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Abstract—Data center networks are characterized by high
link speeds, low propagation delays, small switch buffers, and
temporally clustered arrivals of many concurrent TCP flows
fulfilling data transfer requests. However, the combination of
these features can lead to transient buffer overflow and bursty
packet losses, which in turn lead to TCP retransmission timeouts
that degrade the performance of short-lived flows. This so-called
TCP-incast problem can cause TCP throughput collapse. In this
paper, we explore an application-level approach for solving this
problem. The key idea of our solution is to coordinate the
scheduling of short-lived TCP flows so that no data loss happens.
We develop a mathematical model of lossless data transmission,
and estimate the maximum goodput achievable in data center
networks. The results indicate non-monotonic goodput that is
highly sensitive to specific parameter configurations in the data
center network. We validate our model using ns-2 [1] network
simulations, which show good correspondence with the theoretical
results.

I. INTRODUCTION

Data centers have become very popular for storing large vol-
umes of data. In particular, companies like Amazon, Google,
and Yahoo! routinely use data centers for storage, Web search,
and large-scale computations. The main characteristics of a
data center network are high-speed links, low propagation
delays, and limited-size switch buffers. In addition, the data
for a given client application are usually striped (spread) over
many servers, for increased performance (i.e., parallelism).
Recent research efforts have resulted in several architectures
of data centers [2]–[4].

The Transmission Control Protocol (TCP) is used as the
transport-layer protocol for reliable data transfer in data center
networks, just like it is on the Internet. However, the network
configurations in data centers are very different from the
general Internet conditions, for which TCP was originally
designed. In particular, the typical propagation roundtrip delay
in a data center network is 0.1 ms, while the default retrans-
mission timeout (RTO) on the Internet is 200 ms. On each user
request for data, many servers transmit data over a data center
network concurrently, which, in combination with the small
switch buffers, leads to packet losses. For short-lived flows,
packet losses cause TCP retransmission timeouts, which in
turn degrade the goodput of data center applications. Such a
decrease of goodput is called TCP-incast throughput collapse.

One approach for solving the problem involves fine-grain
timer resolution for the TCP RTOmin [5], or the use of
different TCP variants [6]. These approaches require changes
at the transport level, or within the operating system (OS)
kernel. The other potential solution is to rely on switch-based
mechanisms within the network [7].

In this paper, we explore the use of application-level flow
scheduling to solve the TCP-incast problem in data center
networks. The research question we study is how to schedule
responses to client requests to avoid data losses at a bottleneck
link. In particular, we model application-level scheduling,
which does not require any changes in the TCP stack or the
network switches. The main result we derive is the achievable
goodput of an application in a data center under lossless
scheduling. To verify our theoretical results, we perform
extensive simulations. The simulation results confirm the main
theoretical results of our model. To the best of our knowledge,
our work is the first1 to propose a detailed application-level
mechanism and evaluate its performance for avoiding the TCP-
incast problem in data center networks.

The rest of the paper is structured as follows. In Section II,
we describe the model and the proposed approach. Section III
reports the theoretical analysis of the proposed approach.
Section IV discusses the practical use of our solution for data
center applications. In Section V, we present the simulation
results for validating our model. Section VI surveys related
work. Finally, Section VII concludes the paper.

II. MODEL AND PROPOSED SOLUTION

Figure 1 shows a simple model of a data center network. A
client connects to the data center via a switch, which in turn
is connected to many servers. The client requests data from
one or more servers, and the data are transferred (left to right)
from the servers to the client, via the switch. The bottleneck
link is the link from the switch to the client.

The client requests data using a large logical block size.
In particular, 1 MB is a common read size in distributed file
systems, such as Google File System (GFS) [9] and Panasas

1An earlier version of this work appeared in poster form in IEEE IWQoS
2011 [8]. Our current paper provides further details on the analytical model,
practical deployment issues, and additional simulation results.
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Fig. 1. Cluster-based storage system.

Parallel File System (PanFS) [10]. The actual data blocks are
striped over many servers using a much smaller block size
(e.g., 32 KB) called the Server Request Unit (SRU). A client
issuing a request for a data block sends a request packet in
parallel to each server that stores data for the requested data
block. The request, which is served through TCP, is completed
only after all SRUs from the requested data block have been
successfully received by the client.

Because of the many-to-one fan-in from servers to the client,
the data transfer workload can overflow the buffer at the
bottleneck link, leading to packet losses, and subsequent TCP
retransmissions. The typical SRU size is several kilobytes [11],
though an SRU can be up to 256 KB in size [6]. Since the flow
size for an SRU is small, the TCP congestion window is also
small, which means that packet losses tend to cause coarse-
grain TCP timeouts. Since the default value of RTOmin is
200 ms [12], and a propagation RTT in a typical data center is
0.1 ms [6], significant degradation of application goodput [6],
called TCP-incast throughput collapse, can occur.

In our model, a client requests a data block of size S (in
bytes), which is striped over N servers. The bottleneck link
has capacity C (in bytes per second, Bps) and buffer size B
(in bytes). The propagation delay between each server and the
client is R. The size of data in each data packet, the size of an
ACK packet, and the size of a data frame are SDATA, SACK ,
and Sf , respectively. The TCP timer granularity of the client
OS is ∆t (in seconds). The initial TCP congestion window
is one packet. We assume per-packet ACKs are used for TCP
flows.

We consider an application-level solution that does not
require any changes to the TCP stack or network switches.
Since the main reason for TCP throughput collapse is data
losses inducing a retransmission timeout, we explore how to
schedule server responses to the same data block request so
that there is no data loss at links (i.e., how to schedule requests
for SRUs from the same data block without causing buffer
overflow at the bottleneck link).

We find that the maximum goodput g of an application in
a data center with lossless scheduling is:

g =
S

T̃ (dN
n e − 1) + T + dmax

(1)

where
T̃ =

⌈T + dmax

∆t

⌉
∆t (2)

T =
(Sf + SACK)SSRU

C
+dlog2(SSRU + 1)e

(
R+

B

C

)
(3)

n =
⌊ B

Sfwndmax

⌋
(4)

SSRU is the size of an SRU in packets, wndmax is the
maximum number of packets of one flow in the network, and d
is a random timer scheduling delay that we add to our model to
account for real system scheduling variance. Similar to [5], we
assume that d can be up to dmax = 20 µs. In the next section,
we provide a step-by-step derivation of these expressions using
our theoretical model.

III. ANALYSIS

In our approach, each flow containing an SRU (i.e., a server
response to a data block request), should avoid any packet loss.
Due to the small size of an SRU, we assume that each SRU
flow remains in TCP slow start throughout. Since the slow
start behavior is the same in most versions of TCP, our model
applies broadly to Reno, NewReno, etc. The size of an SRU,
expressed in data packets, is:

SSRU =
⌈ S

nSDATA

⌉
(5)

Let us derive the maximum window size wndmax of an
SRU under the assumption that an SRU is in slow start. In
other words, we calculate the maximum possible number of
outstanding packets in the network for a single flow. In slow
start, the initial congestion window is one, and it is increased
by one for each acknowledgement packet (ACK) received.
Thus, the congestion window is doubled each RTT.

A. Motivating Example

In traditional TCP models, the data transfer occurs in
rounds, based on the RTT. Furthermore, flows are treated in
isolation, in that the data packets of one flow are not inter-
mingled with data packets from other flows. This means that
the size of a burst of TCP packets arriving at the bottleneck
link follows the pattern:

{1, 2, 4, 8, ..., 2i, ...}. (6)

We illustrate the traditional model by the following example.
Let us consider an SRU of size SSRU = 9 packets. Initially,
before any packets are sent, the congestion window cwnd =
1, the number of packets in the network is wnd = 0, and
the number of packets remaining to be sent is r = 9. At some
time t1, one packet is sent by the server; cwnd remains 1, wnd
becomes 1, and r = 8. Then, after the first transmitted packet
is acknowledged, cwnd becomes 2, which allows the server to
transmit two more packets at some time t2 (i.e., wnd = 2, and
r = 6). At some later time t3, the congestion window grows
to cwnd = 4, with wnd = 4, and r = 2. Then, at some time
t4, ACKs for all four packets successfully arrive at the server;
wnd becomes 0, and cwnd is increased by 4 and becomes 8.
Since cwnd > wnd, the server can transmit the two remaining
packets at some time t5, and all of the remaining packets of
the SRU are sent by the server. The step-by-step evolution of
cwnd, wnd, and r is summarized in Table I.

In our model, we consider a general case of TCP behavior
when the size of a burst of TCP packets arriving at the
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TABLE I
TRADITIONAL EXAMPLE

Time 0 t1 t2 t3 t4 t5

cwnd 1 1 2 4 8 8
wnd 0 1 2 4 0 2
r 9 8 6 2 2 0

bottleneck link is not constrained to the pattern described
by (6), and data packets of one flow may be intermingled with
data packets from other flows, although the congestion window
of a flow is still doubled each RTT according to the TCP slow
start algorithm. The behavior of TCP flows is reconsidered,
because the propagation RTT in a data center network is 0.1
ms compared to the typical propagation RTT on the Internet of
10-100 ms. Assuming a packet size of 1 KB and a link capacity
of 1 Gbps, the duration of sending one packet is around 0.01
ms. Thus, whereas packet transmission time is negligible in
comparison with propagation RTT on the Internet, it is not the
case in a data center network.

To demonstrate the difference between our model and the
traditional one, we show how the example from Table I is
changed if the size of a burst of TCP packets arriving at
the bottleneck link is not constrained to the pattern described
by (6). In particular, the evolution of cwnd, wnd, and r is
the same in both models, until time t4, when an ACK for one
packet successfully arrives at the server; wnd becomes 3, and
cwnd is increased by 1 and becomes 5. Since cwnd > wnd,
the server can transmit the two remaining packets at some
time t5. Although cwnd remains 5, wnd becomes 5, and all
of the remaining packets of the SRU are sent by the server.
We present the step-by-step evolution of cwnd, wnd, and r
in Table II.

TABLE II
ILLUSTRATING EXAMPLE

Time 0 t1 t2 t3 t4 t5

cwnd 1 1 2 4 5 5
wnd 0 1 2 4 3 5
r 9 8 6 2 2 0

The key difference between these two examples is that
whereas in the traditional model at time t4 the whole window
of four packets was acknowledged, in our model at time t4
only one data packet was acknowledged, and the other three
data packets are still in the network. Thus, in our model the
instantaneous number of packets of one flow buffered at a
switch, which is determined by wnd, may be larger in com-
parison with the traditional round-based modeling approach.

B. Theoretical Foundation

Now we introduce two new variables wndA and wndB for
our analysis, defined as follows:

wndA = 2m, wndB = SSRU −
m∑
i=0

2i (7)
where

m :
m∑
i=0

2i ≤ SSRU ,
m+1∑
i=0

2i > SSRU (8)

In other words, wndA (always a power of 2) is the max-
imum congestion window size reached during the window
doubling phase of slow start for an SRU, while wndB is the
number of leftover packets (if any) in the final window of
data. For example, if SSRU = 21 packets, then the evolution
of congestion window cwndi after the ith RTT round looks
as follows: cwnd0 = 1, cwnd1 = 2, cwnd2 = 4, cwnd3 =
8, and, finally, 6 remaining packets are sent. In this example,
wndA = cwnd3 = 8, and wndB = SSRU −

∑3
i=0 2

i = 6. In
general, wndA and wndB can be calculated as follows:

wndA = 2p1 , wndB = SSRU − 2p2 + 1 (9)
where
p1 = blog2(SSRU + 1)c − 1, p2 = blog2(SSRU + 1)c (10)

Theorem 1: The maximum number wndmax of packets
simultaneously in flight for a TCP flow in slow start is:

wndmax ≤

 wndA if wndB = 0
wndA + wndB − 1 if wndA ≥ wndB
2wndA − 1 if wndA < wndB

(11)
where wndA and wndB are defined by Equation (7).
Proof. We need to consider three possible cases.

Case 1: wndB = 0. This case corresponds to the scenario
when an SRU is equal to the sum of a geometric progression
with the common ratio of 2, i.e., the first inequality in (8)
becomes equality. Therefore, the maximum number of packets
in the network is the final term of the progression (wndA).

Case 2: wndA ≥ wndB . Let us assume for the moment
that wndmax can be no smaller than wndA + wndB (i.e.,
ignore the condition stated in Equation (11)). After some ith

RTT round, the congestion window cwndi = wndA and there
are wndA packets of an SRU in a network. According to our
assumption, at some later moment the congestion window is
at least wndA + wndB . For growing the congestion window
from wndA to wndA + wndB , at least one packet should
be successfully delivered and acknowledged. Therefore, the
maximum number of packets in the network should be no more
than wndA + wndB - 1, which contradicts our assumption.

Case 3: wndB > wndA. Let us assume that wndmax can
be no smaller than 2wndA, i.e., the third line of Equation (11)
is not true. It means that the congestion window of an SRU is
at least 2wndA at some moment. However, according to (7),
wndB < 2wndA, which means that the size of an SRU
is insufficient to achieve the congestion window of 2wndA.
Thus, we have a contradiction to our assumption.

Having considered all the possible cases, we have proved
the theorem.

Thus, the maximum number of packets lmax in a network
sent by n flows from servers responding concurrently to a data
block request is:

lmax = wndmaxn (12)
In our further calculations, wndmax is set to the upper

bound of its possible values, i.e., is determined by equality
in (11). To avoid data losses at the bottleneck link, the buffer
size of the bottleneck link should be no less than the size of
lmax packets:

B ≥ Sf lmax, or B ≥ nSfwndmax (13)
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Fig. 2. Schedule of server responses.

From Equation (13), we conclude that to avoid data losses
the maximum number of concurrent SRU flows in the network
should be no more than:

n ≤
⌊ B

Sfwndmax

⌋
(14)

The buffer size of a switch B should be large enough for
serving at least one SRU without data losses, i.e., n should be
no smaller than one. Thus, we derive the applicability limit of
our model: ⌊ B

Sfwndmax

⌋
≥ 1 (15)

Let us estimate the flow completion time T of an SRU flow;
T contains two parts. The first one TDATA describes the data
packet and ACK sending processes, and is calculated as:

TDATA =
(Sf + SACK)SSRU

C
(16)

The second item TACK describes the roundtrip delay between
a server and a client, and queueing delay at the bottleneck
link. The upper bound of the second item is calculated as:

TACK = dlog2(SSRU + 1)e
(
R+

B

C

)
(17)

Finally, assuming that the data sending time and propagation
delays R are disjoint, the flow completion time of an SRU
flow is the sum of TDATA and TACK :

T =
(Sf + SACK)SSRU

C
+ dlog2(SSRU + 1)e

(
R+

B

C

)
(18)

Since an OS has a finite timer granularity, we need to take
that into account in our analysis. The other important thing is
non-deterministic behavior of real system scheduling, which
we account as a maximum random timer scheduling delay
dmax. Thus, if the exact value of a completion time is T , then
in a real system with timer granularity ∆t the flow completion
time T̃ , used by the system for scheduling calculations, is:

T̃ =
⌈T + dmax

∆t

⌉
∆t (19)

Thus, T̃ is no smaller than T .
To avoid data losses, the responses of servers should be

scheduled by batches, with n flows in a batch, at time moments
0, T̃ , 2T̃ , ..., T̃

(
dN
n e− 2

)
, T̃

(
dN
n e− 1

)
. If generalizing, the

ith server, where 1 ≤ i ≤ N , starts responding at time ti and
completes transmission at time ti + T̃ :

ti = T̃ ·mod(i− 1,
⌈N
n

⌉
) (20)

where mod(i− 1,
⌈
N
n

⌉
) is the remainder when dividing i− 1

by
⌈
N
n

⌉
. We define the number of batches of concurrent flows

k as:
k =

⌈N
n

⌉
, (21)

In Figure 2, we show the proposed schedule of server re-
sponses, which has a maximum of n concurrent TCP flows
in the vertical dimension and k batches of concurrent flows
serialized in the horizontal (time) dimension. We need to
mention two important things about the scheduling process.
First, the number of SRUs may not always pack perfectly into
a rectangle, which is shown by the time slot of the response
of the Nth server. Second, the number of concurrent SRU
flows is not always equal to n. For example, if N = 6 and
n = 5, then according to Equation (20), there are two batches
of concurrent SRUn flows with three flows in each of them.
In practice, scheduling server responses is done as follows:

1) Requests to data servers are scheduled according to
Equation (20).

2) Upon receiving a request, each server responds to it
immediately.

Thus, the described scheduling implementation realizes the
scheduling of server responses according to Equation (20).

We have shown that the response time tr of a data block
request under scheduling defined by Equation (20) is:

tr = T̃
(⌈N

n

⌉
− 1

)
+ T + dmax (22)

Thus, we have proved the following theorem about the goodput
of a data center application, which is defined as the ratio
between the data block size and the response time for a data
block request:

Theorem 2: The maximum goodput of an application at a
data center using the lossless scheduling specified by Equa-
tion (20) is given by Equations (1)-(4).

Next, we will discuss the practical use of our solution in
data center applications.

IV. PRACTICAL ISSUES

A common structure for applications using data centers is
a partition/aggregate design [11] as shown in Figure 3. The
partition/aggregate design is widely used in large scale Web
applications (e.g., search, social network content composi-
tion, advertisement selection). An application user makes a
request, e.g., a search query, which is initially processed by
a server called high-level aggregator (HLA). The HLA splits
the request into several parts, e.g., a text part and a picture
part, and sends it to servers called medium-level aggregators
(MLA), one in each server rack, that are responsible for
different parts of the request. Each MLA sends a request to
workers that are data servers in the same rack as an MLA
storing the information about a particular part of a request.
The workers finally process a request and reply to an MLA.
After completing a request, an MLA forms a response and
sends it back to the HLA. On receiving the response from all
MLAs, the HLA responds to the client by sending the data
received from MLAs.
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Fig. 3. Partition/aggregate large-scale application. The deployment of
application-level scheduling in a data center.

Adopting our scheduling mechanism on MLAs will help
to mitigate the TCP-incast problem. In Figure 3, we show
where our scheduling solution is used to control the responses
from data servers. The parameters of our solution, which are
the data center network characteristics, are known to MLAs,
and the whole scheduling process is performed by MLAs. If
multiple users make requests to a data center application, then
each MLA processes them through a First-In First-Out (FIFO)
queue that stores the requests. On receiving the request from
an HLA, an MLA schedules requests to data servers according
to Equation (20), and each data server responds to the received
request immediately. Thus, at each moment only one request is
scheduled for responses from servers to an MLA. In Figure 4,
we demonstrate how two user requests are processed, and show
the processing stages of request #1 as an example. As we can
observe, the MLA does not process request #2 until it receives
all the responses on request #1 from servers (the end of stage
(e)).
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Fig. 4. Request processing and its stages: (a) delivering the request from an
end-user to the data center (HLA); (b) delivering the split part of the original
request from the HLA to the MLA; (c) sending requests to data servers by the
MLA according to the proposed scheduling algorithm; (d) sending responses
from data servers; (e) gathering the responses from data servers by the MLA;
(f) delivering the response on the split part of the original request from the
MLA to the HLA; (g) composing the final response to the end-user by the
HLA, and delivering it from the HLA to the end-user.

Figure 5 demonstrates a typical fat-tree topology of a data
center network. Since our scheduling mechanism is deployed
over MLAs, and each MLA interacts only with servers within
the same rack [11], scheduled traffic makes only two hops: 1)
server - edge switch; 2) edge switch - MLA. Thus, there is no
interference among traffic generated by MLA requests that are
triggered by the same HLA request. Moreover, the scheduling
approach is not limited to TCP only, and can potentially be
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Fig. 5. Fat-tree topology of a data center network.

adapted to other transport protocols, which makes application-
level scheduling an attractive solution for tackling more gen-
eral oversubscription problem in data centers [13]. However,
although we base our approach on the lossless scheduling,
a reliable transport protocol is still required because losses
not related to buffer overflow may happen. Finally, our model
assumes that MLAs do not use persistent TCP connections;
we leave the extension of our scheme to the case of persistent
TCP connections as future work.

The potential concern that may arise is interaction of
traffic of different applications within the same rack when an
MLA server runs several applications with partition/aggregate
design. The solution can be to use a special MLA controller
(software module) deployed over the MLA server, the main
goal of which is to ensure that MLA requests of different
applications to the MLA server are processed in FIFO manner.
Thus, a bottleneck link between an edge (Top-of-Rack) switch
and the MLA server is shared by traffic generated by servers
of only one application at a time.

V. SIMULATION RESULTS

To validate our model, we perform simulations using the ns-
2 [1] network simulator. We use the network topology shown
in Figure 1. The bottleneck link and each access link has 1
Gbps capacity and 0.025 ms propagation delay, and use the
DropTail scheme. Thus, the propagation RTT for each server
is 0.1 ms. The buffer size of the bottleneck link is 32 KB.
These parameters characterize a typical data center [6]. We set
the OS timer granularity ∆t to 1 ms as the minimum value
used in OS [5]. We use NewReno TCP in our evaluation. To
account for real system scheduling variance, the response of
the ith server starts at time ti+d, where ti is determined by
Equation (20), and d is a delay uniformly distributed between
0 and dmax = 20 µs. We run five simulations for each of the
considered parameter settings.

A. Fixed SRU size

In this section, we explore the performance of a data center
in a simple case when the SRU size is fixed to 10 KB. We
vary the number of servers from 1 to 1000.

Figure 6 shows that the goodput converges to approximately
200 Mbps, and the simulation results show reasonable quali-
tative and quantitative agreement with the model. Specifically,
goodput is non-monotonic with the number of servers, and
there are sudden decreases of the theoretical and simulation
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values of the goodput, the amplitude of which diminishes as
the number of servers is increased. For example, the theoretical
value goes from 203 Mbps for 15 servers to 162 Mbps for 16
servers. Such a jagged trajectory for the goodput is due to
the packetized traffic and the integer number of batches of
simultaneous responses from servers, which depends on dN

n e.
The “length” of each step in the zig-zag path is determined
by the number of servers n responding concurrently, which is
n = 5 in this scenario.

(a) Number of servers

G
o

o
d

p
u

t,
 M

b
p

s

0

100

200

300

400

500

0 5 10 15 20 25 30 35 40 45 50

simulation
theory

(b) Number of servers

G
o

o
d

p
u

t,
 M

b
p

s

0

100

200

300

400

500

1 10 100 1000

simulation
theory

Fig. 6. Goodput for different numbers of servers with a fixed 10 KB SRU
size: (a) small data center; (b) large data center.

There is good agreement between the simulation and analyt-
ical results, both qualitatively and quantitatively, as the number
of servers increases. However, there is a large discrepancy
between the theoretical results and the simulation results for
small configurations, say with N ≤ 5 servers. This gap
is explained by the reduced buffer contention in scenarios
with limited concurrency. That is, to estimate an SRU flow
completion time, we assume that the buffer at a bottleneck link
is full, i.e., the queueing delay at that link is B

C , where B and C
are respectively the buffer size and bottleneck link capacity.
However, since wndmax = 6 and B = 32 KB, our model
overestimates the maximum queueing delay at a bottleneck
link for no larger than five servers. Moreover, since n =
5, all servers can respond simultaneously, and the OS timer
granularity does not affect the goodput of an application. If
N ≥ 6 then there are at least two batches of concurrent SRU
flows, i.e., k ≥ 2, which means that the OS timer granularity
should be taken into account for scheduling. According to
Equation (22), the growth of the number of flows leads to more
influence of T̃ on the request completion time in comparison
with T . Therefore, the discrepancy between the model and the
simulation results diminishes with the increase of the number
of servers.

Without using our mechanism (not shown in Figure 6), the
goodput drastically drops from 600 Mbps to 8 Mbps as the
number of servers rises from 5 to 20 servers. The goodput
continues dropping to 1.3 Mbps when the number of servers
is 200, and does not exceed 3 Mbps with the further increase

of the number of servers.

B. Varying SRU size

We next consider a more realistic scenario in which the
SRU size is scaled automatically based on the number of
servers. Specifically, the data block size is fixed to 1 MB, and
the SRU size is 1

N MB, where N is the number of servers.
To study how the number of servers affects the performance,
we vary their numbers between 22 and 1000. The minimum
number of servers is 22 according to the limitation of our
model expressed by Equation (15).
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Fig. 7. Goodput for different numbers of servers with varying SRU size.

In Figure 7, we observe that the simulated goodput closely
follows the theoretical value. In general, the simulated goodput
slightly exceeds the theoretical one, which is expected since
we estimate the upper bound of flow completion time T .
In addition, there is a distinct sawtooth structure to the
plots. We explain this behavior as follows. The goodput is
determined by the response time of a data block request tr.
According to Equations (18), (19), and (22), tr is a function
of dlog2(SSRU + 1)e, where d e function reflects the packet
granularity of traffic, and dN

n e, where d e function represents
the integer number of batches k of concurrent SRU flows (see
Figure 2). The combination of these two ceiling functions
leads to the sudden jumps of the goodput function (e.g., from
119 Mbps for 499 servers up to 241 Mbps for 500 servers).

If not using our scheme (not shown in Figure 7), then the
goodput drastically drops from more than 900 Mbps to less
than 40 Mbps as the number of servers rises from 10 to 15
servers. With the further increase of the number of servers,
the goodput continues dropping to 10 Mbps and 1.3 Mbps for
60 and 130 servers, respectively.

C. Influence of the buffer size

To investigate the performance of a data center for different
switch buffer sizes, we vary it between 32 KB and 128 KB for
25 servers, and between 8 KB and 128 KB for 100 servers. The
chosen intervals of the varied parameters fit Inequality (15)
that describes the limitations of our model. Figure 8 shows the
correspondence between the simulation results and the model.
In particular, wndmax is 24 for 25 servers, and 6 for 100
servers. The value of wndmax determines the minimum buffer
size of a switch for making our model applicable.

In addition, we observe that the discrepancy between the
theoretical value of the goodput and the simulation value
increases with the increase of the buffer size, which we explain
as follows. In our analysis, we assume that the roundtrip delay
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between a client and a server is the sum of the propagation
delay and a queueing delay at a full switch buffer, which
is expressed in Equation (17). However, as this is an upper
bound estimation of the roundtrip delay between a client and
a server, the increase of the buffer size leads to the increase
of the roundtrip delay, and, therefore, the smaller theoretical
goodput compared to the simulated goodput.
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Fig. 8. Goodput for different switch buffer sizes.

Without applying our scheme (not shown in Figure 8), the
goodput monotonically increases from 0.3 Mbps to 29 Mbps
for 100 servers. If there are 25 servers, and the buffer size is
no larger than 96 KB then the goodput does not exceed 39
Mbps; larger buffer size does not induce throughput collapse
and supports the goodput more than 900 Mbps.

D. Influence of the timer granularity
We study how the timer granularity affects the performance

by varying it between 0.001 ms and 20 ms. In addition, we
run the simulations for 25, 50, 100, 200, and 500 servers. In
Figure 9, we see that goodput is higher with fine-grain timers,
and degrades as the timer granularity increases. Furthermore,
the timer granularity has a greater influence when there are
many servers. In particular, the goodput is approximately the
same for 25 servers with timers of up to 1 ms, and for 200
servers with timers of up to 0.1 ms. Such a behavior is because
the goodput is a function of

⌈
T+dmax

∆t

⌉
∆t, where T is an SRU

completion time, the same for different timer granularities ∆t.
In general, the simulation results and the model fit well.

The goodput is generally a monotonically decreasing func-
tion as timer granularity increases. However, there is an
anomaly with 2 ms timers for 25 and 50 servers, which
we explain as follows. If the number of servers is 25, then
the flow completion time of an SRU flow T is 2.858 ms.
This completion time is tightly estimated (as 3 ms) if the
timer granularity ∆t is 1 ms or 3 ms, but poorly estimated
(as 4 ms) if ∆t is 2 ms. A similar phenomenon occurs for
50 servers, where T = 2.329 ms, for the same reason. We
want to emphasize that our solution does not require fine-
grained timers with granularity smaller than 1 ms, which is
the minimum currently used in OS. However, our simulations
show that the application performance can be better in some
data center configurations if using timers with granularity
smaller than 1 ms.

VI. RELATED WORK

Chen et al. [14] studied the throughput collapse of TCP
incast via conducting experiments and modeling the behavior.
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Fig. 9. The goodput at a Typical Data Center for different timer granularities:
(a) theoretical results for different numbers of servers; (b) comparison with
simulation results.

In [15], the authors explored how Quantized Congestion
Notification (QCN) [16], an Ethernet layer congestion con-
trol mechanism, operated under TCP-incast scenario in data
centers, and proposed some modifications to improve its effi-
ciency. Shpiner and Keslassy [7] proposed a new architecture
called Hashed Credits Fair (HCF) to avoid TCP throughput
collapse in data centers. The key idea of the scheme is to
serve the incoming traffic through two queues (high priority
and low priority queues) instead of one traditional DropTail
one.

Phanishayee et al. [6] explored the TCP-incast problem and
some strategies for mitigating it. In particular, the authors
examined the use of different TCP variants and the decrease
of TCP retransmission timeout. Allman et al. [17] proposed
Limited Transmit for improving TCP recovery from packet
losses for small window sizes, which is the same problem
as in the case of TCP-incast. However the proposed solution
is efficient only when the congestion is not severe. In [5],
the authors proposed to use microsecond-granularity retrans-
mission timeouts in data center networks, which effectively
solves the problem of TCP throughput collapse. Ghobadi et
al. [18] showed that TCP pacing was not effective in data
center networks due to their small propagation RTTs. Zhang
et al. [19] proposed an analytical model for understanding
the causes of the TCP throughput collapse. In particular, they
found out that there were two types of TCP timeouts leading
to TCP throughput degradation.

In [11], the authors proposed a transport protocol named
DCTCP (Data Center TCP), which addresses the TCP-incast
problem. The protocol relies on two main features. The first
one is to employ ECN (Explicit Congestion Notification) [20],
and the second one is to adjust the multiplicative decrease
coefficient used for controlling congestion window according
to the fraction of ECN-marked packets in the last window
of data. Wu et al. [21] designed ICTCP (Incast congestion
Control for TCP) as a receiver-side congestion control scheme.
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The other potential solution is to increase the queue buffer
size, making it proportional to the number of servers to
decrease the chance of a packet loss [22], [23]. However, a
large buffer size induces high queueing delays, which is inap-
propriate for data centers. Moreover, it requires an additional
fast memory like Static Random Access Memory (SRAM),
which increases the cost and complexity of a switch [24].

Krevat et al. [28] discussed a variety of possible application-
level solutions to TCP throughput collapse problem. In par-
ticular, they suggested several ideas that may be explored for
mitigating the TCP-incast problem: increasing request sizes;
limiting the number of synchronously communicating servers;
throttling, staggering, and global scheduling of data transfers.
However, the authors did not provide any details on particular
designs.

The main difference of our work from prior work is that,
while relying on the ideas mentioned in [28], to the best of
our knowledge, our paper is the first to propose and evaluate
a particular mechanism at the application level for the TCP-
incast problem in data center networks. Moreover, our ap-
proach does not require any changes in TCP stack or network
switches. Since our scheme operates at the application level, its
deployment is simpler than solutions requiring changes in the
TCP stack; modifying the TCP stack in a data center having
thousands of servers can be a challenge. Thus, deployability
is the key advantage of our proposal over solutions relying on
modifying a transport protocol.

VII. CONCLUSION

In this paper, we explored the TCP-incast throughput col-
lapse problem in data center networks from an application-
level perspective. In particular, we presented the model and
analyzed the performance of the application-level approach
under TCP-incast scenario. The main idea of the approach is to
schedule the server responses to data requests so that no packet
losses occur at the bottleneck link. The main result we derive
is the achievable goodput of a data center application under
lossless scheduling. The results indicate non-monotonic good-
put that is highly sensitive to specific parameter configurations.
The simulations confirmed the validity of our model and its
theoretical results. Our future work will involve implementing
our approach in a real data center network, and evaluating its
performance for different application traffic scenarios.
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