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Abstract—Most topology control algorithms for wireless ad
hoc networks strive to reduce energy consumption by creatig a
sparse topology with few long-distance links. However, in aparse
topology, the average path length is relatively large (inceasing
end-to-end delay), and the number of vertex-disjoint pathsbe-
tween source-destination pairs is relatively small (reduing fault-
tolerance). Unlike traditional topology control algorithms that
generate a single topology with a certain property, we propse a
distributed algorithm that generates a family of topologies with
a range of characteristics. The network designer can choosa
suitable topology by simply tuning a single parameterA (power
savings threshold), trading off energy savings for other fatures
such as low latency and fault-tolerance. For the topologiegen-
erated by the proposed algorithm, we also provide an analytial
model to estimate their structural density. The accuracy ofthe
analytical model is validated with extensive simulation rsults.

I. INTRODUCTION

One of the major challenges is how to define the energy
efficiency rules for determining the closeness of a neighbor
There are many solutions proposed in the literature [4], [7]
[16], [20], [21], most of which produce very sparse topoksyi
However, energy conservation is not the only important goal
When other metrics are considered, the strict rules used to
enforce sparse topologies may introduce some new problems.
For example, the tendency toward numerous short-distance
links increases the end-to-end store-and-forward delay fo
messages. Moreover, these strict rules may eliminate tay ma
neighbors, reducing the multi-path redundancy betweere nod
pairs. With fewer neighbors, the sender has limited chaice f
forwarding nodes, which can lead to network congestiongilon
the minimum-energy paths in the network.

In this paper, we argue that slightly relaxing the energy-

Wireless ad hoc networks are known as “networks withoefficiency rules for topology formation can provide flexityil
networking”, since they do not rely on any pre-configuretr augmenting other desirable topological propertieg.(e.
fixed infrastructure. Rather, the nodes can be deployed-sptatency, fault-tolerance, load balancing). For examlenay
taneously, perhaps at random, and then be dynamically recont be worth using a relay node if it saves only 5% transmis-
figured into a manageable and controllable network topologgjon power but add80% more latency. Specifically, we show
Such dynamic topology control is widely used in wireless-sethat by relaxing the power control rule, it is easy to create a
sor networks, vehicular networks, and wireless mesh né&twdamily of topologies with enhanced features like low latenc

environments, to name a few.

and fault tolerance. We propose a simple, flexible distetut

Many of these wireless ad hoc networks consist of méepology control algorithm, with a single tunable paramete
bile nodes equipped with limited power sources, such asfato control network density and energy efficiency. We also
battery or a solar cell. Thus energy consumption is a prinpgovide an analytical model to estimate the expected fracti
consideration in designing such networks. The transmissiof links eliminated from a node’s neighborhood, and present
power between a pair of communicating nodes is one of teanulation results to validate the analytical model.

dominant factors in the overall energy consumption. Sihee t

Figure 1 illustrates the central idea in our paper. Figus§ 1(

transmission power requirement grows (at least) quadiatic shows the initial topology for a random network of 100 nodes,
with the distance between the communicating parties, usingth the link connectivity induced by a wireless transnussi
one or more nearby neighboring nodes as intermedite range of 100 m. Figure 1(f) shows the well-knowaabriel
lays can dramatically reduce energy consumption. Thus agyaph which prunes all network links for which the use of
energy-aware topology control algorithm gives preferetice an intermediate relay node provides a lower-energy path for

short-distance links rather than long-distance links.

communication. In between these two extremes, Awgraph

In general, a topology control algorithm works as followsapproach defines a family of network topologies, with thelev
Each node in the network classifies all of its directly reddda of link pruning controlled by the parametéx. Specifically,
neighbors as either “close” or “far”. The “closeness” of ave prune direct links for which the use of an intermediate

neighbor is based on a suitably chosarjective functionf

relay node saves at least a fractidh > 0 in terms of

the goal is to conserve energy, then direct communicationesergy consumption. Fah = oo (actually, A = 0.5 in this
used for the close neighbors, while indirect communicati@xample), theA-graph corresponds to the initial graph. For
(via a relay node) is used for the far neighbors. After thA = 0, the A-graph corresponds to the Gabriel graph. For
classification step, each node reduces its transmissiorpowather values) < A < 0.5, the topologies differ in the density
to the minimum required to communicate with all of its closef their connectivity, providing interesting tradeoffstiveen
neighbors. Thereby a node uses one or more close neighlmath length, delay, fault-tolerance, and energy consumpti

to relay information to the far neighbors.

If the initial graph is connected, so are thegraphs, for all



TABLE |
SUMMARY STATISTICS FORA-GRAPHEXAMPLE IN FIGURE 1

Graph Example Shortest-Hop Path Shortest-Distance Path Lowest-Energy Path
Figure | A | Nodes] Links || Hops | Dist [ Energy || Hops | Dist | Energy || Hops | Dist [ Energy
1(a) 0.5 100 718 5.06 | 401.0 | 32886 5.22 | 377.5 | 29064 8.94 | 409.5 | 22893
1(b) 0.4 100 590 5.38 | 407.3 | 32297 5.69 | 378.4 | 27733 8.94 | 409.5 | 22893
1(c) 0.3 100 502 5.88 | 413.1 31101 6.23 | 381.8 | 26610 8.94 | 409.5 | 22893
1(d) 0.2 100 422 6.94 | 426.1 29623 7.37 | 391.6 | 24858 8.94 | 409.5 | 22893
1(e) 0.1 100 360 7.72 | 432.5 | 27978 8.06 | 398.5 | 23923 8.94 | 409.5 | 22893
1(f) 0.0 100 320 8.02 | 434.6 | 27920 8.27 | 402.2 | 23802 8.94 | 409.5 | 22893
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same. However, the average hop count is 80% higher (8.94
versus 5.06) compared to shortest-hop-path routing on the
initial topology Gy .5, while the energy savings are only 30%.
In the rest of the paper, we present the formal definition of
A-graphs, analyze their structural properties, and distheis
performance tradeoffs. Section Il provides a brief disirss
of prior related work. Section Il provides a formal definiti
of the problem, while Section IV presents our main ideas
and provides some fundamental bounds. Section V proposes
a distributed topology control algorithm, showing that our
approach is practical to implement. Section VI develops our
analytical model to characterize the structure Afgraph
topologies, while Section VIl presents simulation resutis
validate our model. Finally, Section VIII concludes the pap
The appendix contains proofs for our main theoretical tesul
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1. RELATED WORK
Rodoplu and Meng [16] first conceived the idea of minimum
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energy mobile wireless networks. They allow nodes to set
their transmission range much lower than the maximum, while
maintaining minimum energy paths between each pair of

nodes. Li and Halpern [6] improved their result by develgpin
a low-overhead protocol where nodes start with a very small
transmit power and incrementally search for a suitableevalu
until all minimum energy paths are preserved. Li and Wang [8]
addressed the algorithmic complexity of the work in [16] and
provided an algorithm with lower time complexity.

Cone-Based Topology Control (CBTC), proposed by Wat-
tenhoferet al. [20], generates a graph structure similar to a
Yao graph. In CBTC, each node determines a power level to
reach at least one node in every cone of degregithin its
surrounding area. However, the connectivity of the produce
subgraph is only guaranteed wher< 57/6.

Toussaint [19] proposed Relative Neighborhood Graph
values ofA. Furthermore, alA-graph topologies preserve thgRNG) as a sparse connected topology for wireless networks.
minimum-energy routing path between every pair of nodesin RNG, a link(s, t) is eliminated if there is a suitably-located

Table | provides a detailed statistical summary of theitnessnodew satisfying the following condition:
example topologies from Figure 1. For unit link costs, the )
results show that the sparsest topoldgy, has 60% longer Fw # 5.t - maz(d(s, w), d(t, w)) < d(s, 1)
paths (8.02 versus 5.06) thar, 5 in terms of hop count, Li et al.[7] propose a distributed algorithm (called LMST)
but they are only about 8% longer in distance. Importantligased on constructing minimum spanning trees (MST). Idstea
they save about 15% in energy consumption. For shortesf-building a global MST, which requires global knowledge
distance routing on these two topologies, there is againtabof the network topology, each node creates its own local
a 60% difference in hop counts, a small (6%) difference ST among its neighbor set. While constructing such LMST,
distance, and slightly larger savings (20%) in energy. Fthie weight of an edge is set to the transmission power
minimum-energy path routing, all of the topologies are theeeded between its endpoints. Once the local tree has been
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Fig. 1. A-graph example for a random network of 100 nodes
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TABLE I

SUMMARY OF MODEL NOTATION 20 toe 300
200 tye 250 |
| Notation | Description | ] 150 & 200}
< =4
Gmaz Graph induced by max transmit powé},, . ?, se ot g 150
R Transmission radius § 100 3 00
7,8, t,u, v, w Nodes in a wireless ad hoc network > > !
(s, 1) A node pair 50 50
(s, 1) An edge between andt 0 0
d(s’ t) Distance between a node p@g" t) 0 50 100 150 200 250 0 50 100 150 200 250 300
@ Path loss factor X Coordinate X Coordinate
Ps_.t Transmiss_ion power required 'fromtot (a) Relay region (b) Cover region
Rs—r Relay region of(s,r) node pair
Cis,t) Cover region for transmission fromto ¢ Fig. 2. Relay region, cover region and contour lines={ 4)
LR (D) Contour line within relay region
L+ (A) Contour line within cover region
S®,_.(A1,A3) | Contour strip within relay region Problem 3.1: Given an initial topologyG,,..., provide a
SCi(A1,A9) iontour strip W';h'” cover _feg_'OHf distributed algorithm based on local information only tan€o
Cls.t.0) cover region for transmission fromto ¢ struct aconnectedsubgraphGa = (V, Ea) parameterized by
§(s,t,0) A-cover set for transmission fromto ¢ . .
Ca A-graph A, where an edgés,t) ¢ Ea iff there does not exist any
Fetim Fraction of neighbors eliminated relay noder such that relaying through saves at least\

fraction of the power required to send directly franto ¢.

constructed, each node contributes to the final topologgethoB' Power model and assumptions _
nodes that are its neighbors in the local MST. However the TO Send a message from nodeto nodet at distance
resulting graph does not preserve the minimum-energy patfis, ¢), the minimum transmission power requiredfts ., =

There is recent research interest in topology control asfel”(s,t) wherea € [2,4] is the path loss factor, ané
means of interference reduction. The natural assumptian ti & global constant [15]. We assume that network links are
a sparse topology implies low interference was first refut&ymmetric, and that the power required for processing and
by Bukhartet al. [2]. They provide an intuitive definition of "€Ceiving the signal are negligible. We also assume thet eac
interference and propose algorithms to construct condecftPde is aware of its own position with reasonable accuracy,
subgraphs and spanners with minimum interference. Unfé€rhaps via GPS. The minimum power required using a node
tunately, their solution does not preserve the minimunrgne " as relay is:Ps ., ., = P, + P,_.;. The benefit of using a
paths between node pairs. Another algorithm, with the saffday r can easily be quantified by measuring fraction of
drawback, is presented in [10] and aims at minimizing tHRPWer savedwhich is denoted byA throughout the paper):
average or maximum interference (per link or node). Tahg A P .y — Ps pt 1 P vt
al. [18] propose an interference-aware algorithm for multi- - P, - P
chanl:el mss?} networks tf>ased on IEEAEI ﬁ02.1h1. Thelse i_Sﬁé‘.aSRelay region
are beyond the scope of our paper. Although an algorithm :
that adjusts node degree to tradeoff energy is proposed,in [gasggo(?r:utazdnl\gteigr? g‘GL?;;/ISrsgi(?nto(gi(\)/lgr?yacagzgl p;s;ocol
there is no guarantee that the derived structure would prese G, o
minimum energy paths. Moreover, no mathematical expressi‘fﬁl)nqther noder within S commumcqﬂon range, the rellay
for estimating topology size is provided. regionR,_.,. of nodems the set of points such that relaymg

throughr to any point inR_,,. takes less energy than a direct

I1l. PROBLEM STATEMENT AND ASSUMPTIONS transmission to that point. The shaded area of Figure 2(a)

In this section, we formulate our problem definition, and la§"OWSRs— for a = 4. For examples can save power by

the groundwork for our analysis. Table Il provides a summaf§laying through- to send messages te (the green node).
of the notational conventions used in our analysis. or ¢, (the red node), however, it is more efficient ferto
send directly, since, is outside of the relay regioR_. .
A. Problem statement )
D. Cover region

Any n-node, multi-hop, wireless network can be modeled as he algorith db h | is based
a graphG,q. = (V, Enmaz) With the vertex seV” representing T e algorithm pre_sente y Ra mat_wa -[14] is based on
a notion ofcover region Consider a pair of nodegs, t) such

the nodes, and the edge d8t,,. defined as follows: ) o e
g “r that the target lies within the communication range of the
Epaz = {(s,t)| (s,t) €V x V As#tAd(s,t) < Rmas}  sources. Envision the set of all points that can possibly act
where R,.... is the distance beyond which the maximun"'fls.r.elays between and t.SUCh th"?“ it would be more power
. efficient for s to use an intermediate relay nodenstead of
transmission powef’,,,, decays too much to be correctly . . . . )
) : : sending directly ta. This set of points collectively forms the
decoded. The grapfi,,... defined this way is called thmax- . . . )
) . .__cover region of(s, t) pair. Mathematically:
imum powered networKn this paper, we solve the following

topology control problem: Cls)y = {2, 9) [ Posiayy—t < Poot}
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Fig. 3. Contour strips inside relay regions Fig. 4. Contour strips inside cover regions

Here we use(z,y) to denote a hypothetical node located aind the contour strip for the intervgh,, A,) is:
position(z, y). The shaded region of Figure 2(b) sho@g ;) P
for a = 4. Using any node within the shaded area as a rel&f,_.,(A1, As) = {{z,y) [(1-As) < ——W=1 < (1A )}

node saves energy when sending frero ¢ (or ¢ to s). Pt
The blue line within the cover region of Figure 2(b) is a
IV. A-GRAPHANALYSIS contour line with a25% power savings. Figure 4 shows

In this section, we develop and formalize the main idezontour strips within cover regions.
of the paper. We start with outlining some definitions reedir ~ Let us examine the maximum attainable value’gfwhich
for the development of the algorithm, followed by some ukefwe call A,,,.. It is easy to show tha\,,,,, depends on.

properties of the topology generated by the algorithm. Lemma 4.1: Bounded Power Saving$ie maximum pos-
_ _ sible power savings using a single relayAs, , = 1 — 5.
A. Contour lines and Contour strips Corollary 4.1: For o = 2, Apaz = 0.5, and fora = 4,

Consider the set of hypothetical points within the relay\,,.. = 0.875.
region for which aA fraction of the transmission power is )
saved when- is used as a relay instead of sending directly {g- £-COVer regions andi-cover sets
any of those points frons. Such points collectively define a When the second parameteh, of a contour strip
contour lineinside the relay region, denoted W, .,.(A).  S¢_:(A1,Az) is set toA,,.,, then the strip provides all
For example, the blue curve in Figure 2(a) is a contour lingossible locations betwees and ¢ that can saveat least
for A = 0.25 (i.e., 25% power is saved whenis used for A; fraction of power compared to direct communication

relaying froms to any points on the curve). Formally: betweens and ¢. Such a contour strip now depends on a
p single paramete’A (replacing A;) and will be called A-
LR (A = {(z,y) | =228 (1 - A)} cover regionsFormally A-cover regions and\-cover sets are
Poslay) described by the following definitions:

A set of consecutive contour lines collectively formsantour ~ Definition 4.1: Consider the set of all points that can pos-
strip within a relay region. Any contour strip is parameterizedibly act as relays betweenandt such that it would save at
by the intervallA;, As] whereA; andA, are possible values leastA fraction of power fors to use a node located at one of
of A. The beginning and the end of the strip are defined ljose points instead of sending directlyttdrhis set of points
the contour linesC™,_..(A;) and L%, _...(A,), respectively. collectively forms theA-cover region of(s, ) pair:

Thus a contour strip shows a power saving betwigen A,] P ,

fraction of the direct transmission power. Mathematically Clst.n) = {(z,y) |%’ZH <1-A}

SR (A1 Ag) = {(z,y) |(1=Ay) < @ < (1-A;)}The collegtion of all nodes falling within thé-cover region
5—(z,y) of s andt is called theA-cover set ofs andt:

Figure 3 shows the contour strips within the relay region for
a = 2 anda = 4 respectively. If a node is located anywhere
in the green strip of the relay region, for examplecan save  Figure 5 shows thé\-cover regions for different values of
somewhere betweeh) — 20% of power by using- as a relay A. Fora = 2, all A-cover regions are circular regions centered
instead of sending directly to at the midpoint connectingandt¢. The circular region shrinks
Contour lines and strips can be defined similarly for covéo a point as we increase the value®fto A,,...
regions. Consider two nodesandt as shown in Figure 4. A The next three lemmas establish some basic properties of

§(s,t,0) = {v|v € V A Location(v) € C(s 4,0y}

contour line within their cover region is: A-cover sets and\-cover regions:
Pai oyt Lemma 4.2: Properties of\-Cover Sets(a) For anyr €
ECS—W(A) = {<‘T’ y> |77y = (1 - A)} g(s,t,A)! d(S, T) < d(S, t) (b) If r € g(s,t,A)! thent ¢ g(s,r,A)'

Ps~>t
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Fig. 5. A-cover regions forx = 2

Lemma 4.3: Circle Property oA-Cover RegionsSuppose of its neighbors, it learns their identities and locatiohslso
the distance between and ¢ is d. For « = 2, the A- constructs the\-cover sets with those neighbors. Initially, all
cover regions are circular regions centered at the midpothbse sets are empty goes not even know what neighbors
on the straight line connecting and ¢, and have radius there are). The sed,, which also starts empty, keeps track of
V(1 =2A)d/2. all the nodes discovered in the neighborhood.

Lemma 4.4: Relationship among-Cover Regions:For Whenevers receives a reply to its NDM from a node
anya and a pair of nodeés, t), if Ay > Ay, thenC, . A,y C it performs the steps listed in Algorithm 1. Its purpose is to
Clst,n0) ANAE5 1 a1y C Est,n,), Whered < Ay < Ay < update the configuration of th&-cover sets. At the end, when
Anaz- s has received all the replies, the configuratiom\atover sets
Note that, according to Lemma 4.3, far= 2 bothC(, ; o,y is complete. The goal of nodeis to determine its neighbor
and C,; a,) are regions confined within the circles censet, i.e., the collection of neighbors to which transmissio
tered at(d/2,0) with radius R, = /(1 —2A;)d/2 and should be direct. Having determined tecover regions of
Ry = md/2 If A, > A, then Ry < R, and allits neighborss is in position to identify the members of its
Cist.an) C Clsta)- neighbor set. 1€, ; o) # 0 for somet, it means that sending

directly to nodet is not A-power efficient, i.e., there is at
C. A-graphs least one node € &, Ay that can act as a relay between

The A-graph, denoted by/n = (V, Ea), is a subgraph of s andt¢ and save at leasA fraction of power versus direct
Gmaz WhereV (Ga) = V(Gpae) andEa C Epq,. Formally, transmission. A nodeé that has an empty\-cover set with
an edge(s, t) in Gna. also exists inG  if there is no node s has noA-power-efficient relays and thus belongs to the
r in the A-cover region of(s,t) pair: Ea = {(s,t)|s # neighbor set of. Consequently, the loop listed in Algorithm 2
tAE(s,e,a) = 0}. Once theA-cover regions are known it is very completes the algorithm by generating the neighboiNgetf
easy to construak'a graphs. For example, during construction. The transmission power(s) for the nodes is determined
of the graphGy 3, the edge(s,?) will be eliminated if there as follows. For every unicast packet, nogéransmits with
exists at least one nodein the shaded circle of Figure 5(d).the minimum power required to reach the destination. For

The following lemma shows an interesting result abGyt every neighbor broadcast message, nedases the power

Lemma 4.5: Relationship with Gabriel Grapkor o = 2,  required to reach the furthest neighboiin Specifically,p(s)
the graphGy is a Gabriel Graph. is determined as followsi(s) « maz {Kd(s,v) : v € Ny}.

Connectivity is an important property for any topology

control algorithm. With the help of the subsequent lemmas, V1. ANALYTICAL MODEL

we show that allGa graphs are connected. In this section, we develop a mathematical expression
Lemma 4.6: Connectivity offo: For any «, if Gqs iS for estimating the expected fraction of neighbors that are
connected, then the subgrapl is also connected. eliminated inGa graphs fora = 2. Expressions for general
Lemma 4.7:A-Graph Relationship:For any o, if 0 < values ofa are left for future work. The model is developed
Ay < Ay < Aoz, thenGa, C Ga,. by augmenting the approach provided in [9] with necessary
Combining Lemma 4.6 and Lemma 4.7 yields: modifications to accommodat-cover regions.
Theorem 4.1:A-Graph Connectivity: If Gy, is con- Consider a multi-hop wireless network with nodes uni-
nected, therG is connected, for ang < A < A,,q, and formly distributed over a rectangular region with atéaThe
any a. average node density & = 7. The maximum transmission

radius of each node i&, which is assumed to be the same

V. DISTRIBUTED ALGORITHM FOR CONSTRUCTINGG A for all nodes. Let us observe an arbitrary nodwiithin the

In this section, we present a distributed algorithm for comleployment area. The average number of nodes located in the
structingGa. The operation is described from the viewpointommunication region of nodeis N = 7R? x D = %
of a single nodes. For static networks, the construction starts Let Py (z) be the probability that there exists a neighbor
by broadcasting a single neighbor discovery message (NDMat distancer from s. Clearly, Py(xz) = 0 for > R. For
at the maximum powepP,,.... When mobility is considered, x < R, at first consider a small area strip defined dy at
NDM needs to be sent periodically at an interval suitably-chehe perimeter of the circle with radius and centered at as
sen based on the mobility dynamics. All the nodes receivirspown in Figure 6. Also consider a small angle measured
the NDM froms send back a reply. While collects the replies from an arbitrary but fixed axis. The length of the &re zdf



Algorithm 1 UpdateCoverSets (v, A)

for eachw € A, do
if Location@) € C(s,.,,a) then A@ £
g(s,w,A) = g(s,w,A) U {’U}

else if Location@w) € C(,,,,a) then dA
E(s0,0) = E(sv,0) U{w} AN
end if
end for Fig. 6. lllustrating circular strip at distance

Algorithm 2 NeighborSet £, A) Lemma 4.3 that fore = 2, A-cover regions (i.e (s, a)) are
;% =0 he A d circular regions with radiuf® = /(1 —2A)z/2. Let § =
or eacht € As; do v/ (1 —2A) so thatR = 8z /2. The probability that a node is

if &0y = () then . . 822 . -
R, = N, U {t} placed in the circular ared=* within the aread is Pa =

end if i— = ’T:A””z. The probability P, (C, ¢ Ay) that exactlyk
end for nodes are irC(,; a) is:

n—2

Pk(c(s,t,A)) = ( i )Pﬁ X (1 — PA)n—Q—k (5)
and the area of the small regidal within this small strip can
be approximated agA = ¢dz = zdzdf. Therefore the area Note thatn—2is used rather than because we excludeand
of the entire small strip denoted by,,,.;, becomes, t. For largen and smallPa, the binomial distribution can be
approximated using Poisson distribution [1] with meaha :

2 27 2
Astrip = / dA = Uz = / xdxdf = 2rxdx (nPa)¥ x e=nPa
0 0 —

0 Py (Cispny) = (6)

k!
Thus Py () becomes: The probability that there exists at least one nod€'in; a):
2mnzdx
Py (x) = Agprip X D =27wxde x D = (1) ~ X (nPp)* x e~nPa
tree A Po(z) = Z P (Cispny) = Z %
Let Po(x) be the probability that there exists a node in the k=1 k=1 '
cover regionC(, ; )y between node paifs, ). The distance CnPA o (nPa)" —ops [ (nPx)"
x betweens andt plays an important role in determining the = ¢ o ¢ Z ko 1
value of Pc(x). For largez, the size of the cover region is P ’“:ip kaZO
also large and the probability of a node’s existence withis t = e " (e s - 1) =l-—e"
cover region also becomes large. - 1_ e—%jzz [substituting the value oPa] (7)

The probability Px(z) of eliminating any node from the _ _ _ _ _
neighbor set of; is the probability that there exists a neighboBY replacingPc(z) in Equation 4 using Equation 7, we get:

t a'F distancer from s, and the_re. is a node in thA-cover foR 9mna x Po(z)dx
region betweer{s,t). So Pg(z) is: Fetim = —
2 d R _7rnﬁ2m2
Pp(z) = Py(z) x Po(z) = ( mf I) x Po(z)  (2) Jy 2mna x (1 — e~ )da:
- mnR?
The expected number of neighbors eliminatedsbfrom its 2 19 _ anp?R?
neighbor set is found by integratingz (x) over the transmis- = B R+ 4A82 ;A —44 (8)
sion radiusR within which s possibly can communicate: 3R
. /R 9mnz x Po(x)dz - Finally, restorings = /(1 — 2A), we obtain:
elim — mn(1—2A)R?
0 A . (1 —2A) R 4+ 4Ae ™ —4A ©)
If we divide the expected number of eliminated neighbors by ~ €™ = n(l — 2A)R2

the expected number of nodes in a node’s communication areaaccording to Equation 9, the expected fraction of neighbors
we get the expected fraction of neighbors that are elimthatg, 4t are eliminated from a node’s neighbor set is a function

from a node’s neighbor set: of four network parameters, namely power savings threshold
Tiim R 2meX(w)dac fR 2mnz Pe(z)dx number of nodes, deployment area, and maximum transmis-
Ferim = 5 — = 2 ==L 2 (4) sion radius (i.e.Feim = f(A,n, A, R)). The general effects
R A T of these parameters (while changing one and keeping others

Let's find the probability that at least one node is locatefiked) are as followsF,;;,, increases when eithet or R
within the A-cover region of(s, t), i.e., Po(z). Recall from increase, and decreases when eitheor A is increased.



VIl. SIMULATION RESULTS Deployment Area = 625m X 625m

In this section, we present simulation results to verify
the accuracy of our analytical model, and we explore the
performance tradeoffs offered biy-graphs.

0.6
A. Simulation environment and performance metrics

To evaluate the performance, we simulate randomly de-
ployed networks ofl00, 300, and 500 nodes uniformly dis-
tributed over &25 m x 625 m square region. The maximum
transmission range is limited betwed0m to 250m. We
only consider connected networks, since it is not possible t 00
generate a connected subnetwork unless the initial network
Gmaz 1S connected. We use = 2 for all scenarios.

We have generatetl instances of networks for each net- . _ Depoymentheazeamxozn
work size. Performance measures are reported as an avdrage o b S———
thesel0 random scenarios (unless explicitly stated otherwise). B
We analyze the performance of the differeligraphs using
two performance criteria: sparseness, and fault tolerance

SparsenessThe number of links remaining in a subgraph
G determines its sparseness. The degree of sparseness of
a network affects routing performance of the routing layer.
For example, if flooding is used for route discovery, it may
cause serious broadcast storm problems [11] in a dense,graph S Ryl Sparse Networks (100 Nodes) —+—
such asG,nq.. By reducing the neighbor set of each node, %0 005 010 015 020 0 030 03 04 045 04
this problem can be mitigated to some extent. We determine Freconefpoversaved ®
the sparseness of a network by measuring the average fractio
of neighbors that are eliminated, i.€f..;,,. Larger values Fig. 7. Expected Fraction of Neighbors Eliminated
of Feuim indicate more sparseness. We run the proposed
algorithm on a giverG,,.,. by setting different values aof\
and measure,;;,,, for each subnetworki . number of nodes in Figure 7(b). In each of the plots, we show

Fault tolerance. For each of the communication subnetthe values ofF.;;,,, found during the simulation and calculated
works Ga, we measure the degree of connectivity to asseem the analytical model.
fault tolerance. A (sub)network'» is called k-connected if  In Figure 7(a), we deployed00 nodes and varied the
there exists at least vertex-disjoint paths between all pairgnaximum transmission range?). Every node has the same
of nodes. A large value of generally indicates a high level R. Fein Slowly decreases at the beginning of each curve and

0.4 -

Simulation, TX Range = 250m —+—
Analysis, TX Range = 250m —<—

Simulation, TX Range = 200m —e—
Analysis, TX Range = 200m —&—

02 r Simulation, TX Range = 150m —&—
Analysis, TX Range = 150m —=&—

Simulation, TX Range = 100m —&—

Analysis, TX Range = 100m —&—

. . . . . .

Average Fraction of Neighbors Eliminated

. . .
0.05 010 015 0.20 025 030 035 040 045 049
Fraction of Power Saved ()

(a) TX range was varied (300 nodes)

0.4

Simulation, Dense Networks (500 Nodes) —%— X\
Analysis, Dense Networks (500 Nodes) ——

0.2 - Simulation, Moderately Dense Networks (300 Nodes) —e—
i )

)

Analysis, Moderately Dense Networks (300 Nodes’

Average Fraction of Neighbors Eliminated

(b) Node density was varied (TX range = 150 m)

of fault resilience. drastically drops at the end. For large valueg\gfonly a few
_ longer links were eliminated, since the rule for eliminatio
B. Performance evaluation becomes harder to satisfy with largh. Moreover, more

1) Sparseness afa graphs: To see the effect oA on neighbors are pruned in networks with high®r since the
sparseness, we return to the example in Figure 1(a), whicance of elimination for a neighbor is also higher.
shows a typical random deployment 10 nodes, with each  Figure 7(b) shows the effect of node density on neighbor
node having a maximum communication rangd @¥mn. This elimination by varying the number of nodes0(, 300, and
is the initial graphG,,..,, for our algorithm. The remaining 500) within the same deployment regioR is kept fixed at
parts of Figure 1 showsa for A = {0,0.1,0.2,0.3,0.4}. 150m for all scenarios. The result is as expected: a higher
Gy is the Gabriel graph (see Lemma 4.5). All five subgraptisaction of neighbors is eliminated in more dense networks
have considerably fewer links and lower average node degfeeall values ofA.
compared td7,,,... (See Table I). For larger values af, more Figure 7(a) and 7(b) also show that for all scenarios, the
links are retained, since the condition for eliminatinggmdiors results of analysis are very close to the simulation results
with long-distance links is more stringent. For example, twith a difference of at most 3%. The small inaccuracy arises
eliminate a link(s, t) in Gy 1, there must exist a relay betweerfrom nodes located close to the boundaries of the simulation
s and ¢ that can save at least0% power, whereas this region, for which the communication area is restricted, and
requirement is30% savings forGg 3. Therefore, the long- thus they have fewer neighbors. We ignored this “boundary
distance links may be pruned @ 1, but survive inGy ;. effect” to simplify our analytical model.

The sparseness of differetita graphs is compared under 2) Fault tolerance:We next focus on the benefit of having
different parameter settings in Figure 7. Two parametergwanore neighbors. To see the benefit, we determine the number
varied: maximum transmission range in Figure 7(a), araf vertex-disjoint (VD) paths between all pairs of nodes in
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Fig. 8. Connectivity on a network of 100 nodes, TX Range = 150m

each subnetworki/a. R is set to150m (the trends are similar
for other values ofR). Figure 8 shows the percentage o

lower fault-tolerance, and al\-graphs provide a higher level
of fault-tolerance compared to other traditional topodsgi

VIII. CONCLUSIONS

Topology control in wireless ad hoc networks introduces
many challenges due to multiple conflicting performance
optimization criteria. Solutions optimizing one perfonmca
criteria are detrimental to others. This paper tacklesitsse
by providing an algorithm that generates a class of topekgi
and provides the flexibility to network designers to chodee t
appropriate topology with desired performance charasttesi

Our A-graph approach has three main advantages. First,
the algorithm is simple, practically implementable, dizited,
and strictly local. Second, unlike many other traditional
topology control algorithms, our algorithm is extremelyxfle
ible, while still preserving minimum-energy paths. Third,
he structural properties of the topologies generated lgy th

Igorithm can be calculated analytically, perhaps prior to

node pairs versus the number of VD paths between theﬁétwork deployment. These advantages make our proposed

All Ga subgraphs are connected because the plots for

ﬁﬁlgl;orithm appealing for deploying flexible ad hoc networks.

A-graphs showl00% of node pairs having at least one VDqpqqing work is extending our approach to mobile ad hoc

path. While there is a small (albeit visible) difference iret

networks. At the same time, we are evaluatifsegraphs for

percentage of node pairs having at least two or three VD pamﬁer performance characteristics, such as interfergraadket

in different Go subnetworks, the difference is much large

for even more VD paths. Only8% of node pairs have four
VD paths in the Gabriel graph, but this percentage grows
38%, 62%, 83%, 90%, and 98% for A = 0.1,0.2,0.3,0.4,

and 0.45, respectively. Clearly, larger values af add more

Elelivery ratio (PDR), and throughput, with the help of paeke

Itevel simulations.
o)
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Lemma 4.4.Relationship among\-Cover Regions.
APPENDIX Proof: Consider a point(z,y) € C(s,). From the

This appendix contains the formal proofs for the theoréticdefinition of A-cover regions we get,
results claimed in the paper.

Lemma 4.1. Boundeg Fp’)ower Savings. Pz yy—t < (1= A) Pt for a>2

Proof: Consider a relay node between a node pais,t). SinceA; > A, we get,(1—A;) < (1—A,) and the above
Assume thats and ¢ are within their mutual transmissionequation becomes:
ranges. Although can be placed at arbitrary positions, placing
r at the midpoint on the straight line connectingndt always Pytoyy—t S (1= A1)Psy < (1 - Ag)Psy
produces the best power savings [17]. Now let us considghich implies (z,y) € Clar.a0)-

the case where, » andt are placed on a straight line. Let The nodes actually present within the smaller region
d(s,t) = d, d(s,r) = w, andd(r,t) = d — x. Therefore, C(s.a,) Must also be contained within the larger region
Py = Kd®, and Py—;— = Ka® + K(d — 2)*. ENergy is gefined byC|, , a,). Therefore&, ,.a,) C &(sinn)- u
saved if P—.,¢ < P, and the fraction of power savings | emma 4.5.Relationship with Gabriel Graph.

becomes a function of distanae Proof: In G, an edge(s,t) is eliminated if for any

A= f(z) = Poot = Pomrot | Pooro triplet (s, ,t) it holds thatP,_., ., < (1 — A)P,—.;. Putting
P Py A = 0 the condition becomes ., _.; < Ps_.;, ord*(s,r) +
SA=f@) = 1- z® + (d—x)” d*(r,t) < d*(s,t), which is the condition for elimination of
de an edge in Gabriel graph [9]. Thug, is a Gabriel graph.m
The maximum off(z) is obtained forf’(z) =0, i.e., Lemma 4.6. Connectivity ofGy.
1 Proof: First, we show thatG, = (V, Ey) preserves all
f(z) = —d—a[affa_l —a(d—z)*"]=0 minimum energy paths iG.. = (V, Emas) between every

Thuszo~1 = (d — )1, orw = d— 2 or z = d/2. So the pair of nodes. Suppose that the cost of an edgé) is

maximum power savings is achieved when the relay node%gs’m = Do Since a path is defined by consecutive

o : . . edges, the cost of a path = (sg,s1,...,8,+1) becomes
laced at the midpoint of the straight line connectingndt. n _
'F;he nower savingF; there are: g 3 y(m) = >0 v((si, si41)). Suppose, by way of contradiction,
’ there exist nodes, ¢t and a simple patld in G,,., such that

A f(é) 1 (9 +(d-9)~ ;L 7(8) < ~(¢") for any simple pathy’ from s to ¢ in Gy. Let
mar gl de N 20—1 § = (50,81,...,8041) With sp = s and s,;1 = t. Then
Lemma 4.2.Properties ofA-Cover Sets. forall i = 0,1,...,n, it must be true thats;, s,+1) € FEj.

Proof: (a) If 7 € £+ a), then from Definition 4.1 we Otherwise, there exists a nodein the A-cover region of

get, Ps—r—t < (1 — A)Ps_;. SinceA > 0, it follows that node pair(s;, s;11). But theny((s;,r, si+1)) < v({si, Si41))
P, .. < P,_,. ReplacingPs_.,._,, and P,_.; by distances and the pathd can be replaced by a least cost path by

(using the path loss model) we gel(s,r) + d*(r,t) < replacing the edg€s;, s;+1) with (s;,r, s;+1), which is a
d*(s,t). Now for a > 1, d(s,t) > d(s, 7). contradiction. SaG, preserves all minimum energy paths in
(b) If r € &s,4,a) then from (a),d(s,t) > d(s,r). Now G4, between all pairs of nodes. Thus it immediately follows

supposet € &, a) then again from (a)d(s,r) > d(s,t) thatGy is connected providing at least the minimum energy

which is a contradiction. B paths between all pairs of nodes. ]
Lemma 4.3.Circle Property of A-Cover Regions. Lemma 4.7. A-Graph Relationship.
Proof: Without loss of generality, let us assume thand Proof: Suppose the edge sets 6fa, and Ga, are

t are located at0,0) and(d,0). Consider a hypothetical relay E,, and Ea, respectively. Then it is sufficient to show
noder within the A-cover region of node pails, t) positioned that if an edge(s,t) € Ea, then it must be the case that
at (x,y). Here A is a real number satisfying < A < 0.5. (s;t) € Ea,. Since(s,t) € Ea,, there exists no node

From Definition 4.1, the fraction of power saved whens inside C(,; a,). SinceA; > A,, according to Lemma 4.4,

used as a relay must be at ledst therefore: Cs,t.a1) C Cs,1.a,)- Therefore there is no nodeinside the
A S PS—>t - PS—»'I‘—)t —1- Ps—>r—>t C(S,t,Al) and <Sv t> € EAl . |
Ps~>t Ps~>t

2 2 d— 2)2 2
oA < 1% +y —F(d2 ) 4y




