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Abstract—Most topology control algorithms for wireless ad
hoc networks strive to reduce energy consumption by creating a
sparse topology with few long-distance links. However, in asparse
topology, the average path length is relatively large (increasing
end-to-end delay), and the number of vertex-disjoint pathsbe-
tween source-destination pairs is relatively small (reducing fault-
tolerance). Unlike traditional topology control algorithms that
generate a single topology with a certain property, we propose a
distributed algorithm that generates a family of topologies with
a range of characteristics. The network designer can choosea
suitable topology by simply tuning a single parameter∆ (power
savings threshold), trading off energy savings for other features
such as low latency and fault-tolerance. For the topologiesgen-
erated by the proposed algorithm, we also provide an analytical
model to estimate their structural density. The accuracy ofthe
analytical model is validated with extensive simulation results.

I. I NTRODUCTION

Wireless ad hoc networks are known as “networks without
networking”, since they do not rely on any pre-configured
fixed infrastructure. Rather, the nodes can be deployed spon-
taneously, perhaps at random, and then be dynamically recon-
figured into a manageable and controllable network topology.
Such dynamic topology control is widely used in wireless sen-
sor networks, vehicular networks, and wireless mesh network
environments, to name a few.

Many of these wireless ad hoc networks consist of mo-
bile nodes equipped with limited power sources, such as a
battery or a solar cell. Thus energy consumption is a prime
consideration in designing such networks. The transmission
power between a pair of communicating nodes is one of the
dominant factors in the overall energy consumption. Since the
transmission power requirement grows (at least) quadratically
with the distance between the communicating parties, using
one or more nearby neighboring nodes as intermediatere-
lays can dramatically reduce energy consumption. Thus any
energy-aware topology control algorithm gives preferenceto
short-distance links rather than long-distance links.

In general, a topology control algorithm works as follows.
Each node in the network classifies all of its directly reachable
neighbors as either “close” or “far”. The “closeness” of a
neighbor is based on a suitably chosenobjective function. If
the goal is to conserve energy, then direct communication is
used for the close neighbors, while indirect communication
(via a relay node) is used for the far neighbors. After the
classification step, each node reduces its transmission power
to the minimum required to communicate with all of its close
neighbors. Thereby a node uses one or more close neighbors
to relay information to the far neighbors.

One of the major challenges is how to define the energy
efficiency rules for determining the closeness of a neighbor.
There are many solutions proposed in the literature [4], [7],
[16], [20], [21], most of which produce very sparse topologies.
However, energy conservation is not the only important goal.
When other metrics are considered, the strict rules used to
enforce sparse topologies may introduce some new problems.
For example, the tendency toward numerous short-distance
links increases the end-to-end store-and-forward delay for
messages. Moreover, these strict rules may eliminate too many
neighbors, reducing the multi-path redundancy between node
pairs. With fewer neighbors, the sender has limited choice for
forwarding nodes, which can lead to network congestion along
the minimum-energy paths in the network.

In this paper, we argue that slightly relaxing the energy-
efficiency rules for topology formation can provide flexibility
for augmenting other desirable topological properties (e.g.,
latency, fault-tolerance, load balancing). For example, it may
not be worth using a relay node if it saves only 5% transmis-
sion power but adds30% more latency. Specifically, we show
that by relaxing the power control rule, it is easy to create a
family of topologies with enhanced features like low latency
and fault tolerance. We propose a simple, flexible distributed
topology control algorithm, with a single tunable parameter
∆ to control network density and energy efficiency. We also
provide an analytical model to estimate the expected fraction
of links eliminated from a node’s neighborhood, and present
simulation results to validate the analytical model.

Figure 1 illustrates the central idea in our paper. Figure 1(a)
shows the initial topology for a random network of 100 nodes,
with the link connectivity induced by a wireless transmission
range of 100 m. Figure 1(f) shows the well-knownGabriel
graph, which prunes all network links for which the use of
an intermediate relay node provides a lower-energy path for
communication. In between these two extremes, our∆-graph
approach defines a family of network topologies, with the level
of link pruning controlled by the parameter∆. Specifically,
we prune direct links for which the use of an intermediate
relay node saves at least a fraction∆ ≥ 0 in terms of
energy consumption. For∆ = ∞ (actually,∆ = 0.5 in this
example), the∆-graph corresponds to the initial graph. For
∆ = 0, the ∆-graph corresponds to the Gabriel graph. For
other values0 ≤ ∆ ≤ 0.5, the topologies differ in the density
of their connectivity, providing interesting tradeoffs between
path length, delay, fault-tolerance, and energy consumption.
If the initial graph is connected, so are the∆-graphs, for all



TABLE I
SUMMARY STATISTICS FOR∆-GRAPHEXAMPLE IN FIGURE 1

Graph Example Shortest-Hop Path Shortest-Distance Path Lowest-Energy Path
Figure ∆ Nodes Links Hops Dist Energy Hops Dist Energy Hops Dist Energy

1(a) 0.5 100 718 5.06 401.0 32886 5.22 377.5 29064 8.94 409.5 22893
1(b) 0.4 100 590 5.38 407.3 32297 5.69 378.4 27733 8.94 409.5 22893
1(c) 0.3 100 502 5.88 413.1 31101 6.23 381.8 26610 8.94 409.5 22893
1(d) 0.2 100 422 6.94 426.1 29623 7.37 391.6 24858 8.94 409.5 22893
1(e) 0.1 100 360 7.72 432.5 27978 8.06 398.5 23923 8.94 409.5 22893
1(f) 0.0 100 320 8.02 434.6 27920 8.27 402.2 23802 8.94 409.5 22893
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Fig. 1. ∆-graph example for a random network of 100 nodes

values of∆. Furthermore, all∆-graph topologies preserve the
minimum-energy routing path between every pair of nodes.

Table I provides a detailed statistical summary of the
example topologies from Figure 1. For unit link costs, the
results show that the sparsest topologyG0.0 has 60% longer
paths (8.02 versus 5.06) thanG0.5 in terms of hop count,
but they are only about 8% longer in distance. Importantly,
they save about 15% in energy consumption. For shortest-
distance routing on these two topologies, there is again about
a 60% difference in hop counts, a small (6%) difference in
distance, and slightly larger savings (20%) in energy. For
minimum-energy path routing, all of the topologies are the

same. However, the average hop count is 80% higher (8.94
versus 5.06) compared to shortest-hop-path routing on the
initial topologyG0.5, while the energy savings are only 30%.

In the rest of the paper, we present the formal definition of
∆-graphs, analyze their structural properties, and discusstheir
performance tradeoffs. Section II provides a brief discussion
of prior related work. Section III provides a formal definition
of the problem, while Section IV presents our main ideas
and provides some fundamental bounds. Section V proposes
a distributed topology control algorithm, showing that our
approach is practical to implement. Section VI develops our
analytical model to characterize the structure of∆-graph
topologies, while Section VII presents simulation resultsto
validate our model. Finally, Section VIII concludes the paper.
The appendix contains proofs for our main theoretical results.

II. RELATED WORK

Rodoplu and Meng [16] first conceived the idea of minimum
energy mobile wireless networks. They allow nodes to set
their transmission range much lower than the maximum, while
maintaining minimum energy paths between each pair of
nodes. Li and Halpern [6] improved their result by developing
a low-overhead protocol where nodes start with a very small
transmit power and incrementally search for a suitable value
until all minimum energy paths are preserved. Li and Wang [8]
addressed the algorithmic complexity of the work in [16] and
provided an algorithm with lower time complexity.

Cone-Based Topology Control (CBTC), proposed by Wat-
tenhoferet al. [20], generates a graph structure similar to a
Yao graph. In CBTC, each node determines a power level to
reach at least one node in every cone of degreeα within its
surrounding area. However, the connectivity of the produced
subgraph is only guaranteed whenα ≤ 5π/6.

Toussaint [19] proposed Relative Neighborhood Graph
(RNG) as a sparse connected topology for wireless networks.
In RNG, a link〈s, t〉 is eliminated if there is a suitably-located
witnessnodew satisfying the following condition:

∃w 6= s, t : max(d(s, w), d(t, w)) < d(s, t)

Li et al. [7] propose a distributed algorithm (called LMST)
based on constructing minimum spanning trees (MST). Instead
of building a global MST, which requires global knowledge
of the network topology, each node creates its own local
MST among its neighbor set. While constructing such LMST,
the weight of an edge is set to the transmission power
needed between its endpoints. Once the local tree has been



TABLE II
SUMMARY OF MODEL NOTATION

Notation Description

Gmax Graph induced by max transmit powerPmax

R Transmission radius
r, s, t, u, v, w Nodes in a wireless ad hoc network

(s, t) A node pair
〈s, t〉 An edge betweens and t

d(s, t) Distance between a node pair(s, t)
α Path loss factor

Ps→t Transmission power required froms to t

Rs→r Relay region of(s, r) node pair
C(s,t) Cover region for transmission froms to t

LR
s→r(∆) Contour line within relay region

LC
s→t(∆) Contour line within cover region

SR
s→r(∆1, ∆2) Contour strip within relay region

SC
s→t(∆1,∆2) Contour strip within cover region
C(s,t,∆) ∆-cover region for transmission froms to t

ξ(s,t,∆) ∆-cover set for transmission froms to t

G∆ ∆-graph
Felim Fraction of neighbors eliminated

constructed, each node contributes to the final topology those
nodes that are its neighbors in the local MST. However the
resulting graph does not preserve the minimum-energy paths.

There is recent research interest in topology control as a
means of interference reduction. The natural assumption that
a sparse topology implies low interference was first refuted
by Bukhartet al. [2]. They provide an intuitive definition of
interference and propose algorithms to construct connected
subgraphs and spanners with minimum interference. Unfor-
tunately, their solution does not preserve the minimum-energy
paths between node pairs. Another algorithm, with the same
drawback, is presented in [10] and aims at minimizing the
average or maximum interference (per link or node). Tanget
al. [18] propose an interference-aware algorithm for multi-
channel mesh networks based on IEEE 802.11. These issues
are beyond the scope of our paper. Although an algorithm
that adjusts node degree to tradeoff energy is proposed in [5],
there is no guarantee that the derived structure would preserve
minimum energy paths. Moreover, no mathematical expression
for estimating topology size is provided.

III. PROBLEM STATEMENT AND ASSUMPTIONS

In this section, we formulate our problem definition, and lay
the groundwork for our analysis. Table II provides a summary
of the notational conventions used in our analysis.

A. Problem statement

Any n-node, multi-hop, wireless network can be modeled as
a graphGmax = (V, Emax) with the vertex setV representing
the nodes, and the edge setEmax defined as follows:

Emax = {〈s, t〉 | 〈s, t〉 ∈ V × V ∧ s 6= t ∧ d(s, t) ≤ Rmax}

where Rmax is the distance beyond which the maximum
transmission powerPmax decays too much to be correctly
decoded. The graphGmax defined this way is called themax-
imum powered network. In this paper, we solve the following
topology control problem:
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Fig. 2. Relay region, cover region and contour lines (α = 4)

Problem 3.1:Given an initial topologyGmax, provide a
distributed algorithm based on local information only to con-
struct aconnectedsubgraphG∆ = (V, E∆) parameterized by
∆, where an edge〈s, t〉 ∈ E∆ iff there does not exist any
relay noder such that relaying throughr saves at least∆
fraction of the power required to send directly froms to t.

B. Power model and assumptions

To send a message from nodes to node t at distance
d(s, t), the minimum transmission power required isPs→t =
Kdα(s, t) where α ∈ [2, 4] is the path loss factor, andK
is a global constant [15]. We assume that network links are
symmetric, and that the power required for processing and
receiving the signal are negligible. We also assume that each
node is aware of its own position with reasonable accuracy,
perhaps via GPS. The minimum power required using a node
r as relay is:Ps→r→t = Ps→r +Pr→t. The benefit of using a
relay r can easily be quantified by measuring thefraction of
power saved(which is denoted by∆ throughout the paper):

∆ =
Ps→t − Ps→r→t

Ps→t

= 1−
Ps→r→t

Ps→t

C. Relay region

Rodoplu and Meng [16] devised a topology control protocol
based on the notion of arelay region. Given a nodes and
another noder within s’s communication range, the relay
regionRs→r of noder is the set of points such that relaying
throughr to any point inRs→r takes less energy than a direct
transmission to that point. The shaded area of Figure 2(a)
showsRs→r for α = 4. For example,s can save power by
relaying throughr to send messages tot2 (the green node).
For t1 (the red node), however, it is more efficient fors to
send directly, sincet1 is outside of the relay regionRs→r .

D. Cover region

The algorithm presented by Rahmanet al. [14] is based on
a notion ofcover region. Consider a pair of nodes(s, t) such
that the targett lies within the communication range of the
sources. Envision the set of all points that can possibly act
as relays betweens and t such that it would be more power
efficient for s to use an intermediate relay noder instead of
sending directly tot. This set of points collectively forms the
cover region of(s, t) pair. Mathematically:

C(s,t) = {〈x, y〉 |Ps→〈x,y〉→t ≤ Ps→t}
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Fig. 3. Contour strips inside relay regions

Here we use〈x, y〉 to denote a hypothetical node located at
position〈x, y〉. The shaded region of Figure 2(b) showsC(s,t)

for α = 4. Using any node within the shaded area as a relay
node saves energy when sending froms to t (or t to s).

IV. ∆-GRAPH ANALYSIS

In this section, we develop and formalize the main idea
of the paper. We start with outlining some definitions required
for the development of the algorithm, followed by some useful
properties of the topology generated by the algorithm.

A. Contour lines and Contour strips

Consider the set of hypothetical points within the relay
region for which a∆ fraction of the transmission power is
saved whenr is used as a relay instead of sending directly to
any of those points froms. Such points collectively define a
contour line inside the relay region, denoted byLRs→r(∆).
For example, the blue curve in Figure 2(a) is a contour line
for ∆ = 0.25 (i.e., 25% power is saved whenr is used for
relaying froms to any points on the curve). Formally:

LRs→r(∆) = {〈x, y〉 |
Ps→r→〈x,y〉

Ps→〈x,y〉
= (1−∆)}

A set of consecutive contour lines collectively forms acontour
strip within a relay region. Any contour strip is parameterized
by the interval[∆1, ∆2] where∆1 and∆2 are possible values
of ∆. The beginning and the end of the strip are defined by
the contour linesLRs→r(∆1) andLRs→r(∆2), respectively.
Thus a contour strip shows a power saving between[∆1, ∆2]
fraction of the direct transmission power. Mathematically:

SRs→r(∆1, ∆2) = {〈x, y〉 |(1−∆2) <
Ps→r→〈x,y〉

Ps→〈x,y〉
≤ (1−∆1)}

Figure 3 shows the contour strips within the relay region for
α = 2 andα = 4 respectively. If a nodet is located anywhere
in the green strip of the relay region, for example,s can save
somewhere between10− 20% of power by usingr as a relay
instead of sending directly tot.

Contour lines and strips can be defined similarly for cover
regions. Consider two nodess andt as shown in Figure 4. A
contour line within their cover region is:

LCs→t(∆) = {〈x, y〉 |
Ps→〈x,y〉→t

Ps→t

= (1−∆)}
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Fig. 4. Contour strips inside cover regions

and the contour strip for the interval[∆1, ∆2) is:

SCs→t(∆1, ∆2) = {〈x, y〉 |(1−∆2) <
Ps→〈x,y〉→t

Ps→t

≤ (1−∆1)}

The blue line within the cover region of Figure 2(b) is a
contour line with a25% power savings. Figure 4 shows
contour strips within cover regions.

Let us examine the maximum attainable value of∆, which
we call ∆max. It is easy to show that∆max depends onα.

Lemma 4.1: Bounded Power Savings:The maximum pos-
sible power savings using a single relay is∆max = 1− 1

2α−1 .
Corollary 4.1: For α = 2, ∆max = 0.5, and for α = 4,

∆max = 0.875.

B. ∆-cover regions and∆-cover sets

When the second parameter∆2 of a contour strip
SCs→t(∆1, ∆2) is set to∆max, then the strip provides all
possible locations betweens and t that can saveat least
∆1 fraction of power compared to direct communication
betweens and t. Such a contour strip now depends on a
single parameter∆ (replacing ∆1) and will be called∆-
cover regions. Formally∆-cover regions and∆-cover sets are
described by the following definitions:

Definition 4.1: Consider the set of all points that can pos-
sibly act as relays betweens andt such that it would save at
least∆ fraction of power fors to use a node located at one of
those points instead of sending directly tot. This set of points
collectively forms the∆-cover region of(s, t) pair:

C(s,t,∆) = {〈x, y〉 |
Ps→〈x,y〉→t

Ps→t

≤ 1−∆}

The collection of all nodes falling within the∆-cover region
of s and t is called the∆-cover set ofs and t:

ξ(s,t,∆) = {v|v ∈ V ∧ Location(v) ∈ C(s,t,∆)}

Figure 5 shows the∆-cover regions for different values of
∆. Forα = 2, all ∆-cover regions are circular regions centered
at the midpoint connectings andt. The circular region shrinks
to a point as we increase the value of∆ to ∆max.

The next three lemmas establish some basic properties of
∆-cover sets and∆-cover regions:

Lemma 4.2: Properties of∆-Cover Sets:(a) For anyr ∈
ξ(s,t,∆), d(s, r) < d(s, t). (b) If r ∈ ξ(s,t,∆), thent /∈ ξ(s,r,∆).
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Lemma 4.3: Circle Property of∆-Cover Regions:Suppose
the distance betweens and t is d. For α = 2, the ∆-
cover regions are circular regions centered at the midpoint
on the straight line connectings and t, and have radius
√

(1− 2∆)d/2.
Lemma 4.4: Relationship among∆-Cover Regions:For

anyα and a pair of nodes(s, t), if ∆1 > ∆2, thenC(s,t,∆1) ⊂
C(s,t,∆2) and ξ(s,t,∆1) ⊂ ξ(s,t,∆2), where0 ≤ ∆2 < ∆1 ≤
∆max.
Note that, according to Lemma 4.3, forα = 2 both C(s,t,∆1)

and C(s,t,∆2) are regions confined within the circles cen-
tered at (d/2, 0) with radius R1 =

√

(1 − 2∆1)d/2 and
R2 =

√

(1 − 2∆2)d/2. If ∆1 > ∆2 then R1 < R2 and
C(s,t,∆1) ⊂ C(s,t,∆2).

C. ∆-graphs

The ∆-graph, denoted byG∆ = (V, E∆), is a subgraph of
Gmax whereV (G∆) = V (Gmax) andE∆ ⊆ Emax. Formally,
an edge〈s, t〉 in Gmax also exists inG∆ if there is no node
r in the ∆-cover region of(s, t) pair: E∆ = {〈s, t〉 |s 6=
t∧ξ(s,t,∆) = ∅}. Once the∆-cover regions are known it is very
easy to constructG∆ graphs. For example, during construction
of the graphG0.3, the edge〈s, t〉 will be eliminated if there
exists at least one noder in the shaded circle of Figure 5(d).

The following lemma shows an interesting result aboutG0.
Lemma 4.5: Relationship with Gabriel Graph:For α = 2,

the graphG0 is a Gabriel Graph.
Connectivity is an important property for any topology

control algorithm. With the help of the subsequent lemmas,
we show that allG∆ graphs are connected.

Lemma 4.6: Connectivity ofG0: For any α, if Gmax is
connected, then the subgraphG0 is also connected.

Lemma 4.7:∆-Graph Relationship:For any α, if 0 ≤
∆2 < ∆1 ≤ ∆max, thenG∆2 ⊂ G∆1 .

Combining Lemma 4.6 and Lemma 4.7 yields:
Theorem 4.1:∆-Graph Connectivity: If Gmax is con-

nected, thenG∆ is connected, for any0 ≤ ∆ ≤ ∆max and
any α.

V. D ISTRIBUTED ALGORITHM FOR CONSTRUCTINGG∆

In this section, we present a distributed algorithm for con-
structingG∆. The operation is described from the viewpoint
of a single nodes. For static networks, the construction starts
by broadcasting a single neighbor discovery message (NDM)
at the maximum powerPmax. When mobility is considered,
NDM needs to be sent periodically at an interval suitably cho-
sen based on the mobility dynamics. All the nodes receiving
the NDM froms send back a reply. Whiles collects the replies

of its neighbors, it learns their identities and locations.It also
constructs the∆-cover sets with those neighbors. Initially, all
those sets are empty (s does not even know what neighbors
there are). The setAs, which also starts empty, keeps track of
all the nodes discovered in the neighborhood.

Whenevers receives a reply to its NDM from a nodev,
it performs the steps listed in Algorithm 1. Its purpose is to
update the configuration of the∆-cover sets. At the end, when
s has received all the replies, the configuration of∆-cover sets
is complete. The goal of nodes is to determine its neighbor
set, i.e., the collection of neighbors to which transmission
should be direct. Having determined the∆-cover regions of
all its neighbors,s is in position to identify the members of its
neighbor set. Ifξ(s,t,∆) 6= ∅ for somet, it means that sending
directly to nodet is not ∆-power efficient, i.e., there is at
least one noder ∈ ξ(s,t,∆) that can act as a relay between
s and t and save at least∆ fraction of power versus direct
transmission. A nodet that has an empty∆-cover set with
s has no∆-power-efficient relays and thus belongs to the
neighbor set ofs. Consequently, the loop listed in Algorithm 2
completes the algorithm by generating the neighbor setℵs of
s. The transmission powerp(s) for the nodes is determined
as follows. For every unicast packet, nodes transmits with
the minimum power required to reach the destination. For
every neighbor broadcast message, nodes uses the power
required to reach the furthest neighbor inℵs. Specifically,p(s)
is determined as follows:p(s)← max {Kdα(s, v) : v ∈ ℵs}.

VI. A NALYTICAL MODEL

In this section, we develop a mathematical expression
for estimating the expected fraction of neighbors that are
eliminated inG∆ graphs forα = 2. Expressions for general
values ofα are left for future work. The model is developed
by augmenting the approach provided in [9] with necessary
modifications to accommodate∆-cover regions.

Consider a multi-hop wireless network withn nodes uni-
formly distributed over a rectangular region with areaA. The
average node density isD = n

A
. The maximum transmission

radius of each node isR, which is assumed to be the same
for all nodes. Let us observe an arbitrary nodes within the
deployment area. The average number of nodes located in the
communication region of nodes is NR = πR2 ×D = πnR2

A
.

Let PN (x) be the probability that there exists a neighbor
t at distancex from s. Clearly, PN (x) = 0 for x > R. For
x ≤ R, at first consider a small area strip defined bydx at
the perimeter of the circle with radiusx and centered ats as
shown in Figure 6. Also consider a small angledθ measured
from an arbitrary but fixed axis. The length of the arcℓ = xdθ



Algorithm 1 UpdateCoverSets (s, v, ∆)
for eachw ∈ As do

if Location(v) ∈ C(s,w,∆) then
ξ(s,w,∆) = ξ(s,w,∆) ∪ {v}

else if Location(w) ∈ C(s,v,∆) then
ξ(s,v,∆) = ξ(s,v,∆) ∪ {w}

end if
end for

Algorithm 2 NeighborSet (s, ∆)

ℵs = ∅
for eacht ∈ As do

if ξ(s,t,∆) = ∅ then
ℵs = ℵs ∪ {t}

end if
end for

and the area of the small regiondA within this small strip can
be approximated asdA = ℓdx = xdxdθ. Therefore the area
of the entire small strip denoted byAstrip becomes,

Astrip =

∫ 2π

0

dA =

∫ 2π

0

ℓdx =

∫ 2π

0

xdxdθ = 2πxdx

ThusPN (x) becomes:

PN (x) = Astrip ×D = 2πxdx ×D =
2πnxdx

A
(1)

Let PC(x) be the probability that there exists a node in the
cover regionC(s,t,∆) between node pair(s, t). The distance
x betweens andt plays an important role in determining the
value of PC(x). For largex, the size of the cover region is
also large and the probability of a node’s existence within this
cover region also becomes large.

The probabilityPE(x) of eliminating any nodet from the
neighbor set ofs is the probability that there exists a neighbor
t at distancex from s, and there is a node in the∆-cover
region between(s, t). So PE(x) is:

PE(x) = PN (x)× PC(x) =

(

2πnxdx

A

)

× PC(x) (2)

The expected number of neighbors eliminated bys from its
neighbor set is found by integratingPE(x) over the transmis-
sion radiusR within which s possibly can communicate:

Telim =

∫ R

0

2πnx× PC(x)dx

A
(3)

If we divide the expected number of eliminated neighbors by
the expected number of nodes in a node’s communication area,
we get the expected fraction of neighbors that are eliminated
from a node’s neighbor set:

Felim =
Telim

NR

=

∫ R

0
2πnxPC(x)dx

A

πnR2

A

=

∫ R

0
2πnxPC(x)dx

πnR2
(4)

Let’s find the probability that at least one node is located
within the ∆-cover region of(s, t), i.e., PC(x). Recall from
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Fig. 6. Illustrating circular strip at distancex

Lemma 4.3 that forα = 2, ∆-cover regions (i.e.,C(s,t,∆)) are
circular regions with radiusR =

√

(1 − 2∆)x/2. Let β =
√

(1− 2∆) so thatR = βx/2. The probability that a node is
placed in the circular areaπβ2x2

4 within the areaA is P∆ =
πβ2x2

4

A
= πβ2x2

4A
. The probabilityPk(C(s,t,∆)) that exactlyk

nodes are inC(s,t,∆) is:

Pk(C(s,t,∆)) =

(

n− 2

k

)

P k
∆ × (1− P∆)n−2−k (5)

Note thatn−2 is used rather thann because we excludes and
t. For largen and smallP∆, the binomial distribution can be
approximated using Poisson distribution [1] with meannP∆:

Pk

(

C(s,t,∆)

)

=
(nP∆)

k × e−nP∆

k!
(6)

The probability that there exists at least one node inC(s,t,∆):

PC(x) =

n
∑

k=1

Pk

(

C(s,t,∆)

)

=

∞
∑

k=1

(nP∆)
k × e−nP∆

k!

= e−nP∆

∞
∑

k=1

(nP∆)k

k!
= e−nP∆

(

∞
∑

k=0

(nP∆)k

k!
− 1

)

= e−nP∆
(

enP∆ − 1
)

= 1− e−nP∆

= 1− e−
πnβ2x2

4A [substituting the value ofP∆] (7)

By replacingPC(x) in Equation 4 using Equation 7, we get:

Felim =

∫ R

0
2πnx× PC(x)dx

πnR2

=

∫ R

0 2πnx×
(

1− e−
πnβ2x2

4A

)

dx

πnR2

=
πnβ2R2 + 4Ae−

πnβ2R2

4A − 4A

πnβ2R2
(8)

Finally, restoringβ =
√

(1− 2∆), we obtain:

Felim =
πn (1− 2∆)R2 + 4Ae−

πn(1−2∆)R2

4A − 4A

πn(1− 2∆)R2
(9)

According to Equation 9, the expected fraction of neighbors
that are eliminated from a node’s neighbor set is a function
of four network parameters, namely power savings threshold,
number of nodes, deployment area, and maximum transmis-
sion radius (i.e.,Felim = f(∆, n, A, R)). The general effects
of these parameters (while changing one and keeping others
fixed) are as follows:Felim increases when eithern or R
increase, and decreases when either∆ or A is increased.



VII. S IMULATION RESULTS

In this section, we present simulation results to verify
the accuracy of our analytical model, and we explore the
performance tradeoffs offered by∆-graphs.

A. Simulation environment and performance metrics

To evaluate the performance, we simulate randomly de-
ployed networks of100, 300, and 500 nodes uniformly dis-
tributed over a625 m× 625 m square region. The maximum
transmission range is limited between100m to 250m. We
only consider connected networks, since it is not possible to
generate a connected subnetwork unless the initial network
Gmax is connected. We useα = 2 for all scenarios.

We have generated10 instances of networks for each net-
work size. Performance measures are reported as an average of
these10 random scenarios (unless explicitly stated otherwise).
We analyze the performance of the different∆-graphs using
two performance criteria: sparseness, and fault tolerance.

Sparseness.The number of links remaining in a subgraph
G∆ determines its sparseness. The degree of sparseness of
a network affects routing performance of the routing layer.
For example, if flooding is used for route discovery, it may
cause serious broadcast storm problems [11] in a dense graph,
such asGmax. By reducing the neighbor set of each node,
this problem can be mitigated to some extent. We determine
the sparseness of a network by measuring the average fraction
of neighbors that are eliminated, i.e.,Felim. Larger values
of Felim indicate more sparseness. We run the proposed
algorithm on a givenGmax by setting different values of∆
and measureFelim for each subnetworkG∆.

Fault tolerance. For each of the communication subnet-
works G∆, we measure the degree of connectivity to assess
fault tolerance. A (sub)networkG∆ is calledk-connected if
there exists at leastk vertex-disjoint paths between all pairs
of nodes. A large value ofk generally indicates a high level
of fault resilience.

B. Performance evaluation

1) Sparseness ofG∆ graphs: To see the effect of∆ on
sparseness, we return to the example in Figure 1(a), which
shows a typical random deployment of100 nodes, with each
node having a maximum communication range of100m. This
is the initial graphGmax for our algorithm. The remaining
parts of Figure 1 showG∆ for ∆ = {0, 0.1, 0.2, 0.3, 0.4}.
G0 is the Gabriel graph (see Lemma 4.5). All five subgraphs
have considerably fewer links and lower average node degree
compared toGmax (see Table I). For larger values of∆, more
links are retained, since the condition for eliminating neighbors
with long-distance links is more stringent. For example, to
eliminate a link〈s, t〉 in G0.1, there must exist a relay between
s and t that can save at least10% power, whereas this
requirement is30% savings forG0.3. Therefore, the long-
distance links may be pruned inG0.1, but survive inG0.3.

The sparseness of differentG∆ graphs is compared under
different parameter settings in Figure 7. Two parameters were
varied: maximum transmission range in Figure 7(a), and
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Fig. 7. Expected Fraction of Neighbors Eliminated

number of nodes in Figure 7(b). In each of the plots, we show
the values ofFelim found during the simulation and calculated
from the analytical model.

In Figure 7(a), we deployed300 nodes and varied the
maximum transmission range (R). Every node has the same
R. Felim slowly decreases at the beginning of each curve and
drastically drops at the end. For large values of∆, only a few
longer links were eliminated, since the rule for elimination
becomes harder to satisfy with large∆. Moreover, more
neighbors are pruned in networks with higherR, since the
chance of elimination for a neighbor is also higher.

Figure 7(b) shows the effect of node density on neighbor
elimination by varying the number of nodes (100, 300, and
500) within the same deployment region.R is kept fixed at
150m for all scenarios. The result is as expected: a higher
fraction of neighbors is eliminated in more dense networks
for all values of∆.

Figure 7(a) and 7(b) also show that for all scenarios, the
results of analysis are very close to the simulation results,
with a difference of at most 3%. The small inaccuracy arises
from nodes located close to the boundaries of the simulation
region, for which the communication area is restricted, and
thus they have fewer neighbors. We ignored this “boundary
effect” to simplify our analytical model.

2) Fault tolerance:We next focus on the benefit of having
more neighbors. To see the benefit, we determine the number
of vertex-disjoint (VD) paths between all pairs of nodes in
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each subnetworkG∆. R is set to150m (the trends are similar
for other values ofR). Figure 8 shows the percentage of
node pairs versus the number of VD paths between them.
All G∆ subgraphs are connected because the plots for all
∆-graphs show100% of node pairs having at least one VD
path. While there is a small (albeit visible) difference in the
percentage of node pairs having at least two or three VD paths
in different G∆ subnetworks, the difference is much larger
for even more VD paths. Only18% of node pairs have four
VD paths in the Gabriel graph, but this percentage grows to
38%, 62%, 83%, 90%, and 98% for ∆ = 0.1, 0.2, 0.3, 0.4,
and 0.45, respectively. Clearly, larger values of∆ add more
fault-resilience to the network by providing auxiliary paths.

C. Comparison with traditional topologies

Sparseness.∆-graphs can be compared to some traditional
topologies such as Minimum Spanning Tree (MST), Local
Minimum Spanning Tree (LMST), Relative Neighborhood
Graphs (RNG) and Gabriel Graphs (GG) in terms of sparsity.
Prior work [12], [19] has shown that MST⊆ RNG ⊆ GG.
Cartigny et al. [3] show that LMST ⊆ RNG. It is also
known that LMST contains MST (see [13]). By combining
Lemma 4.5 and 4.7, we can deduce that GG⊆ G∆, for ∆ ≥ 0.
Combining all these results we can infer that MST⊆ LMST
⊆ RNG ⊆ GG ⊆ G∆ ⊆ Gmax and consequently,

n− 1 ≤ |LMST | ≤ |RNG| ≤ |GG| ≤ |G∆| ≤ |Gmax|

(the lower bound is the size of MST;n is the number of
nodes). Moreover, only GG andG∆ graphs in the above series
preserve minimum energy paths between all pairs of nodes.
Fault Tolerance. Figure 8 shows how the network connec-
tivity varies among the foregoing topologies. Although allof
the topologies guarantee 1-connectivity (i.e.,100% node pairs
have at least one VD path in the plots), a majority of node
pairs have 2-connectivity (> 96%) in ∆-graphs. On the other
hand, only about36% of node pairs are 2-connected in LMST
or 76% in RNG. LMST and RNG have less than10% of
node pairs that are 3-connected, but∆-graphs have a rich
proportion of such nodes (> 60%). Clearly, sparsity and fault
tolerance create an interesting tradeoff; sparser networks have

lower fault-tolerance, and all∆-graphs provide a higher level
of fault-tolerance compared to other traditional topologies.

VIII. C ONCLUSIONS

Topology control in wireless ad hoc networks introduces
many challenges due to multiple conflicting performance
optimization criteria. Solutions optimizing one performance
criteria are detrimental to others. This paper tackles thisissue
by providing an algorithm that generates a class of topologies
and provides the flexibility to network designers to choose the
appropriate topology with desired performance characteristics.

Our ∆-graph approach has three main advantages. First,
the algorithm is simple, practically implementable, distributed,
and strictly local. Second, unlike many other traditional
topology control algorithms, our algorithm is extremely flex-
ible, while still preserving minimum-energy paths. Third,
the structural properties of the topologies generated by the
algorithm can be calculated analytically, perhaps prior to
network deployment. These advantages make our proposed
algorithm appealing for deploying flexible ad hoc networks.
Ongoing work is extending our approach to mobile ad hoc
networks. At the same time, we are evaluating∆-graphs for
other performance characteristics, such as interference,packet
delivery ratio (PDR), and throughput, with the help of packet-
level simulations.
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APPENDIX

This appendix contains the formal proofs for the theoretical
results claimed in the paper.

Lemma 4.1.Bounded Power Savings.
Proof: Consider a relay noder between a node pair(s, t).

Assume thats and t are within their mutual transmission
ranges. Althoughr can be placed at arbitrary positions, placing
r at the midpoint on the straight line connectings andt always
produces the best power savings [17]. Now let us consider
the case wheres, r and t are placed on a straight line. Let
d(s, t) = d, d(s, r) = x, and d(r, t) = d − x. Therefore,
Ps→t = Kdα, andPs→r→t = Kxα + K(d − x)α. Energy is
saved ifPs→r→t < Ps→t and the fraction of power savings
becomes a function of distancex:

∆ = f(x) =
Ps→t − Ps→r→t

Ps→t

= 1−
Ps→r→t

Ps→t

⇔ ∆ = f(x) = 1−
xα + (d− x)α

dα

The maximum off(x) is obtained forf ′(x) = 0, i.e.,

f ′(x) = −
1

dα
[αxα−1 − α(d − x)α−1] = 0

Thusxα−1 = (d − x)α−1, or x = d − x or x = d/2. So the
maximum power savings is achieved when the relay node is
placed at the midpoint of the straight line connectings andt.
The power savings there are:

∆max = f(
d

2
) = 1−

(d
2 )α + (d− d

2 )α

dα
= 1−

1

2α−1

Lemma 4.2.Properties of∆-Cover Sets.
Proof: (a) If r ∈ ξ(s,t,∆), then from Definition 4.1 we

get, Ps→r→t ≤ (1 − ∆)Ps→t. Since∆ ≥ 0, it follows that
Ps→r→t ≤ Ps→t. ReplacingPs→r→t and Ps→t by distances
(using the path loss model) we get,dα(s, r) + dα(r, t) ≤
dα(s, t). Now for α ≥ 1, d(s, t) > d(s, r).

(b) If r ∈ ξ(s,t,∆) then from (a),d(s, t) > d(s, r). Now
supposet ∈ ξ(s,r,∆) then again from (a),d(s, r) > d(s, t)
which is a contradiction.

Lemma 4.3.Circle Property of∆-Cover Regions.
Proof: Without loss of generality, let us assume thats and

t are located at(0, 0) and(d, 0). Consider a hypothetical relay
noder within the∆-cover region of node pair(s, t) positioned
at 〈x, y〉. Here∆ is a real number satisfying0 ≤ ∆ ≤ 0.5.
From Definition 4.1, the fraction of power saved whenr is
used as a relay must be at least∆, therefore:

∆ ≤
Ps→t − Ps→r→t

Ps→t

= 1−
Ps→r→t

Ps→t

⇔ ∆ ≤ 1−
x2 + y2 + (d− x)2 + y2

d2

After some easy manipulations, the expression becomes:

(x−
d

2
)2 + y2 ≤ (1− 2∆)(

d

2
)2 = (

√

(1− 2∆)d/2)2

which is an equation of a circle centered at(d/2, 0), and with
radius

√

(1− 2∆)d/2. Thus any relay node providing at least
∆ fraction power savings must fall within this circle.

Lemma 4.4.Relationship among∆-Cover Regions.
Proof: Consider a point〈x, y〉 ∈ C(s,t,∆1). From the

definition of ∆-cover regions we get,

Ps→〈x,y〉→t ≤ (1−∆)Ps→t for α ≥ 2

Since∆1 > ∆2, we get,(1−∆1) < (1−∆2) and the above
equation becomes:

Ps→〈x,y〉→t ≤ (1 −∆1)Ps→t ≤ (1−∆2)Ps→t

which implies〈x, y〉 ∈ C(s,t,∆2).
The nodes actually present within the smaller region

C(s,t,∆1) must also be contained within the larger region
defined byC(s,t,∆2). Therefore,ξ(s,t,∆1) ⊂ ξ(s,t,∆2).

Lemma 4.5.Relationship with Gabriel Graph.
Proof: In G∆, an edge〈s, t〉 is eliminated if for any

triplet 〈s, r, t〉 it holds thatPs→r→t ≤ (1 −∆)Ps→t. Putting
∆ = 0 the condition becomes,Ps→r→t ≤ Ps→t, or d2(s, r)+
d2(r, t) ≤ d2(s, t), which is the condition for elimination of
an edge in Gabriel graph [9]. ThusG0 is a Gabriel graph.

Lemma 4.6.Connectivity ofG0.
Proof: First, we show thatG0 = (V, E0) preserves all

minimum energy paths inGmax = (V, Emax) between every
pair of nodes. Suppose that the cost of an edge〈s, t〉 is
γ(〈s, t〉) = Ps→t. Since a path is defined by consecutive
edges, the cost of a pathπ = 〈s0, s1, . . . , sn+1〉 becomes
γ(π) =

∑n

i=0 γ(〈si, si+1〉). Suppose, by way of contradiction,
there exist nodess, t and a simple pathδ in Gmax such that
γ(δ) < γ(δ′) for any simple pathδ′ from s to t in G0. Let
δ = 〈s0, s1, . . . , sn+1〉 with s0 = s and sn+1 = t. Then
for all i = 0, 1, . . . , n, it must be true that〈si, si+1〉 ∈ E0.
Otherwise, there exists a noder in the ∆-cover region of
node pair(si, si+1). But thenγ(〈si, r, si+1〉) < γ(〈si, si+1〉)
and the pathδ can be replaced by a least cost path by
replacing the edge〈si, si+1〉 with 〈si, r, si+1〉, which is a
contradiction. SoG0 preserves all minimum energy paths in
Gmax between all pairs of nodes. Thus it immediately follows
that G0 is connected providing at least the minimum energy
paths between all pairs of nodes.

Lemma 4.7.∆-Graph Relationship.
Proof: Suppose the edge sets ofG∆1 and G∆2 are

E∆1 and E∆2 respectively. Then it is sufficient to show
that if an edge〈s, t〉 ∈ E∆2 then it must be the case that
〈s, t〉 ∈ E∆1 . Since 〈s, t〉 ∈ E∆2 , there exists no noder
inside C(s,t,∆2). Since∆1 > ∆2, according to Lemma 4.4,
C(s,t,∆1) ⊂ C(s,t,∆2). Therefore there is no noder inside the
C(s,t,∆1) and 〈s, t〉 ∈ E∆1 .


