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Abstract—In this paper, we introduce the notion of decoupled
speed scaling, wherein the speed scaling function is completely
decoupled from the scheduling policy used in a simple single-
server computer system. As an initial result, we first demonstrate
that the Fair Sojourn Protocol (FSP) scheduling policy does not
work properly with coupled (native) speed scaling, but that it
can and does work well with decoupled speed scaling. We then
compare the performance of PS, SRPT, and FSP scheduling poli-
cies under decoupled speed scaling, and demonstrate significant
advantages for FSP. Our simulation results suggest that it might
be possible to simultaneously achieve fairness, robustness, and
near optimality with decoupled speed scaling.

I. INTRODUCTION

Many modern processors support dynamic speed scaling,

which allows the CPU speed (e.g., clock frequency, voltage) to

be adjusted dynamically via software control in the operating

system [1]. The primary motivation for this feature is energy

efficiency in the presence of highly-varying workloads. That

is, the processor can be run at or near full speed to complete

work quickly when demand is high, but be reduced to a low-

power or quiescent mode when demand is low or absent.

The dynamic adjustment of the processor speed is often

referred to as “CPU speed scaling” in the literature, though

the technically precise term is Dynamic Voltage and Frequency

Scaling (DVFS). Modern processors typically support on the

order of a dozen discrete operating states, rather than just

two (e.g., On/Off in gated speed scaling) or three (e.g.,

On/Sleep/Off for a typical laptop).

The performance implications of speed scaling designs are

interesting, even in the single processor case. An early paper

on this topic was by Weiser, Welch, Demers and Shenker in

1994 [2], who used simulation to explore the tradeoffs between

response time and CPU energy consumption for empirical

Unix workloads. This work pre-dated the widely-cited Yao,

Demers, and Shenker (YDS) paper [3] on speed scaling

in 1995, which provided the first formal treatment of the

speed scaling problem, including several heuristic algorithms,

as well as proofs that they were within a constant factor

of optimal. The latter paper triggered substantial follow-on

work by Albers [4], [5], Bansal [6], [7], [8], and others on

improved algorithms, tighter bounds, and alternative metrics

for evaluating speed scaling designs.

In speed scaling systems, the traditional performance met-

rics of throughput and response time become secondary to

energy consumption, or a weighted combination of energy

consumption and response time. The typical formulation1 of

the problem involves optimizing the total cost z, where:

z = E[T ] + E[ε]/β. (1)

In this expression, T represents response time, ε reflects

energy cost, and β is a relative weighting factor.

Andrew, Lin and Wierman [10] presented an intriguing

paper on this topic in ACM SIGMETRICS 2010. In their

work, the authors demonstrate that there are inherent tradeoffs

between optimality, fairness, and robustness in speed scaling

systems. In particular, they prove that it is possible to provide

any two of these properties simultaneously, but not all three.

For example, Shortest Remaining Processing Time (SRPT)

scheduling with dynamic speed scaling can provide optimal

total cost, and is robust to uncertainties in the workload

estimation, but it is unfair to large jobs. Conversely, Processor

Sharing (PS) with dynamic speed scaling is fair to all jobs, and

robust, but its mean response time and energy consumption can

be much worse than SRPT.

In our paper, we further investigate the tradeoffs inherent

in speed scaling systems. In particular, we consider decoupled

speed scaling, wherein the speed of the system is determined

by an external speed scaling function that is agnostic about the

current state of the system under a particular scheduling policy,

and only depends on the incoming jobs and their sizes. This

approach differs from the well-studied job-count-based speed

scaling (coupled speed scaling), where the speed is determined

dynamically based on the current state of the system, namely

the number of jobs remaining in the system.

In particular, our speed scaling function is determined by

a virtualized execution of a reference scheduling policy, such

as PS, in the background. While this “virtual PS” idea has

been used previously in the design of scheduling policies such

as Weighted Fair Queueing (WFQ), Generalized Processor

Sharing (GPS), and FSP, to the best of our knowledge we are

the first to apply this principle to the speed scaling function

itself. Furthermore, our approach is not restricted to using PS

as the reference scheduler.

This idea is conceptually elegant, and simplifies the analysis

of speed scaling systems. In particular, it facilitates the analysis

of additional scheduling policies, including the Fair Sojourn

1An alternative cost function that is starting to receive more attention lately
is the energy-delay product [9]. Because energy consumption is invariant under
our definition of decoupled speed scaling, our results are directly applicable
to either formulation of the weighted cost model.



Protocol (FSP) [11], and relaxes some of the restrictive as-

sumptions in [10] regarding the structure of speed scaling

systems (i.e., “natural” speed scaling).

This notion of decoupled speed scaling enables us to fix

the speeds and then compare the behaviors (e.g., response

time, fairness) of scheduling policies on a level playing field.

The resulting system has time-varying capacity, similar to

stochastic capacity systems, which are well-studied in the

literature (e.g., [12]). However, there are fundamental differ-

ences as well. In decoupled speed scaling, the capacity of

the system varies deterministically, rather than stochastically.

Furthermore, for a given speed scaling function, the CPU

speed is identical at any point in time for any scheduling policy

that governs the system. Thus the energy component of the

cost function becomes equal for the policies under comparison,

and the sole remaining focus is on the response time E[T ].
Our paper makes several key contributions. First, we define

and propose a new approach to speed scaling system design,

which we call decoupled speed scaling. Second, we show that

all policies are efficient in coupled speed scaling systems based

on job count. Third, we show that the FSP scheduling policy is

ill-suited for job-count-based coupled speed scaling, but that it

can and does work well with decoupled speed scaling. Finally,

using simulation, we compare the performance of PS, SRPT,

and FSP scheduling policies under coupled and decoupled

speed scaling. Our simulation results demonstrate pronounced

advantages for FSP, which lead us to speculate that it might

be possible to attain fairness, robustness, and near optimality

with decoupled speed scaling. Note that the latter result does

not directly contradict the results in [10], since the underlying

assumptions about speed scaling differ.

The remainder of the paper is organized as follows. Sec-

tion II presents a brief description of prior related work.

Section III provides a simple pedagogical example to help

motivate our work. Section IV presents our formal system

model, while Section V and Section VI present our theoretical

results for coupled and decoupled speed scaling systems,

respectively. Section VII presents simulation results to validate

the models. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

Our paper builds upon substantial prior work in scheduling

and speed scaling system design. In this section, we provide a

concise summary of prior related work, particularly that most

relevant to our current paper.

A. Scheduling Policies

Processor Sharing (PS) is a well-known scheduling policy

that epitomizes fairness [13], [14]. PS shares a single processor

simultaneously among n active jobs in the system by devoting

a service rate of 1/n to each job. As jobs arrive and depart,

PS dynamically adjusts the service rate provided to each job,

while the aggregate rate is always fixed at unity.

Shortest Remaining Processing Time (SRPT) is a preemp-

tive scheduling policy that optimizes mean response time.

Using advance knowledge of job size information, the SRPT

policy always selects for service the job that has the least

remaining service time. With this approach, the mean waiting

time and the mean response time are minimized [15], [16],

[17], [18]. SRPT scheduling has generated significant research

interest, particularly in the context of request scheduling in

Web servers [19], [20], [21], [22], [23]. Under certain job size

distributions, SRPT even has a counter-intuitive “all can win”

property, where all jobs prefer SRPT to PS [19]. However, this

policy is sometimes unfair [24]. Furthermore, the performance

of SRPT can deteriorate if it does not have accurate job size

information [25].

Several other scheduling policies attempt to exploit the

response time advantage of size-based scheduling, while also

considering fairness and practical issues. Examples include

Foreground-Background (FB) [26], Least Attained Service

(LAS) [27], Resource Allocation Queueing Fairness Measure

(RAQFM) [28], and the Fair Sojourn Protocol (FSP) [11]. FB

and LAS approximate the effectiveness of SRPT, without the

need to know job sizes in advance. RAQFM balances fairness

based on the size and seniority of a job. The FSP scheduling

policy combines aspects of PS and SRPT. It selects for service

the pending job that would complete the soonest under PS

scheduling, and then devotes full service to this job until the

next arrival or departure event. To do so, the FSP algorithm

conceptually runs a “virtual PS” queue in the background, and

recomputes its next scheduling decision upon each job arrival

or departure event [11].

The FSP policy is a central focus in our work. In the

non-speed-scaling world, FSP (provably) has several desirable

properties [11], including strict dominance2 over PS. Specifi-

cally, in the execution of any job on any sample path, no job

is worse off (in terms of response time) under FSP than it is

under PS. One of the goals in our paper is to integrate FSP

into speed scaling systems.

B. Speed Scaling Systems

The tradeoffs between energy consumption and performance

metrics such as mean response time have stimulated extensive

work on energy-efficient algorithms [5], as well as dynamic

service rate control [29] and power management [30]. Yao,

Demers and Shenker [3] pioneered the analytical study of

dynamic speed scaling in a context where jobs have deadlines

and the service rate is unbounded. An alternative approach has

focused on minimizing the response time in systems, given a

fixed energy or temperature budget [6].

A more recent approach aims at optimizing the cost function

in Equation (1), which is a linear combination of the energy

consumption and the average response time [4]. Several studies

on this metric suggest that the optimal dynamic speed scaling

function should be a function of n, the number of jobs in the

system. Later, Bansal, Chan and Pruhs [8] showed that SRPT

with the speed scaling function P−1(n+1) is 3-competitive for

2While this criterion may seem overly restrictive, it is an attractive property
that is amenable to formal analysis. We leave to future work the consideration
of alternative (weaker) forms of dominance, and the analysis of more general
scheduling policies.



an arbitrary power function P . Andrew, Lin and Wierman [10]

show that SRPT with speed scaling function P−1(nβ) is 2-

competitive, and is optimal among the class of “natural” speed

scaling functions.

Other researchers have raised concern about the cost func-

tion in Equation (1). Although it directly reflects changes in

the mean response time and energy consumption, it does not

reflect the relative magnitude of these changes. The energy-

delay product is an alternative cost function that emphasizes

relative change. This metric has received attention in the recent

literature [9].

Fairness in dynamic speed scaling designs was first formally

studied by Andrew et al. [10]. In their model, they assume

that the rate of the server is determined as a function of the

number of jobs in the system (We call this job-count-based

speed scaling). In this model, the slowdown value [31] for PS

at load ρ is no longer 1/(1−ρ), but the value is still a constant

for all job sizes (see Proposition 15 in [10]). They argue that

the slowdown of PS remains the right criterion for fairness,

and use a similar definition for fairness as introduced for the

non-speed-scaling world [19].

Definition 1: A policy p is fair if for all job sizes x

E[Tp(x)]

x
≤

E[TPS(x)]

x
(2)

Based on Definition 1, Andrew et al. show that speed

scaling exacerbates unfairness under SRPT, as well as for non-

preemptive policies such as FCFS. This definition, however,

solely considers the response time of jobs and does not take

energy consumption into account. In Section V-B, we formally

prove that PS is efficient under this model, and then conjecture

that no policy can be fair with this definition (see Theorem 9

and Conjecture 10). However, if we change the model and

allow a decoupled speed scaling function, we show that FSP

strictly dominates PS, and is also fair, based on Definition 1

(see Section VI).

III. MOTIVATING EXAMPLE

The purpose of this section is to establish the intuition

behind the concept of decoupled speed scaling. In our work,

we explore the role of scheduling in speed scaling systems,

and in particular the tradeoffs between efficiency, fairness,

and cost. Efficiency refers to how closely the system achieves

optimality, such as minimizing response time. Fairness refers

to whether jobs with different characteristics (e.g., size) are

treated similarly or not. Cost refers to the aggregate energy

consumption for the system when executing a given workload,

or a combination of metrics as in Equation (1).

To illustrate the issues, consider a simple single processor

system, initially empty, to which a small set of jobs arrive, as

shown in Table I. We use a simple discrete-event simulation

model of this system, with configurable scheduling policies,

and adequate instrumentation to record job response times and

speed scaling dynamics. We use this example to motivate and

explain the ideas behind decoupled speed scaling.

Figure 1 shows an example of our simulation results for tra-

ditional coupled speed scaling, using the workload in Table I.

TABLE I
EXAMPLE WORKLOAD

Job ID Arrival Time Job Size

1 1.0 5
2 2.2 2
3 2.8 3
4 3.5 1
5 4.7 4

The top row of graphs shows the instantaneous number of jobs

in the system, for each of three scheduling policies (FCFS, PS,

and SRPT, from left to right). The second row of graphs shows

the instantaneous amount of work remaining in the system, as

well as the job departure points. In these examples, the CPU

speed is scaled linearly3 based on the number of active jobs

in the system.

Multiple insights emerge from studying Figure 1. The first

(and most obvious) observation is that the three scheduling

algorithms produce different profiles for the number of jobs

in the system. Since the three policies complete the jobs at

different times and in different orders, they provide differ-

ent response times. This is in fact the main rationale for

different scheduling policies. The second observation is that

the profiles for remaining work are quite similar across the

three scheduling policies. This result makes sense since the

workload (i.e., job arrival time, job size) presented to each

scheduler is the same. However, there are some perceptible

differences (e.g., slopes, departure points), since the speed

scaling decisions (based on the number of active jobs) differ

across policies. The third observation from Figure 1 is that

the scheduling algorithms incur different energy costs. For

example, FCFS runs the CPU at a moderate speed for most

of the simulation, while SRPT tends to run the CPU at a

lower speed, since there are fewer jobs in the system. If

power consumption is proportional to the square of the CPU

speed (a typical modeling assumption in the literature), then

scheduling algorithms such as SRPT might be advantageous.

However, the fourth and final observation is that SRPT is

not optimal for completion time. While SRPT finishes jobs

quickly, maintains fewer jobs in the system, and runs the CPU

at a lower speed, it also needs to run longer to complete all

of the jobs. FCFS and PS scheduling both finish sooner, in

this particular example. While this example is small, it does

illustrate the basic tradeoffs between response time, fairness,

and energy cost.

For comparison, Figure 2 presents results for decoupled

speed scaling, in which the speed scaling function used by a

scheduler is provided externally. In these examples, the speed

scaling function chosen is that derived from PS scheduling

(i.e., the CPU speeds implied by Figure 1(b)). That is, the

speed that an arbitrary scheduling policy p uses at time t is the

same as the speed that PS would be using if it was executing

3Our results also hold for other job-count-based speed scaling policies,
including the square root of the number of jobs in the system (a recommended
policy from the literature). The assumption of linear scaling here merely
simplifies the pedagogical and graphical presentation of the example.
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Fig. 1. Example Results for Dynamic Speed Scaling (Coupled)

TABLE II
COMPARISON OF COUPLED AND DECOUPLED SPEED SCALING

Item Coupled Speed Scaling Decoupled Speed Scaling

CPU speed Depends on current number of jobs in system Depends on external function (e.g., occupancy of virtual PS system)

Busy period duration Depends on scheduling policy Same for all work-conserving scheduling policies

Energy consumption Depends on scheduling policy Same for all work-conserving scheduling policies

Mean response time Depends on scheduling policy Depends on scheduling policy

Fairness Depends on scheduling policy Depends on scheduling policy
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Fig. 2. Example Results for Dynamic Speed Scaling (Decoupled, PS-driven)



on the same workload. (This requires a simple “virtual PS”

background computation, similar to FSP.) We select PS as the

reference speed scaling function because of its well-defined

fairness properties (i.e., egalitarian treatment of jobs).

Figure 2 highlights four new observations. First, the be-

havior of PS scheduling in Figure 2 is preserved (cf. Fig-

ure 1) when using its own speed scaling function. This

result is straightforward. Second, the results for FCFS and

SRPT scheduling are transformed when they are driven by

the external speed scaling function of PS. In particular, all

three scheduling policies now have exactly the same busy

period structure and duration. That is, they complete the same

amount of work in the same amount of time, since they are

work-conserving policies. Third, all three scheduling policies

consume exactly the same amount of energy, since the CPU

speed is adjusted to the same rates at the same times as in PS

scheduling. Fourth, the departure points of jobs differ across

these three scheduling policies. Thus, the mean job response

times are different.

This simple example demonstrates that with decoupled

speed scaling, the response times of jobs can be altered

without changing the energy consumption. That is, we can

alter E[T ] in Equation (1) without affecting E[ε]. It is shown

that SRPT scheduling is optimal for mean response time [16],

[18]. However, we have not yet determined the optimal speed

scaling function to use. In fact, PS may not be the best external

speed scaling function to use. For instance, using FCFS (i.e.,

Figure 1(a)) as the speed scaling function on this example

workload would reduce energy consumption by 16%, while

increasing the response time of SRPT scheduling by 17%.

Similarly, using SRPT (i.e., Figure 1(c)) as the speed scaling

function would reduce energy consumption by 30%, while

increasing SRPT response time by 36%. Choosing suitably

among these (or other) configurations would depend on the

value of β in Equation (1).

Table II summarizes our main observations about coupled

and decoupled speed scaling. The key insight is that decoupled

speed scaling enables “apples to apples” comparisons between

scheduling policies under fixed energy consumption. Further-

more, the external speed scaling function can be very general

(e.g., constant, derived from a particular scheduling policy, or

completely contrived). This approach provides great flexibility

for the analysis and evaluation of speed scaling designs.

IV. SYSTEM MODEL

We consider a single-server queue with dynamically ad-

justable, continuous, and unbounded service rates. For most

of the results, we consider an arbitrary arrival process and

arbitrary job sizes. A sample path is a sequence of tuples

specifying job arrival times and job sizes.

Let r(t) be the rate of the system at time t, and let P (r)
denote the power required to run at rate r. Then the total

energy consumed by the system by time t is

∫ t

0

P (r(τ))dτ. (3)

A speed scaling function specifies the value of r(t). For

coupled speed scaling, the rate of the system at time t can

be determined by the entire system state at time t, and thus

is influenced by the scheduling policy. For decoupled speed

scaling, the rate at time t is uniquely determined by the sample

path and t, and thus it is independent of the scheduling policy.

We consider the class of work-conserving online scheduling

policies P . Online means that scheduling decisions of a policy

p ∈ P are independent of future arrivals. As is conventional

in the performance modeling literature, we use the term busy

period to refer to a time period during which there is always

at least one job in the system

We consider a preempt-resume model, where a job may be

preempted and later resumed without any context-switching

overhead. In particular, we consider the behavior of the

following scheduling policies:

• Processor Sharing (PS): At each point in time, equal

service is given to all jobs in the system.

• Shortest Remaining Processing Time (SRPT): At any

point in time, service is given to the job with the least

remaining work in the system.

• Fair Sojourn Protocol (FSP): The times at which jobs

complete under PS is computed, and then full service is

devoted to the job with earliest PS completion time.

The response time, T , of a job is the time between its arrival

to the system and its departure from the system (also known

as turnaround time, sojourn time, or flow time). The energy

consumption of a job is denoted by ε. This value depends on

the CPU speeds used during the execution of the job, and the

time spent executing at each speed, as given by Equation (3).

Our goal is to minimize the total cost, which is the linear

combination of response time and energy consumption as in

Equation (1).

Let Tp(σ) denote the random variable representing the

response time under policy p, for a job chosen at random from

sample path σ. Similarly, Tp(x, σ) and Sp(x, σ) = Tp(x, σ)/x
denote the response time and slowdown [31], [32], respec-

tively, under policy p for a job chosen at random from all jobs

of size x on sample path σ. For brevity, we omit σ and write

Tp, Tp(x), Sp(x), and εp, when the sample path is apparent

from the context.

Table III summarizes the notation used in our paper.

A. Efficiency and Fairness

To analyze policies without any distributional assumptions,

we use the following definitions of dominance and efficiency,

as previously presented in [11]. Later, we extend the defini-

tions to facilitate our analysis with distributional models.

Definition 2: Scheduling policy p′ dominates policy p if

1) on any sample path, no job completes later under p′ than

under p, and

2) there exists a sample path such that some job on that

sample path completes earlier under p′ than under p.

Definition 3: A scheduling policy p is efficient if there is

no other policy p′ that dominates it.



TABLE III
SUMMARY OF NOTATION

Symbol Description

σ A sample path, which is a sequence of tuples specifying job arrival times and job sizes
np(t, σ) Number of jobs in the system at time t for policy p on sample path σ
s(np) Speed scaling function (job-count-based) that specifies the rates under policy p
sp(t, σ) Speed used by policy p at time t on sample path σ

T Response time
T (x, σ) Random variable representing response time for a job chosen at random from all jobs of size x on sample path σ

(We write T (x) instead of T (x, σ) if it is clear from the context which sample path we mean.)
S(x, σ) Random variable representing slowdown T (x, σ)/x

(We write S(x) instead of S(x, σ) if it is clear from the context which sample path we mean.)
ε Energy consumption
β Weighting factor
z Total cost for speed scaling system

E[·] Expectation for specified performance metric
P (r) Power required to run at speed r
p-q An arbitrary scheduling policy p driven by the speed scaling function obtained from a reference scheduler q with the

job-count based speed scaling function P−1

zs
p

Total cost for scheduling policy p with the speed scaling function s

Definition 4: A scheduling policy p′ strictly dominates pol-

icy p if, for every busy period on every sample path, every

job (except the final one of the busy period) completes strictly

earlier under p′ than under p.

Definition 5: A strict performance measure is a function π
that maps scheduling policies to real numbers, such that if

policy p′ dominates p, then π(p′) < π(p).
As stated in [11], average response time and average slow-

down are examples of strict performance measures. Specif-

ically, over any finite time interval, the weighted average

of response times constitutes a strict performance measure,

provided that non-zero weights are used for every job.

These definitions can be used in the analysis of the ex-

pected response times of policies when speed scaling is used.

However, note that dominance may only provide a partial

ordering of policies, so not all policies are directly comparable

using these definitions. Also, these definitions focus solely on

response time as the relevant metric, and do not incorporate

energy consumption.

Another metric of interest is slowdown, which is particularly

relevant in the definition of fairness (see Definition 1). To

further study fairness in speed scaling designs, we extend the

notion of dominance and efficiency to slowdown as well.

Definition 6: The slowdown of scheduling policy p′ domi-

nates the slowdown of policy p, if for any given sample path

σ, and for all job sizes x, E[Tp′(x, σ)] ≤ E[Tp(x, σ)], and

there exists a sample path σ′ for which there exists a job size

x such that E[Tp′(x, σ′)] < E[Tp(x, σ
′)].

Definition 7: A scheduling policy p is slowdown efficient

if there is no other policy p′ whose slowdown dominates the

slowdown of p.

V. COUPLED SPEED SCALING RESULTS

In this section, we consider coupled (native) speed scaling

functions that are based on the number of jobs in the system,

as illustrated in our earlier example in Figure 1. In this model,

the rate of the server is decided by a job-count-based speed

scaling function s, which is a strictly increasing function of

the number of jobs in the system. Let np(t, σ) denote the

number of jobs in the system at time t, when using policy p
on sample path σ. Then the rate of the system at time t is

given by s(np(t, σ)), where s is a mapping N∪{0} → [0,∞)
that is strictly increasing. In the rest of the paper, we use s(np)
to refer to the coupled job-count-based speed scaling function

for policy p.

In this model, our key result is that no policy can dominate

another one. We start by showing that FSP’s properties are

not preserved in this speed scaling model, and then formally

prove that all policies are efficient.

A. FSP with Job-count Speed Scaling

In non-speed-scaling systems, the FSP policy is interesting

because of its strict dominance over PS. Specifically, no job

finishes later under FSP than under PS, and all jobs (except

those ending busy periods) finish strictly earlier under FSP

than under PS.

A natural question is whether we can apply FSP in speed

scaling systems. Through the following examples, we demon-

strate that the answer to this question is no. For simplicity, the

examples assume simple job-count-based speed scaling of the

form s(n) = n, though the observations apply more generally

for other speed scaling functions.

There are two fundamental problems that arise when FSP

is naively ported to speed scaling systems. First, the domi-

nance of FSP over PS is not preserved with job-count-based

speed scaling. Second, the standard implementation of FSP is

undefined in some scenarios.

To understand the first issue, consider a trivial sample path

with two jobs, each of unit size, which both enter the system

at time 0. Under PS scheduling, the CPU runs at rate 2,

and both jobs complete simultaneously at time 1. Under FSP

scheduling, one (arbitrarily chosen) job is granted exclusive

full service at rate 2 until it completes at time 0.5, and then

the other job (the sole remaining job in the system) receives

full service at rate 1 until it completes at time 1.5. Since the

latter job completes later under FSP than it does under PS,



the strict dominance property of FSP is violated. One possible

solution to this problem is to run the second job at rate 2 (i.e.,

the rate that PS would have used for this workload). We call

this solution decoupled speed scaling, and present its analysis

in Section VI. A second solution is to scale all CPU speeds by

50% in this example, so that the final job completes no later

than under PS. We call the latter turbocharging, and defer its

analysis to future work.

The second issue is subtle, yet even more fundamental to

the operation of FSP, and requires a slightly more elaborate

example. Consider a sample path with four jobs, each of

size 4, and all arriving at time 0. Under PS, all four jobs

receive concurrent service, with aggregate rate 4, and finish

simultaneously at time 4. Under FSP, the first job receives full

service at rate 4 and finishes at time 1. Then the second job

receives full service at rate 3, and finishes 4
3 time units later

at time 2 1
3 . Next, the third job receives full service at rate

2, and finishes 2 time units later at time 4 1
3 . Note that this

completion time is later than it finishes under PS, and thus the

strict dominance property of FSP is again violated. Even more

interesting, the fourth and final job never receives any service

under FSP, since the “virtual PS” queue used to drive FSP’s

decision-making (see the original algorithm in [11]) contains

no jobs at time 4 1
3 . This anomaly arises because the start time

of the fourth job under FSP is beyond its point of completion

under PS. Hence the FSP policy is ill-defined in this scenario

for job-count-based speed scaling.

The obvious question is whether we can devise another

algorithm to achieve the properties of FSP (namely, efficiency

and strict dominance over PS) in speed scaling systems. In the

following subsection, we show that no policy can dominate

any other policy in the job-count-based speed scaling model.

Later in the paper (Section VI), we show that the standard

implementation of FSP is well defined and it dominates PS,

when speed scaling is decoupled.

B. Efficiency with Job-count Speed Scaling

We next establish that with coupled job-count-based speed

scaling, no policy can dominate any other one.

In the following, let sp(t, σ) denote the CPU speed at time

t under scheduling policy p on sample path σ.

Lemma 8: With job-count-based speed scaling, if policy p
dominates policy p′, then for any sample path provided to both

p and p′, sp(t, σ) ≤ sp′(t, σ) at any time t.

Proof: Consider a policy p that dominates p′, and let

σ be some arbitrary sample path. We need to show that the

rate used by p at time t never exceeds the rate used by p′ at

the same time t. For the purpose of a contradiction, suppose

there is a time t for which sp(t, σ) > sp′(t, σ). Since s is

strictly increasing in n, the preceding inequality implies that

np(t, σ) > np′(t, σ). Since both policies were provided with

the same sample path, the latter inequality implies that at time

t, there must be at least one job that has completed under p′,
yet is still in the system under policy p. This contradicts the

assumption that p dominates p′.

Theorem 9: With job-count-based speed scaling, all poli-

cies are efficient.

Proof: To prove that all policies are efficient, we show

that no policy p can dominate another policy p′. We again

proceed with a proof by contradiction.

Suppose there is a policy p that dominates p′. Then there

exists a sample path σ such that all jobs complete under p no

later than under p′, and at least one job finishes earlier under

p than under p′. Let t denote the first point in time when a

job j on σ completes under p, while under p′ it finishes at

some time t′ > t. In other words, all jobs completed before

time t leave the system at exactly the same time under both

p and p′. This implies that at every point in time until time

t, the same number of jobs are in the system under p and p′.
Hence, the system rate is equal under both policies.

Note that under either policy job j cannot be the very last

job to leave the system. If j were the last job to leave under

p′, then p′ would devote full service to j immediately after

the departure preceding t. This would imply that j leaves the

system under p′ no later than t, contradicting the assumption.

If j were the last job under p then it would also be the last

job under p′, leading to the same contradiction.

At time t, the number of jobs in the system under p
decreases by 1, because of the departure of job j, while

the number of jobs in the system under p′ does not change.

Since up to time t no job has finished sooner under p′ than

under p, at time t the number of jobs in the system under p
becomes strictly less than the number of jobs under p′, and

will remain so throughout the time interval [t, t′). (Note that

by the assumption that p dominates p′, at any point when some

job j′ 6= j leaves p′, that job will also leave or already have

left p.) Since the speed scaling function is strictly increasing

in the number of jobs in the system, the rate under policy p
is less than the rate under p′ throughout [t, t′). Consequently,

the service rate under p is strictly less than the service rate

under p′ throughout [t, t′).
Now, let t∗ be the end of p’s busy period containing job j.

Since, by Lemma 8, the service rate of p never exceeds the

rate of p′, and throughout [t, t′) the service rate of p is strictly

lower than the service rate of p′, the average service rate of p
over the interval [0, t∗] is strictly lower than the average service

rate of p′ over the same interval. Hence, the total amount of

work processed under p in [0, t∗] is less than the total amount

of work processed under p′ in the same interval, and thus

under p′ all jobs that arrive in [0, t∗] finish strictly before t∗.

This contradicts the assumption that under p no job completes

later than under p′.

C. Fairness in Job-count Speed Scaling

We showed that all policies, including PS, in the job-count-

based speed scaling model are efficient. According to the

definition of fairness by Friedman and Henderson [11], a

policy is fair if it weakly dominates PS. Therefore, no other

policy p can be fair in this model. However, if we consider

Definition 1, we also want to see if PS is slowdown efficient

(see Definition 7).



As stated below, we conjecture that PS is slowdown efficient

for an M/GI/1 queue. Any policy that improves the response

time of a particular class of jobs eventually reduces the average

speed of the system, and therefore degrades the response time

of other jobs (i.e., those already in the system, and any new

arrivals). If a policy keeps more jobs in the system than PS,

in order to increase the rate, then it must be keeping jobs in

the system longer than PS, so their response time degrades.

We summarize our conjecture and its implications here:

Conjecture 10: For an M/GI/1 queue with job-count-based

rates, PS is slowdown efficient.

Andrew et al. [10, Proposition 15] showed that the slow-

down of PS with speed scaling remains constant.

Proposition 11: In an M/GI/1 queue with controllable

rates, for any symmetric policy p,

E[Tp(x)] = x(E[Tp]/E[X ]). (4)

Now suppose Conjecture 10 is true. Then there is no policy

p such that maxxE[Tp(x)]/x < E[TPS ]/E[X ]. Therefore, we

obtain the following:

Corollary 12: For an M/GI/1 queue with job-count-based

rates, if PS is slowdown efficient, then

minpmaxx
E[Tp(x)]

x
=

E[TPS(x)]

x
= (E[TPS ]/E[X ]). (5)

VI. DECOUPLED SPEED SCALING RESULTS

In this section, we return our focus to decoupled speed

scaling, which was motivated and explained using the example

in Figure 2. Note that decoupled speed scaling is “unnatural”,

based on the definition in [10]. That is, it is possible for the

CPU speed to change during the execution of a job, even

though no other job arrivals or departures occur. It is also

possible for the CPU speed to remain constant while several

arrivals or departures occur. Examples of these phenomena are

evident in Figure 2, particularly for job 5 under either FCFS

or SRPT scheduling. In general, the monotonicity property

inherent in coupled speed scaling is no longer guaranteed to

hold with decoupled speed scaling.

In this decoupled speed scaling model, we show that FSP

works, and that it dominates PS. Specifically, if the imple-

mentation of FSP with speed scaling runs both the FSP queue

and the virtual PS queue at the same speed (which could be

obtained from PS with job-count-based speed scaling or by

some other external speed function), then the efficiency and

strict dominance of FSP over PS are preserved.

A. Efficiency of FSP

We first note that FSP has the “no reversals” property, which

was observed in [11] for the single speed model, and also in

systems with speed scaling:

Lemma 13: For a fixed sample path in an FSP system, let

t be a point in time at which two jobs A and B are in the

system, and job A receives service. Then job B receives no

service until job A is completed. In particular, job A finishes

before job B.

Proof: Recall that at any point in time FSP serves the

job that will finish earliest under PS. Note that this is the job

that has the least amount of remaining work under PS. (We

assume there are no ties, but it is straightforward to extend the

proof to handle ties. For example, if there is a tie, PS gives

preference to the job with the earliest arrival time.) Therefore,

at time t, under PS the remaining work of job A is less than

that of job B. From the fact that PS gives an equal share of

service to all jobs in the system it is immediate that after t
and at least until A is finished, the remaining work of A will

be less than that of B. Hence, FSP does not service B until

A is finished.

Theorem 14: No scheduling policy p dominates FSP if both

use the same decoupled speed function (i.e., FSP is efficient

for decoupled speed scaling).

Proof: Fix some sample path σ, such that no job under

p finishes later than under FSP. Let r(t) be the rate of the

system at time t, under both FSP and p. We show that no job

finishes earlier under p than under FSP.

Let J1, J2, . . . be the jobs in the order in which they finish

under FSP. Assume Ji arrives at time ai and has size wi,

and departs at time di under FSP. Let T q
i be the set of real

numbers so that at every time t ∈ T q
i , job Ji receives service

under policy q. (T q
i can be viewed as the union of one or more

time intervals.) We show by induction on i that TFSP
i = T p

i

for all i = 1, 2, . . .. Therefore, all jobs finish at the same time

under both protocols.

For i = 1, the claim follows from the fact that, by

Lemma 13, the first job to finish under FSP, J1, must receive

uninterrupted service beginning with its arrival. Clearly, the

same is true for J1 under p, or else J1 would finish later

under p than under FSP. Therefore, T p
1 = TFSP

1 = [a1, d1].
Now suppose the hypothesis is true for J1, ..., Ji−1. Due to

Lemma 13, the only jobs that under FSP can receive service

between the arrival and departure of job Ji are jobs J1, ..., Ji−1

(Otherwise, if some other job J∗ received service while Ji was

in the system, J∗ would finish before Ji). Hence, we have

TFSP
i = [ai, di]− (TFSP

1 ∪TFSP
2 ∪ ...∪TFSP

i−1 ). This implies

wi =

∫
τ∈TFSP

i

r(τ)dτ. (6)

Since TFSP
i′ =T p

i′ for 1 ≤ i′ < i, we know that under p no job

in Ji, Ji+1, · · · gets any service in T p
1 ∪ · · · ∪T p

i−1. Therefore,

the maximal amount of work that can be done on other jobs

during the time interval [ai, di] is
∫
τ∈TFSP

i

r(τ)dτ , which, by

(6), is wi. Hence, the only way job Ji can get enough service

during the interval [ai, di] to complete is if TFSP
i =T p

i .

Theorem 15: FSP strictly dominates PS if both use the

same decoupled speed scaling function.

Proof: The proof is basically the same as the proof of

Theorem 3 presented in [11]. The only modification is in the

inductive step. The amount of work done between the mth

and (m+ 1)th event is not just the elapsed time between the

two events, but the integral over time of the speeds used for

execution. The fundamental result does not change since FSP

mirrors the same speeds as PS.



B. Analysis of Cost under FSP with PS Job-count-based

Speeds

In this section, we study the cost of FSP, as defined in

Equation (1). In particular, we compare z
s(nPS)
FSP and z

s(nPS)
PS ,

which are the cost of running PS with coupled speed scaling,

and the cost of running FSP with the same speeds as PS,

i.e., s(nPS).
When FSP runs at the speeds of PS, both systems use the

same amount of energy. So to compare the cost of FSP with

PS, we only need to consider their average response time.

As described in Section IV-A, average response time is a

strict performance measure (Definition 5). Based on Theo-

rem 15, if FSP runs at the speeds of PS, then FSP dominates

PS, so E[TFSP ] ≤ E[TPS ]. Therefore we have:

z
s(nPS)
FSP ≤ z

s(nPS)
PS (7)

This result is significant for two reasons. First, it indicates

that FSP is superior to PS with respect to cost in decoupled

speed scaling systems. Further work is needed to determine

whether FSP is itself optimal, either for scheduling, speed

scaling, or overall cost. Second, the result raises a question

as to whether PS is the right comparison point for fairness

in speed scaling designs. Again, further work is required to

investigate this issue.

VII. SIMULATION RESULTS

This section presents simulation results validating the formal

theoretical results established in this paper.

The simulation results are obtained using a custom-built

discrete-event simulator written in C++. The simulator has

configurable policies for scheduling (e.g., FCFS, PS, SRPT,

FSP, LRPT) and speed scaling (e.g., coupled, decoupled).

The input to the simulator consists of a two-column work-

load file specifying the arrival time and size of each job, as in

Table I. The arrival times are generated by a Poisson process

and job sizes are exponentially distributed. We have observed

qualitatively similar results for other job size distributions that

we have simulated (e.g., the uniform distribution).

The mean job arrival rate is λ = 1 job per time unit. In the

graphs that are presented, the mean job size is 80 units, though

Table IV shows results for other workload settings. In all cases,

the default service rate capacity of the system being modeled

is 100. Thus the default workload represents 80% offered

load in the traditional (non-speed-scaling) sense. However,

the speed scaling system is inherently dynamic, adjusting

its (unbounded) service capacity to deal with instantaneous

workload demands. We use the square root of the number

of active jobs as the default policy for job-count-based speed

scaling.

The primary performance metrics reported are job response

time and slowdown (i.e., normalized response time). The latter

metric is plotted versus job size to illustrate the efficiency,

fairness, and convergence properties of different scheduling

and speed scaling policies. The results are reported for 100,000

consecutive jobs from within a simulation run length of

1,000,000 jobs, so that simulation warmup and cooldown

effects have minimal impact.

Figure 3 shows the first set of simulation results, for coupled

speed scaling. By design, the graphs are arranged similarly

to Figure 8 in [10], to provide validation of our simulation

environment. In Figure 3(a) the horizontal axis shows the

main body of the (exponential) job size distribution, while

in Figure 3(b), the horizontal axis represents relative job size

within the empirical CDF of the full job size distribution.

In both graphs, the vertical axis shows the mean slowdown

as a function of job size. Note that job sizes are binned

non-uniformly across the data to dampen statistical noise and

improve visual acuity. Bins with fewer than 30 sample jobs are

not plotted in Figure 3(a), while the full observed distribution

is plotted in Figure 3(b).

Figure 3 clearly demonstrates the unfairness of the SRPT

scheduling policy under coupled speed scaling. SRPT nei-

ther dominates PS, nor is dominated by PS. In particular,

SRPT provides a pronounced slowdown advantage for small

jobs, similar slowdown for intermediate-sized jobs, and worse

slowdown for larger jobs. These results also demonstrate that

dynamic speed scaling exacerbates the unfairness of SRPT

scheduling [10]. The unfairness is most pronounced for jobs

in the upper 10% of the job size distribution.

Our results in Figure 3 are qualitatively and quantitatively

similar to those in [10]. For example, the slowdown of SRPT

for large jobs remains above that of PS, and does not exhibit

the “asymptotic convergence of slowdown” property from

the non-speed-scaling world [32]. However, one additional

empirical observation from our simulation results is that the

unfairness of SRPT for large jobs appears to be upper bounded

by the results for PS-SRPT with decoupled speed scaling (i.e.,

PS scheduling based on SRPT’s speed scaling function for

the same workload). A line for PS-SRPT has been added to

Figure 3(a) and (b) to emphasize this point.

Figure 4 presents simulation results for PS scheduling with

decoupled speed scaling. In particular, we consider three

different speed scaling functions (PS, FSP, SRPT). In all three

cases, PS is perfectly fair across job sizes. However, the mean

slowdown value varies significantly depending on the speed

scaling function provided. Among the three speed scaling

policies presented, SRPT provides the highest mean slowdown

(about 40% higher than PS-PS), since it tends to operate at

lower speeds. For this workload, the slowdown results for PS-

FSP are very close to those for PS-SRPT. At higher loads (see

Table IV), there is greater separation between the policies. In

general, the PS-FSP results are (as expected) between those

for PS-PS and PS-SRPT, but are much closer to PS-SRPT than

to PS-PS.

Figure 5 presents simulation results illustrating the dom-

inance of FSP over PS in decoupled speed scaling. The

horizontal line labeled PS-PS shows the native speed scaling

results for PS, which provides egalitarian service for all job

sizes. The second horizontal line above this shows the results

for PS-FSP, which is the PS scheduling policy driven by the

external speed scaling function of FSP. PS is still perfectly fair



TABLE IV
SUMMARY OF SIMULATION RESULTS FOR DIFFERENT WORKLOADS

Scheduling Mean Job Size 80 Mean Job Size 100 Mean Job Size 200
Policy E[T ] E[ε] E[T ] E[ε] E[T ] E[ε]

PS-SRPT 1.589 1.24E+04 2.428 1.54E+04 14.911 4.33E+04
PS-FSP 1.559 1.24E+04 2.345 1.54E+04 10.696 4.34E+04
PS-PS 1.145 2.78E+04 1.561 3.47E+04 4.634 9.38E+04

FSP-PS 0.859 2.78E+04 1.092 3.47E+04 2.415 9.38E+04
FSP-FSP 1.018 1.24E+04 1.374 1.54E+04 4.290 4.34E+04

SRPT-SRPT 1.012 1.24E+04 1.362 1.54E+04 4.246 4.33E+04
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in this scenario, though the increase in mean slowdown reflects

the (generally) lower system occupancy and CPU speeds

associated with FSP. The two dotted curves demonstrate the

dominance of FSP over PS. This dominance is evident both

for native FSP speed scaling (FSP-FSP versus PS-FSP) and PS

speed scaling (FSP-PS versus PS-PS). Under FSP scheduling,

no job ever finishes later than it does under PS, given the same

speed scaling function.

The performance advantages of FSP over PS are very

pronounced. In Figure 5, the mean slowdown for PS is about
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Fig. 5. Simulation Results for PS and FSP Scheduling with Decoupled Speed
Scaling

40-50% worse than it is for FSP. For reference purposes,

the SRPT-SRPT line from Figure 3(a) is also overlaid onto

Figure 5. Comparing the SRPT-SRPT results to the FSP-

FSP results (which has similar mean slowdown to FSP-SRPT)

reveals that SRPT has a slight advantage for smaller jobs,

while FSP has a pronounced advantage for larger jobs. This

observation suggests that FSP scheduling can restore fairness

under decoupled speed scaling, without compromising much

on response time optimality compared to SRPT.



As a closing observation, note that the FSP-FSP entry in

Table IV shows the simulation results for running FSP and

the virtual PS with speeds determined based on (the square

root of) the number of jobs in the FSP queue, rather than

the virtual PS queue. Interestingly, under this scheme, the

response time and the energy consumption (i.e., the cost)

closely follows that of SRPT-SRPT. We thus conjecture that it

is possible to achieve fairness, robustness, and near optimality

under decoupled speed scaling.

VIII. CONCLUSIONS

In this paper, we consider the notion of decoupled speed

scaling, wherein the speed scaling function is fully decoupled

from the scheduling policy in a dynamic speed scaling system.

We propose this approach as a new paradigm for the analysis

and evaluation of speed scaling systems, and use it to compare

and evaluate PS, SRPT, and FSP policies. The key advantage

of decoupled speed scaling is that it enables direct comparisons

between scheduling policies under fixed energy consumption.

From a practical viewpoint, this approach provides great

flexibility for the design and analysis of speed scaling systems.

We provide theoretical and simulation results in the pa-

per. We demonstrate that the FSP scheduling policy, which

dominates PS in the non-speed-scaling world, is ill-defined

under coupled (native) speed scaling based on job count.

In addition, all policies are efficient under coupled speed

scaling, thus no policy can dominate PS. With decoupled

speed scaling, however, FSP again dominates PS, and is

provably efficient. Simulation results demonstrated a notable

performance advantage for FSP, compared to PS.

Based on our analysis and evaluation, we conjecture that

it is indeed possible to attain fairness, robustness, and near

optimality with decoupled speed scaling. A rigorous proof,

however, remains elusive, and is the immediate focus for our

ongoing work.
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