the source packetx for transmission is broken into two
equal-length sub-packetsx1 andx2. We pair up each of the Tx
node and Rx node with a nearby ‘buddy’ node. The Tx node
sharesx1 with its buddy, through a short intra-pair transmis-
sion. Next, the two Tx nodes simultaneously transmitx1 and
x2 respectivvely to the two Rx nodes, such that their signals are
aligned at the buddy node (N1) in the Rx pair, which performs
PNC to demodulatex1 + x2, and forwards it to the Rx node
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Fig. 2. Pair-to-pair based buddy forwarding enabled by PNC.Precoding is
performed at the Tx pair, for signal alignment at N1:h11a1 = h21a2. Herehij

is a complex number charactering channel fading from a node in the Tx pair to a
node in the Rx pair, which includes amplitude attenuation and phase shift.

(N2). The Rx node can recover the original packetx from the
analog signal it receives,h12a1x1 + h22a2x2, and the encoded
packet from its buddy,x1 + x2, e.g., through an adapted version
of Maximum-Likelihood (ML) decoding [7]. Higher communi-
cation rate is targeted for data sharing within each pair, with a
higher modulation rate. For example, BPSK modulation can be
applied for the inter-pair transmission, and 16QAM for intra-pair.

Our main proposal, Buddy Routing (BR), is a PNC-enabled
pair-to-pair routing solution, coupled with a tailored andstream-
lined TDMA MAC for simplicity and efficiency. The design of
BR targets both unicast and multicast applications. For thelatter,
a multicast gadget enabled by PNC will be designed and utilized
(Sec. V, Fig. 16). We design and present the pipeline operation
for data forwarding along a BR route. Through theoretical anal-
ysis, we obtain insights on the effect of key parameter selection
on the performance of BR. We extend the geographical greedy
routing algorithm [8] to its pair-to-pair forwarding version, for
computing a BR unicast route. Iterative MAC layer optimization,
over both Tx power at nanonodes and lengths of time slots in the
TDMA MAC are refined, for mitigating bottleneck interference
and end-to-end capacity improvement. Simulation results verify
the theoretical analysis that BR has a potential to substantially
improve the end-to-end throughput of traditional point-to-point
routing.

We further extend the solution design from multi-hop uni-
cast to multi-hop multicast, by designing a pair-forwarding based
multicast tree construction algorithm, and adapting the iterative
MAC optimization algorithm from a unicast path to a multicast
tree. A two fold increase in multicast throughput is observed in
large scale network simulations.

To our knowledge, BR represents the first multi-hop routing
algorithm design for NanoNets, as well as the first such algo-
rithm that leverages PNC in collaborative multi-hop routing. We
believe that BR has a potential to breakthrough the power sup-
ply bottleneck in NanoNets andsmart dust [9] that are formed of
extremely small and extremely weak wireless nodes, especially
when coupled with a simple and efficient MAC protocol, such as
TDMA.

II. ENABLING BUDDY ROUTING: PNCvs.
AMPLIFY&FORWARD

The pair-to-pair forwarding gadget depicted in Fig. 2, underly-
ing the idea of Buddy Routing, can be enabled by either PNC or
Amplify&Forward (A&F). A number of virtual MIMO forward-
ing schemes recently proposed are in essence based on A&F-
enabled collaboration [10], [11]. The main difference between

PNC and A&F lies in the intra-pair transmission to the Rx node
from its buddy: in PNC, the Tx buddy transmits a digital ver-
sion ofx1 + x2; in A&F, it transmits an amplified version of the
received analog signalh11a1x1 + h21a2x2.

In this section, we compare these two enabling technologiesin
terms of multi-hop throughput potential (II-A), single-hop BER
(II-B), and protocol overhead.

A. PNC vs. A&F: Multi-hop Buddy Routing
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Fig. 3. BR transmission in a multi-hop unicast route enabledby PNC

Fig. 3 shows the pipeline operation of a multi-hop route based
on pair-to-pair forwarding, enabled by PNC. Except at the source
pair, there is no need for half-packet sharing in subsequentbuddy
pairs for subsequent pair-to-pair transmission. The top receiver
has already demodulated a digital half-packet (labeled in figure)
that can be directly used. As a result, all short hop (intra-pair)
transmissions can happen simultaneously along the entire BR
route, without incurring severe interference.
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Fig. 4. BR Transmissions in a multi-hop unicast route enabled by A&F.

In contrast, Fig. 4 depicts the pipeline operation of a BR route
enabled by A&F. We highlight that, in order to prepare for the
pair-to-pair transmission, intra-pair sharing of a half-packet is re-
quired at each hop. This is an extra step of transmission thatdoes
not exist in the PNC-enabled BR route. As a result, an extra time
slot is required for scheduling such intra-pair half-packet sharing,
leading to a lower end-to-end data throughput.

B. PNC vs. A&F: One-hop BER

We first analyze the BER performance of PNC, and then com-
pare with the BER of A&F. We ignore the BER for the Tx node
to sharex1 with its buddy, since it is the same for both schemes,
and is relatively small, due to the short distance.

1) BER of PNC: For the one-hop gadget in Fig. 2, the BER
performance of PNC can be analyzed in two phases. In phase
one, we study the BER atN1, for decodingx1+x2. In phase
two, we study the BER atN2 for decodingx1 andx2, assuming
an adapted version of Maximum-Likelihood (ML) detection [7].
BER at N1. N1 can demodulatex1+x2 by applying ML de-
tection and PNC mapping. Letc = x1 + x2 which is in the
{−2, 0, 2}domain according to PNC mapping under BPSK mod-
ulation. Letci and ck be two possible transmit vectors, with
i, k ∈ {1, 2, 3} being indices to{−2, 0, 2}. Assumeci is re-
ceived, the probability thatN1 incorrectly outputsck is:

Pr(ci → ck) = Q

(
√

d2ik
2σ2

PNC−SA

)

= Q

(

√

λikρ1
2

)

,



whereλik = (ci − ck)
T (ci − ck), andρ1 is the received SNR

at N1. FunctionQ computes the area under the tail of a Gaussian
PDF.

The ternary values in{−2, 0, 2} appear inc with probabilities
of: c1 = −2 : 25%, c2 = 0 : 50%, c3 = 2 : 25%, assuming0
and1 are equally possibile to appear in the original data packet.
Pr(ci → ck) = 0 when bothci andck are in(±2,±2)T . In
other words, judging−2 to be+2 or vice versa does not lead to
an error inx1 + x2. N1 wishes to demodulate the digital bits
x1 + x2. The average vector error probability, which is also the
bit error rate, forx1 + x2 is

Prs(x1 + x2) = Prb(x1 + x2)

= 2P (c1)Pr(c1 → c2) + P (c2)
∑

i6=2

Pr(c2 → ci)

BER at N2. We apply adapted ML, a detection scheme tailored
for collaborating PNC receivers recently proposed by us [7], to
decodex1 andx2. Before applying the normal min-distance cri-
terion in ML, it first filters out the enumerated vectors that are
not in agreement with the known values forx1+x2, to reduce the
computational complexity. Using 16QAM modulation, there are
16 such vectors, with dimension2 × 1. x̃i andx̃k are two dis-
tinct vector among the sixteen. LetΛc andΛw denote the events
that N2 receives the correct and wrong data inx1 + x2 fromN1,
respectively. The average vector error probability whenx1 + x2

is correct is

Prs(x̃|Λc) =
1

16

16
∑

i=1

16
∑

k=1k 6=i

Q

(
√

λ′
ikρ2

10

)

.

Hereλ′

ik = (x̃i − x̃k)
T (x̃i − x̃k), ρ2 is the received SNR at

node 2. In the constellation graph with ML decoding, when noise
exceeds the decision threshold, only 1 bit will be in error. Thus,
the approximate BER can be computed as

Prb(x̃|Λc) ≈ Prs(x̃|Λc)/4

We next analyze the case thatx1+x2 transmitted fromN1
contains error. We havePrb(x̃) = Prb(x̃|Λc)Prb(Λc) +
Prb(x̃|Λw)Prb(x1+x2). When information fromN1 is wrong,
N2 outputs a wrong vector with probability1, i.e.,Prb(x̃|Λw) =
1. Therefore the vector error rate of the overall PNC-based
scheme is

Prb(x̃) = Prb(x̃|Λc)(1− Prb(x1 + x2)) + Prb(x1 + x2).

2) BER of Amplify&Forward: The analysis of BER perfor-
mance for A&F with ML detetion is similar to that of a basic
2 × 2 MIMO link. N2 can decodex1 andx2 after receiving the
amplified signal fromN1. The vector error rate of A&F is:

Prs(A&F ) =
1

4

4
∑

i=1

4
∑

k=1k 6=i

Q

(
√

λ′′
ikρ

2

)

,

whereλ′

ik = (x̃i − x̃k)
T (x̃i − x̃k), x̃i andx̃k are two possible

spatial source vectors andi, k ∈ {1, . . . , 4}. ρ is SNR at the
receiver side. Then the BER of A&F can be approximated as:

Prb(A&F ) ≈ Prb(A&F )/2.

During joint ML decoding atN1, two SNR values are involved,
the SNR for the pair-to-pair transmission, and the SNR to receive
the amplified signal. Correspondingly, we plot two BER lines
in the simulation: ‘A&F-upper’ assumes the pair-to-pair BER,
‘A&F’ assumes the average of the two SNR values.

3) Simulation result of BER : Fig. 5 shows the simulation
results based on the BER analysis of PNC and A&F. We can
observe that the BER of PNC is almost the same as but slightly
worse than that of A&F, under the same SNR at the receiver side.
A small price in BER is paid by the PNC scheme, for involving
two steps of demodulation.
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Fig. 5. PNCvs. virtual MIMO, ignoring error in collaborative steps.

To conclude, A PNC-enabled BR route and an A&F enabled
BR route have comparable BER performance, while the former
leads to a more efficient pipeline operation and a higher end-
to-end throughput. In the rest of the paper, we focus on PNC
as the enabling technology of BR routing. While the original
proposal of PNC requires an extra overhead in symbol-level node
synchronization, recent advances show that asynchronous PNC
with only packet-level synchronization (required in the TDMA
MAC underlying both PNC-based and A&F based schemes) can
achieve similar performance, especially when channel coding is
appropriately designed [12].

III. T HEORETICAL ANALYSIS

A. System model and parameters

We consider a multi-hop BR route as shown in Fig. 6. Let
d1 = αd2, P1 = βP2. For ease of analysis, we assume in this
section that the distanced1 of each pair-to-pair hop is the same,
and the inter-node distanced2 is the same in each pair.

We can synchronize nodes in the network, and schedule two
types of time slots: long slots and short slots. In each long
time slot, the long hop pair-to-pair transmissions happen simul-
taneously every three hops, for mitigating interference (follow-
ing the two-hop interference range in the protocol interference
model [13]). Therefore, three long time slots are required:t11,
t12 and t13. Every (3k + 1)-st long hop transmits in slott11,
every(3k + 2) − nd long hop transmits in slott12, and every
(3k+3)-rd long hop transmits in slott13. During short time slot
t2, all the intra-pair short hops transmit simultaneously.

P2 d2

P1 d1

t11 t11t12 t13

t2

t12

t2 t2 t2 t2

Fig. 6. BR System Model.



B. The Capacity of A BR Route

To analyze the end-to-end routing capacity of a BR route, we
first computeSNRshort andSNRlong, BER values in the short
and long transmissions, respectively.

Assume the path loss factor is 3, and the distance between a
wireless Tx node and Rx node isd. Then the power available
at the receiving antenna can be expressed by the power for the
transmitting antenna and distance, which isPr = Pt/d

3. Con-
sidering interference from immediate neighboring pairs along the
BR path, the SNR of the short hop can be approximated as:

SNRshort =
P1/d

3
1

σ2 + 2× P1/d32
(1)

Hereσ2 is the intensity of additive white Gaussian noise. Con-
sidering interference from the closest two pairs that transmit con-
currently in the BR TDMA scheme, the SNR of the long hop can
be approximated as:

SNRlong =
2× P2/d

3
2

σ2 + 2× P2/(2d2)3
(2)

According to the Shannon-Hartley Theorem, the capacity of a
wireless linkl is

Cl = Bl log2(1 + SNRl),

whereCl is the channel capacity inbps andBl is the bandwidth
of the channel in hertz. The capacity of ak-hop BR route is
the bottleneck capacity among all the long (inter-pair) andshort
(intra-pair) transmissions, at each hopi:

CBR = min{Clong−i, Cshort−i|1 ≤ i ≤ k}

Capacity at very high SNR.We first simulate the BR route ca-
pacity with noise ignored. Fig. 7 shows that the BR route ca-
pacity decreases whend1/d2 > 0.39. On the other hand, the
ratio betweenP1 andP2 has no significant effect on the capac-
ity. In this set of simulations,B = 100KHz, P2 = 100µW,
d2 = 50dm.
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Fig. 7. BR route capacity with different values forP1/P2 andd1/d2.

Without background noise, with constantP2 andd2, inter-pair
link capacity is constant and does not depend onP1/P2. When
α = d1/d2 < 0.39, the bottleneck of the BR route lies in the

inter-pair transmissions. Whenα > 0.39, the bottleneck be-
comes the intra-pair links, whose capacity decreases asd1 in-
creases.

Capacity with noise considered.We next simulate the capacity
of a BR route with noise considered. Fig. 8 shows a decreasing
trend of the BR route capacity as noise grows. In this set of
simulations, noise intensity varies from0 to 4 × 10−6W , P2 =
100µW, d2 = 50dm, d1 = 5dm. The bottleneck resides in the
inter-pair transmissions, and changes inβ = P1/P2 has no affect
on capacity.
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The short hop becomes a bottleneck whenSNRshort <
SNRlong. Substituting (1) and (2) into this inequality, we ob-
tain the equivalent condition of

σ2 < γ, andα < (
β

2
)1/3;

or σ2 > γ, andα > (
β

2
)1/3,

whereγ =
(16−α−3)

P2

d3
2

4α−3
−

8

β

.

For the simulations in Fig. 9,σ2 varies from0 to 4× 10−7W ,
P2 = 100µW, d2 = 50dm,d1 = 30dm. Under such parameter
settings, the bottleneck switches to the intra-pair links.Overall
BR capacity decreases gradually as the noise level escalates.
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Fig. 9. Capacity with the effect of noise,α = 0.6. BR route bottleneck exists
in intra-pair links,P1/P2 is relevant.

From Fig. 9, we can see the asP1 increases, the BR route ca-
pacity increases. However, for the same amount of information



routed, the total power consumption along the entire BR route
increases. We therefore face a fundamental tradeoff between ca-
pacity and energy efficiency.

C. Power Consumption: BR vs. Point-to-Point Routing

Next, we compare the energy consumption, for routing the
same amount information, between Buddy Routing and tradi-
tional point-to-point schemes. Again, we assume that BPSK and
16QAM are selected for modulation in the long and short BR
transmissions, respectively. For point-to-point routing, a single
node relays the data packet at each hop, using BPSK modula-
tion. Let t be the time duration for one antenna to transmit one
packet with BPSK modulation, andk be the number of (long)
hops from the source to the destination. At each hop, the energy
consumption ratio between BR and point-to-point routing is

2P2
t
2 + 2P1

t
8

P2t
= 1 +

P1

4P2

The ratio of total energy consumption along the entire routeis

k(2P2
t
2 ) + (k + 1)(P1

t
8 )

kP2t
= 1 +

(k + 1)P1

8kP2

Fig. 10 plots the energy consumption ratio computed above,
with P2 = 100µW, d1 = 5dm, α = 0.1, d2 = 50dm;
k = [2, 4, 8, 12, 30, 50, 100] (each corresponding to a line in
the figure). The energy consumption ratio decreases whenP1

is smaller, while the value ofk doesn’t have a great influence on
the ratio. Overall, the extra power consumption overhead caused
by BR is mostly below 20%, and further decreases to below 5%
whenP1/P2 < 0.5. Such a comprise can be well justified by the
potential capacity gain of a factor of2.
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IV. BUDDY ROUTING: UNICAST

In this section, we complete the design of a routing/MAC pro-
tocol suite, for applying Buddy Routing for unicast in multi-hop
wireless networks consisting of extremely power constrained de-
vices, as exampled by NanoNets and smart dust [9]. We describe
the overall routing solution, as well as a tailored power andMAC
optimization module in Sec. IV-A, and present simulation results
in Sec. IV-B.

A. The BR Algorithms for Unicast

Table I presents the algorithms for BR unicast. Hererb (radius
of smallest circle in Fig. 11) is the maximum distance between a
pair of buddy nodes,rmin (medium circle) andrmax (large cir-
cle) are the minimum and maximum allowed distances between
two neighbor buddy pairs, respectively.

TABLE I
BR UNICAST ALGORITHMS: ROUTING & MAC O PTIMIZATION

1. Pair-to-pair greedy geographic unicast routing
find closest neighboru of source
pair = {source, u}
while destination/∈ pair do

if dist(pair, destination) ≤ rmax:
find closest neighborv of destination
pairnext = {destination, v}

else:
find pairnext, such thatrmin ≤ dist(pair, pairnext) ≤ rmax

anddist(pairnext, destination) as small as possible
end if
PNC-based pair-to-pair packet transmission:pair → pairnext

pair = pairnext

end while
2. Iterative MAC layer optimization
δ ← 1
while δ > ǫ:

2.1. adjust time slot lengths int11, t12, t13 andt2
— so that the capacity in each time slot is equal

2.2. inter-pair power optimization
— adjustP2 of bottleneck long BR hop & neighbor pairs
— achieve equal capacity at bottleneck link & 2 neibghbor links

2.3. intra-pair power optimization
— adjustP1 in bottleneck short BR pair & neighbor pairs
— achieve equal capacity at bottleneck pair & 2 neibghbor pairs

— δ ← increment in end-to-end capacity due to 2.1-2.3
end while

The idea behind BR unicast routing is to extend the well-
known greedy geographical routing algorithm [8], which is
known for its light-weight and fully distributed nature, form the
point-to-point domain to the pair-to-pair domain. At each step in
the iterative forwarding process, the algorithm looks for anext-
hop pair between the two co-axial circles of radiusd3 andd2,
which is closest to the destination. The routing algorithm as-
sumes a relatively dense network, such that the search for a buddy
within a pair and the search for a next-hop pair of buddies can
succeed. If the network density does not meet such a desired
property, a hybrid route that combines pair-to-pair BR routing
and traditional point-to-point routing can be resorted to.

We now take an overview of the complexity of the BR algo-
rithms, for application in a NanoNet. The iterative power refine-
ment is based on simple computation and neighbor communica-
tion only. The TDMA MAC is known for its low overhead, when
compared to random access based protocols. The greedy geo-
graphical routing is stateless and of light weight. However, ob-
taining and maintaining location information at nanonodesmay
constitute a considerable overhead, if the NanoNet consists of
mobile nodes. Our current design of BR is therefore more suit-
able for a relatively static network environment. Lastly, while
the original proposal of PNC requires symbol level synchro-
nization and accurate estimation of channel state information,



such requirements are relaxed in the latest developments ofasyn-
chronous physical layer network coding [12].
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Fig. 11. BR unicast based on pair-to-pair greedy geographical routing.

Fig. 11 depicts a multi-hop unicast route found by the BR uni-
cast routing algorithm. We have further enhanced the algorithm
in Table I with a number of extra functionalities. First, in the case
that the last pair of buddies in the BR route (excluding the desti-
nation pair) is too close to the destination, it will be discarded and
replaced by a new pair with roughly equal distance to the destina-
tion and the previous pair. Second, we further implemented the
planar face routing module [8] to enable the greedy geographic
routing algorithm to be able to route around a large area voidof
wireless nodes, as shown in Fig. 12.

0 50 100 150 200

0

20

40

60

80

100

120

140

160

180

200

 1

 22

 106  64

 34

 306

 129

 2

(dm)

(d
m
)

Fig. 12. BR unicast with Greedy Routing, with planar face routing implemented.

B. Simulation Results: BR Unicast

Fig. 13 depicts the effectiveness of the MAC optimization
module in part 2 of Table I. In this set of simulations,700 nodes
are deployed in the network, each with maximum Tx power of
120µW. The end-to-end capacity of the BR route monotonically
increases, and stabilizes after five rounds. The increment in each
round is more or less random, and is not monotonic. End-to-end
throughput is more than doubled after the iterative power/MAC
optimization.

Fig. 14 compares the end-to-end throughput of BR with tradi-
tional point-to-point routing, both with and without MAC layer
optimization, in networks of various sizes. The maximum power
available for each node is120µW. Each throughput is computed
as the average of five executions of the routing algorithm in ques-
tion, over different network topologies. We can see that through-
put of buddy routing after optimization is almost twice of that of
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Fig. 13. BR Unicast. Top: throughput at each round. Bottom: throughput
increase at each round. Note that the throughput improvement from round 1 to
round 2, although very small, is not zero.
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Fig. 14. BR Unicast, end-to-end throughput comparison, with varying network
sizes.

point-to-point routing. The underlying reason for such a gain is
simple yet fundamental: the BR gadget in Fig. 2 has twice the
capacity of a point-to-point link, under equal nodal power bud-
get. Such a significant gain in throughput can well justify the 5%
to 20% overhead in power consumption observed in Sec. III-C.
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Fig. 15. BR Unicast, end-to-end throughput comparison, with varying maximum
node power.

Fig. 15 shows a similar throughput comparison as in Fig. 14,
with varying maximum node power instead of varying network
sizes. A similar throughput gain is observed, which appearsnot
sensitive to the choice of the maximum node power.

V. BUDDY ROUTING: MULTICAST

The pair-to-pair forwarding mechanism works well in a uni-
cast path, which does not have branches. Multicast models a
class of one-to-many data dissemination, where a common data



item of interest is to be transmitted to a group instead of a single
destination,e.g., along a multicast tree. For multi-hop multicast
routing, a new challenge is to replicate a data packet from anup-
stream node pair to more than one pairs, for supporting branching
in the multicast tree. A multicast branching gadget based onPNC
has been designed accordingly. We introduce this multicastBR
gadget in Sec. V-A, apply it to design BR multicast algorithms in
Sec. V-B, and perform simulation evaluations in Sec. V-C.

A. The Multicast BR Gadget
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Fig. 16. PNC gadget for simultaneously group-to-multi-group transmission, for
BR multicast.

As shown in Fig. 16, At each branching node, who has
two downstream neighbor buddy pairs, we disseminate the data
packet to three nodes in a collaborating group, two of which pos-
sessing the entire packet (x1 andx2), a third possessing half of
the packet (x1). Precoding is performed at each node as illus-
trated, such that the following signal alignment [7] at the top node
of each node Rx pair is achieved:

{

h11a1 + h21a3 + h31a5 = h11a2 + h21a4
h′

11a1 + h′

21a3 + h′

31a5 = h′

11a2 + h′

21a4

For successfully align the perceived directionsx1 andx2 at
both the top and bottom pairs simultaneously, we need at least
5 precoding variables, for the two equations above to have solu-
tions. Consequently, a3-node group is required at each branch-
ing point in the multicast tree.

B. BR Algorithms: Multicast

The BR multicast algorithms are summarized in Table II. We
design a two-tier solution, where a geometric multicast tree al-
gorithm computes the multicast tree topology at the high level
(Step 1), then the BR unicast algorithm from Table I is applied
at each tree branch for data forwarding (Step 2). An iterative
power/MAC optimization module (Step 3) then follows, similar
to the unicast case.

The geometric Steiner tree algorithm starts by including two
multicast terminals in the tree, then expands the tree one terminal
at a time: a new terminal with shortest total distance to two ter-
minals in the tree is selected, and connected using a local Steiner
tree. The algorithm stops when all multicast terminals are cov-
ered by the tree. The algorithm guarantees that each node in the
tree has degree at most3, therefore the one-to-two branching ca-
pability of the multicast gadget in Fig. 16 is always sufficient.

Fig. 17 (one-to-three multicast) and Fig. 18 (one-to-two multi-
cast) show the multicast trees built by the geometric Steiner tree

TABLE II
BR MULTICAST ALGORITHM STRUCTURE

1. Geometric Steiner tree construction
find closest receiver tos, t∗

processed = {s, t∗}
active = T − {t∗}
while active 6= {} :

pick t from active, s.t. total distance fromt
to two closest nodes inprocessed is minimum
let u, v be the two closet nodes inprocessed to t
connectt to u andv through the Fermat point
if u or v has degree3: remove fromprocessed set
active← active− {t}; processed← processed+ {t}

end while
2. For each edge in multicast tree built in 1:

for each nodeu in tree:
if degree ofu is 2: identify pair
else: identify triple

apply BR unicast algorithms for routing between two ends.
3. Iterative MAC layer optimization
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Fig. 17. BR Multicast with geographic tree construction, one-to-three multicast.

algorithm, in Step 1 of Table II. There are950 nodes in Fig. 17,
and600 nodes in Fig. 18. A2-node group is connected into a line
segment, a3-node group at each branching point is connected
into a triangle.

The BR multicast algorithm also contains an iterative MAC
optimization module, after routing is performed. Tx power and
time slot lengths are adjusted for improving end-to-end multicast
throughput. The operations here are similar to that in the unicast
case. The main difference is that at a branching node group in
the multicast tree, neighboring node pairs/triples along different
branches of the tree are taken into consideration, when adjusting
power and time slot lengths.

C. Simulation Results

Fig. 19 shows the end-to-end multicast throughput increase
during each round of the MAC layer optimization. Three out of
900 nodes in the network are multicast terminals. The maximum
power available at each node is160µW. A similar trend to that in
the unicast case is observed: the multicast throughput stabilizes
after a small number of rounds. The multicast throughput mono-
tonically increases during the optimization, although theamount
of improvement in each round is not monotonic.

Fig. 20 shows the comparison of end-to-end multicast through-
put between BR multicast and point-to-point multicast, both with
and without MAC layer optimization. The maximum power
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Fig. 18. BR Multicast with geometric tree construction, one-to-two multicast in
a network with large void.

0 1 2 3 4 5 6
0

0.5

1

1.5

# of Iterations

T
h

ro
u

g
h

p
u

t

1 2 3 4 5 6
0

0.5

1

# of Iterations

T
h

ro
u

g
h

p
u

t 
In

cr
e

m
e

n
t

(100Kbps)

Fig. 19. BR Multicast. Top: throughput at each round. Bottom: throughput
increase at each round.

available at each node is160µW. The number of terminals is3.
Network size varies from750 to950 nodes. Each data point is the
average of five simulation runs. We can see that the throughput of
BR multicast is close to twice of that of point-to-point multicast,
and that the MAC layer optimization significantly improves the
achievable throughput, through (a) mitigating interference at bot-
tleneck links, and (b) intelligently adjusting Tx time slotlengths.
Achievable multicast throughput appears to slightly increase as
the network size grows, since more nodes in the network im-
plies better choices are possible for tree construction andnode
pair/triple formation.

Fig. 21 shows a similar comparison of multicast throughput,
but under varying maximum Tx power instead of varying net-
work size. The throughput of BR multicast is roughly, sometimes
even higher than, twice of that of point-to-point routing. There
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Fig. 20. BR multicast: end-to-end multicast throughput comparison with point-
to-point schemes, under different network sizes.
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Fig. 21. BR multicast: end-to-end throughput comparison with point-to-point
schemes, under different maximum Tx power.

are900 nodes in the network, with three multicast terminals.
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Fig. 22. BR Multicast, end-to-end throughput comparison with growing multi-
cast group size.

Fig. 22 is throughput comparison with varying sizes of the
multicast group. There are900 nodes in this network. The maxi-
mum power available at each node is160µW. An increase in the
number of multicast receivers, in the same network environment,
usually leads to a decrease in achievable multicast throughput,
since the multicast tree involves more branches that incur more
severe interference. Nonetheless, in each case, BR multicast can
still manage to achieve roughly twice the throughput of point-to-
point multicast.

VI. CONCLUSION

New wireless sensor networks with extremely small and power
limited devices, exampled by the NanoNet, are envisioned toplay
an important role in our future lives. We proposed a new routing
paradigm tailored for such type of networks, Buddy Routing.BR
groups weak wireless nodes into groups for collaborative data
forwarding, based on a recent technique of physical layer net-
work coding. By paying a moderate price in energy efficiency
(energy consumed in per bit end-to-end transmission), BR has
a potential to break through the nodal power limit in NanoNets,
substantially improving the unicast and multicast throughput, as
verified by our theoretical analysis and simulation results.
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