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Abstract—This paper presents a method for supporting wire-
less media streaming using a cache that is distributed across the
mobile devices in the network. The performance of this scheme
is compared to traditional institutional server (IS) caching on
a network with a bandwidth constrained wireless backhaul. In
addition to traditional caching hit ratio metrics, the paper studies
how caching affects the call drop ratio due to limited backhaul
bandwidth. These results indicate that the distributed caching
method provides better service than IS caching as the numberof
users is increased. Finally, this paper also presents a scheme for
conserving mobile device energy by limiting its participation in
the caching scheme. Results show that most of the benefit of the
distributed cache can be realized even with relatively few cache
assists from each client.

I. I NTRODUCTION

Consumer demand for multimedia services using Internet-
enabled mobile devices, such as PDAs, smart phones, and
wireless laptops, is increasing rapidly. Traditionally, cellular
networks have been used to provide service outside of the
home, office, or campus. WiFi, however, allows cheaper access
to the media content over the Internet.

In most cases, the WiFi Access Points (APs) are connected
to the Internet via a wired backhaul network. However, in-
stalling a wired infrastructure in places such as parks, sporting
arenas, or pedestrian areas can be difficult. As a result, this
paper will study a WiFi network with a backhaul made up of
dedicated wireless links. The challenge with using a wireless
backhaul is providing acceptable multimedia quality over the
limited-bandwidth wireless links.

Caching of streaming media objects at points in the network
close to the clients is a commonly used approach to overcome
these challenges. The studies in [1], [2], [9] and the authors’
work in [8] showed that streaming through an institutional
network can be improved greatly by caching popular media
objects on a dedicated institutional server (IS) cache withlarge
storage capacity. On the other hand, IS cache performance
can degrade due to congestion on the backhaul network that
connects the IS cache to the clients [3]. This is particularly
true for a low throughput wireless backhaul. The IS cache is
also a single point of failure for the entire caching scheme.

The approach we consider in this paper utilizes the available
storage on neighboring mobile devices to cache media objects.
The use of mobile device resources to improve network
performance is very much in line with the recent trend in

cooperative wireless communications where distributed nodes
participate actively in network operation [4], [5]. Caching on
mobile devices has the advantage of being distributed, which
makes it robust to the failure of individual nodes. The peer-to-
peer (P2P) transmission of media objects between clients also
reduces the load on the wireless backhaul. However, these
advantages have to be balanced with the increased energy
consumption of the mobile devices participating in the caching
scheme [6], [7].

Our previous work in [8] presented a distributed caching
strategy for use with mobile devices. The work in [8] considers
the dynamic nature of a wireless network where the clients
participating in the caching scheme arrive and depart from the
network at random due to client mobility.

This paper extends our previous work in three different
ways. First, we consider a finite-capacity wireless backhaul
network and determine the number of concurrent clients pos-
sible with IS caching and distributed mobile caching. Second,
we consider an institutional network architecture that hasmore
than one WLAN and clients on the same WLAN can assist
each other via P2P communication. As will be discussed,
clients belonging to different WLANs can assist each other
over the backhaul network. The third contribution of the paper
involves energy conservation. Clearly, battery depletionis a
concern when mobile devices are used as caching elements.
This paper presents a simple method that limits the number
of times a mobile has to provide cached objects. Simulation
results show that the benefit of the distributed caching can be
achieved when, for each client, the number of cache assists is
limited to approximately the number of videos viewed.

The proposed caching system is introduced in Section II.
Section III describes the experimental methodology for our
simulation work, while Section IV presents the simulation
results. Finally, Section V concludes the paper.

II. PROPOSEDCACHING SYSTEM

The proposed system reflects caching activity in a
Metropolitan Area Network (MAN) that uses a series of
Wireless Local Area Networks (WLANs) or WiFi hotspots,
to serve mobile clients, who stream media content from the
Internet. Figure 1 shows the proposed system architecture.

A simple Internet model is adopted where there is one
Origin Media Server (OMS) as a root and a MAN router on the
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Fig. 1. Network topology.

Internet edge. This router is also the location for the IS. The
IS functionality includes managing the MAN databases (client
locations, session information, location of cached objects etc.)
and may provide the MAN with caching capability.

The MAN Backhaul Network (MANBH) consists of one
router and a variable number of WLAN APs. The router
connects a group of APs via 802.11g operating on wireless
channel A. Using a separate network interface, each AP
connects to a group of mobile clients via channel B in 802.11g.
These mobile clients join or leave the WLANs at random
times. The reason we include APs between the router and
the clients is to enhance the wireless communication with the
low-power mobile devices [6], [7].

Using 802.11g on channel C, P2P communication is pos-
sible between clients that are geographically close to each
other. Since 802.11g enables a relatively long P2P link, it is
assumed that all clients within the range of the same AP can
also establish a P2P link with each other.

Note that each AP/Client has two wireless network inter-
faces, and each one operates on a different channel to allow
concurrency between incoming and outgoing media streams.
Moreover, 802.11g can support 4 different wireless channels
concurrently in use [10] and our network topology respects
this constraint. Also, we assume 802.11g WLAN with effective
capacity of 16 Mbps [3], [11], which can deliver media streams
(400 kbps per client) for up to 40 clients.

In this study, we consider both distributed and IS caching
scenarios. For IS caching, clients can receive data from the
OMS or from the IS cache. For distributed caching, clients
can receive data from the OMS or from other clients. For
security and privacy purposes, we limit the data cached on a
mobile client to the media objects requested by that client.In
all caches, only full caching of media objects is allowed andit
is assumed that the cached media objects never expire. Hence,
no refresh is required to keep them up-to-date.

The distributed cache protocol allows cached data to travel
from one client to the other via a P2P connection if the two
clients belong to the same WLAN, or via a connection through
the MANBH, if clients belong to different WLANs.

The protocol also conserves client energy by ensuring each
client only provides cached objects a limited number of times.
A constantAC denotes the maximum number of times a client
is required to serve a cached media object to another client.

Finally, the protocol optionally allows redundant cachingof
media objects in the distributed cache. When enabled, more

than one client is allowed to cache the same media object
at a time. When that object is requested from the cache, the
device that has provided the fewest cache assists is selected to
provide the object. A client streaming session can be initiated
by requesting a streaming media object, which for simplicity
is assumed to have Constant Bit Rate (CBR). We assume
passive clients, who stream the entire requested media without
any early termination, pause, rewind, or random jumps. Each
session consists of a Sink Node (SK), which is requesting the
media object, and a Server Node (SV), which is responsible
for providing the media object. In an example session, the SK
client (selected randomly from a group of online clients) sends
an initiate message to the OMS. When the router receives this
message, it decides whether to reassign the SV designation
from the OMS. In the case of conventional IS routing, the
SV can be changed to the IS cache if it contains the requested
media object. In the case of distributed caching scheme, theSV
can be changed to a client if that client has the media object
and has assisted the caching scheme fewer thanAC times.
It is then determined whether the MANBH path between the
SV and SK has sufficient capacity to accommodate the media
object transmission. The session is dropped if any link along
the path has insufficient capacity. If the session is established,
the capacity occupied by the session on each link is equal to
the media object bit rate. This capacity is occupied for the
duration of the object. Note that, in the case when the SV
is a client, we assume that the client serving a media object
doesn’t disconnect until the complete object has been sent.

During transmission of the media object, the object can be
cached either at the IS or in the SK, depending on the scenario.
The new object is immediately stored if cache capacity is
available. If not, a replacement algorithm is used to evict one
or more media objects and make room for the new object.

III. E VALUATION METHODOLOGY

The proposed caching system is evaluated using a discrete-
event simulator. Using the GISMO Toolset [12], the time-
stamps of streaming sessions are generated according to a
Poisson arrival process. A client can request any one ofM dis-
tinct media objects with popularity distributed accordingto a
Zipf-like distribution. The size of these objects is lognormally
distributed with mean object size 11.9 MB which corresponds
to a mean duration of 4.16 min at bit rate of 400 kbps [13],
[14].

Unlike a system with static clients, the identities of the
online clients in this system vary with time. Node turnover
due to client mobility in the WLAN is modelled as a batch
arrival and departure process. At the end of timestep∆t,
KT clients are randomly chosen to depart the network and
are immediately replaced. The number of residual clients that
were not replaced is denotedKR such that the total number
of active clients on the network,KA = KT + KR, remains
constant. Note that a client does not rejoin the network after
going offline. As a result, the total number of clients that
participate at some point during the entire simulation time, T ,
is equal toK = KT T/∆t + KR. If Q is the average number



of media requests from a client per hour, then the total number
of sessions during the entire simulation isKAQT .

Table I lists the parameters of the two network traffic traces
used in our simulations. The first trace models a group of users
accessing Internet media objects with typical statistics from
the literature. We reused values introduced in [9], [13], [15]
to decide the number of objects, object popularity, simulation
duration, and number of sessions for Trace 1. The second trace
represents a workload model in time of high load where a
dense population is interested in streaming the same media
objects. This could occur during a sporting event or concert
where clients are accessing the same highlight footage at
slightly different times. Thus, we assumed a small number
of objects (GISMO default value for object popularity [12]),
which are requested by many clients in a short timespan.

Our system performance metrics are number of clients in
service (number of simultaneous client media streams that can
be supported), drop ratio (the total number of sessions dropped
due to lack of network link capacity during the simulation),
and hit ratio (total number of sessions served by the caches
divided by the total number of sessions initiated by all clients
during the simulation assuming that no session is dropped).
Note that any request that could be served by the cache but
is dropped due to the lack of bandwidth is still counted as a
cache hit.

In addition to finite-sized caching, the special cases of infi-
nite IS caching (Inf-IS) and infinite distributed client caching
(Inf-CC) are considered. For Inf-CC, each mobile has an
infinite cache. When finite caching is used, the replacement
algorithms used to evict objects and create new space in the
cache are Least-Frequently-Used (LFU), Least-Recently-Used
(LRU) and SIZE, which removes the largest object [1], [2].

TABLE I
SIMULATION PARAMETERS FORSYNTHETIC WORKLOADS

Parameter Trace 1 Trace 2
Number of objects (M ) 38,865 20
Object popularity (α) 0.47, 0.8 0.73

Time duration (T ) 12 hours 2 hours
Concurrent clients (KA) 220 7000
Client batch size (KT ) 170 5000
Residual clients (KR) 50 2000
Average request arrival

rate per client (Q) 7 per hour 2 per hour
Number of sessions (X) 18,480 28,000

Maximum number of
assists per clients (AC ) 11 0-5

Number of APs 8 8 - 40
Per-client cache size 0-50 MB 300 MB

IS cache size 0-25 GB 300 MB

IV. SIMULATION RESULTS

A. Trace 1

For Trace 1, Fig. 2 shows the number of clients in service
versus time, Fig. 3 shows dropped session ratio, and Fig. 4
shows cache hit ratio. The drop ratio and the hit ratio are first
measured using object popularity skew parameterα = 0.47
and then repeated usingα = 0.8 in order to study the
effect of the object popularity distribution on the system
performance. Note that in distributed caching, Trace 1 doesn’t
allow redundant caching and clients have the option to use
P2P or the MANBH infrastructure to assist each other.

Fig. 2 shows that the number of simultaneous clients that
can be supported using Inf-IS cache is constant at 40 clients,
which reflects the wireless router capacity as discussed in
Section II. However, in case of using Inf-CC the number of
simultaneous clients that can be supported increases slightly
especially in case ofα = 0.8. The simulation results show
that neither the IS cache size nor the replacement algorithm
affect the drop ratio for fixedα. The drop ratio in case of
α = 0.47 is 64.06%, while the drop ratio is 63.61% in case
of α = 0.8. The reason is that the router is the bottleneck in
the path between the clients and the IS cache. Thus, whether
we assume that the media objects have been cached in the IS
cache or not, the router throughput will limit the flow from
the IS cache to the clients.

In Fig. 3, however, the increase of the client cache sizes
reduces the drop ratio, since using client caches reduces the
pressure on the router in two ways: Clients are able to assit
one another with P2P transmissions, and clients are able to
find objects in their own caches.

Fig. 4 shows that the hit ratio increases as the cache size
increases, which implies traffic reduction on the backbone
network. Fig. 4 shows also that the hit ratio increases asα
increases either for Infinite cache or finite cache. Thus, the
more the object popularity is skewed, the more valuable the
cache. Moreover, Fig. 4 shows that, in both caching schemes,
LFU achieves the best hit ratio for both values ofα. In case
of IS cache, SIZE achieves the worst hit ratio whenα = 0.8,
while LRU is the worst whenα = 0.47. In case of distributed
cache, LRU and SIZE achieve almost the same performance
for both values ofα.

The results of this experiment show that the IS cache
reduces the load on the Internet as well as OMS more
effectively than the distributed client caches. The results also
show that distributed cache, rather than IS cache, has the
advantage of saving the MANBH bandwidth. However, client
caches have a drawback of depending on limited batteries,
while IS cache has an unlimited power source. The energy
consumption by the client increases as the number of cache
assists provided increases. Another factor, which affectsthe
energy consumption of clients, is the distance between clients
and the APs. With fewer APs, the average client distance
increases, and more energy is consumed



B. Trace2

As discussed in Section III, Trace 2 represents a workload
model in time of high load where a dense population is
accessing a few media objects. Therefore, in the distributed
cache scheme, the protocol in Trace 2 adopts two assumptions
in order to minimize the MANBH traffic and avoid over-
whelming the MANBH infrastructure. First, redundant caching
is allowed. Second, only P2P assist between clients in the
same WLAN (no client assists using MANBH infrastructure
is allowed)

Two experiments are conducted using Trace 2. First, the
number of clients in service versus time is shown in Fig. 5 for
two values ofAC . Fig. 6 and 7 show the session drop ratio
and the cache hit ratio, respectively, as a function ofAC , and
for different numbers of APs.

Fig. 5 shows that forAC = 3, the number of clients in
service increases to a steady state value. This increase is slower
when there are more APs because we limit the client assists
to be within the same WLAN. So, it takes more sessions to
cache all the media objects within each WLAN (Note that the
total number of clients is always constant, and as the number
of APs increases, the number of clients that belong to a single
AP decreases). Yet the further increase inAC doesn’t lead to
increase in the number of clients in service.

Fig. 6 and 7 show that, in case of Inf-IS, the drop ratio and
the hit ratio are not affected by the number of APs. The reason
again is that the router is the bottleneck in the path between
the clients and the IS cache regardless of the number of APs
serving the clients.

In case of Inf-CC, Fig. 6 and 7 show that the drop ratio
increases as the number of APs increases, while hit ratio
decreases. As the number of APs increases, the number of
clients who can assist each other decreases. Thus, clients try
to retrieve more media objects from OMS which results in
more dropped sessions, and fewer cache hits.

Fig. 6 and 7 also show that the drop ratio decreases asAC

increases, while hit ratio increases. As more P2P assists are
allowed, more objects are retrieved from client caches. Thus,
the hit ratio increases and the drop ratio decreases.

The results of this experiment show that the Inf-CC outper-
forms the Inf-IS cache greatly at high load. Although the hit
ratio is better in case of Inf-IS, the high drop ratio means that
the clients are unable to retrieve the cached objects from ISdue
to insufficient bandwidth, which explains the small number of
clients that can be supported simultaneously in case of Inf-IS.

The results also show that, in case of Inf-CC, to achieve
better hit ratio, more energy per client is required, eitherto
increase theAC or to reduce the number of APs. On the other
hand, using more APs implies not only more cost, but also
fewer concurrent clients that can be supported over a short
timespan.

Finally, in distributed caching scheme, preventing clients
from using the MANBH infrastructure results in a reduction
in drop ratio from 90%, in case of IS cache, to less than 10%
when AC = 3. On the other hand, in Trace 1, the reduction
was negligible since clients are allowed to use MANBH

infrastructure, otherwise the results of Trace 1 would show
lower drop ratio and also lower hit ratio.
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V. CONCLUSIONS

In this paper, we presented a distributed caching strategy for
use with mobile devices in a WiFi network with a bandwidth-
constrained wireless backhaul.

The proposed protocol allows for cached data to be shared
among clients while, at the same time, conserving client en-
ergy by limiting participation in the scheme. Simulation results
illustrate that IS caching outperforms distributed caching for
a limited number of concurrent media streams. However, it’s
also shown that distributed caching increases the scalability
of the network. This scalability is achieved at only a modest
additional energy expenditure from the mobile devices.
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