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Abstract—We consider the problem of optimal cluster-based
data gathering in Wireless Sensor Networks (WSNs) when nearby
readings are spatially correlated. Due to the dense nature of
WSNs, data samples taken from nearby locations are statistically
similar. We show how this data correlation can be exploited to
reduce the amount of data to be transmitted in the network and
thus conserve energy. While much attention in recent years has
been paid to analyzing and optimizing cluster-based WSNs from
various perspectives, the problem of energy-efficient clustering of
WSNs in presence of data correlation is not yet fully explored.
In this paper, we model a single-cluster network and analytically
characterize the optimal cluster size subject to its distance
from the sink as well as the degree of correlation. Contrary
to existing approaches, our findings show that heterogeneous-
sized clusters, where the clusters further from the sink are
larger, are more energy-efficient. We also propose a heuristic
greedy clustering algorithm to find a near-optimal solutionto the
problem of energy-efficient clustering. Simulation results confirm
the effectiveness of having heterogeneous-sized clustersin WSNs.

Index Terms—energy-efficiency, clustering, data correlation,
data compression, wireless sensor networks.

I. I NTRODUCTION

A Wireless Sensor Network(WSN) consists of a large
number of sensor nodes that cooperate to monitor environmen-
tal conditions (e.g., temperature, precipitation, radioactivity)
in a given geographic area [1]. The sensor nodes have the
capability to collect (sense) data from the environment, and
cooperate with other sensor nodes to relay the data to a central
processing center, known as the sink, using multi-hop wireless
communication. WSNs are used in a wide range of agricul-
tural, environmental, industrial, manufacturing, military, and
security monitoring applications.

The minute size of sensor nodes (typically the size of a small
coin) means that they operate using limited-capacity batteries.
One example isBerkeley’s Smart Dustwith a volume of no
more than a few cubic millimeters that can store on the order of
1 Joule of energy [2]. Nevertheless, critical WSN applications
require long-term operation in remote, unattended, and even
hostile environments in which it is often difficult or impossible
to replace the sensor batteries. In the past few years, a
considerable volume of research has studied various methods
of energy conservation in WSNs.

Since data transmission can account for up to 70% of the
power consumed in typical sensor nodes [3], substantial energy

savings are possible if the volume of communicated data
is reduced using compression. While data compression itself
requires additional processing, the amount of energy required
for CPU operations in sensor nodes is orders of magnitude
lower than that for data transmission [4].

In dense deployments of sensor nodes in a WSN, it is
expected that the readings from nearby nodes are strongly cor-
related [5]. For example, in a camera sensor network for mon-
itoring the environment, it is likely that multiple proximally-
located camera sensors detect the same phenomenon. In this
case, it usually suffices to send one instance of the observation
to the sink. This property can be exploited to aggregate and
compress the collected data before sending it to the sink [6].

Clusteringis a well-established technique for reducing data
collection costs in WSNs [7]. In this technique, sensor nodes
are grouped into disjoint sets, with each set managed by a des-
ignatedCluster-Head(CH), selected from among the sensor
nodes. The cluster members send their collected observations
(which are likely to be highly correlated) to their CH. The
CH suppresses the local redundancies and communicates the
compressed data to the sink possibly via multi-hop transmis-
sion. This approach avoids sending redundant data to the sink,
and thus helps save energy. Organizing sensor nodes to form
such cluster-based topologies is a widely accepted solution for
energy conservation. In addition to the opportunity for local
data compression, this approach can coordinate the activities
of cluster members, and address scalability issues (e.g., routing
and communication costs) in large WSNs. Hence, this class of
WSNs is potentially viewed as the most energy-efficient and
long-lived class of sensor networks [5].

Numerous clustering algorithms for WSNs have been pro-
posed in the literature. These algorithms vary in their ob-
jectives, which may include load balancing, fault-tolerance,
increased connectivity, reduced delay, and maximal network
longevity. A good survey appears in [7].

While the existing energy-aware clustering algorithms ig-
nore the effect of data correlation on the optimal cluster sizing
and its impact on saving energy, in this paper, we propose and
evaluate a novel WSN clustering strategy that exploits data
correlation. That is, the nodes within each cluster have strong
internal correlation, while the inter-cluster data dependence is
negligible. To this end, we carefully analyze the mutual effect
of cluster size and the distance from the sink on reducing total



network energy consumption. Although it is computationally
difficult to find optimal-sized clusters, we propose a model
to obtain a near-optimal solution for forming energy-efficient
clusters in the network. In a nutshell, the main contributions
of this paper are as follows:

• We develop a model to incorporate the effect of spatial
data correlation while forming energy-efficient clusters in
the network.

• Unlike conventional clustering algorithms that result in
uniform clusters of almost the same size, we advocate
heterogeneous-sized clusters in the network, where the
clusters further from the sink are larger than those located
close to the sink.

• We justify the proposed clustering strategy using analysis
and simulation.

The remainder of the paper is organized as follows. Sec-
tion II reviews recent literature on WSN optimization. While
Section III presents a simple motivating example for our
work, an analytical model for spatial data dependency is
reviewed in Section IV. Subsequently, we briefly discuss and
compare two existing methods for modeling lossless/lossy
data compression. In Section V, we propose a simple one-
cluster network model and examine the joint effect of data
correlation, distance from the sink, and network density on
optimal cluster size. In Section VI, we propose a heuristic
greedy clustering algorithm that confirms our findings about
heterogeneous cluster sizes. Finally, Section VII concludes the
paper and suggests some interesting areas for future work.

II. RELATED WORK

Cristescu,et al.analyze the effect of applying a well-known
method of distributed source coding, Slepian-Wolf Coding
(SWC) [8], for data compression in WSNs and proved that
the shortest path tree yields the optimal gathering tree for
any fixed rate allocation [9]. SWC requires side information
about both the entire network topology and the exact data
correlation model to allocate the optimal set of data rates to
sensor nodes. This information, however, is hard to achievein
practice. Moreover, applying optimal SWC in WSN results in
an imbalanced rate allocation, with the highest load imposed
on nodes near sink. Energy depletion for the nodes near the
sink can disrupt the operation of the entire network. Various
approximation algorithms are proposed and evaluated in [9]
for the optimal SWC. The authors, however, argue that the
optimal rate allocation problem is anNP-complete problem.

LEACH [10] is a classic probabilistic clustering algorithm.
It aims to distribute the traffic load evenly among sensor nodes
and reduce the network energy consumption. The LEACH
algorithm proceeds in rounds. In each round, each sensor
node independently decides whether or not to become a CH
according to a probability function. On average, this function
makes each node become a CH for a similar period of time, as-
suring fair balancing of energy consumption among all nodes.
Although LEACH performs local data fusion to compress the
cluster information, it does not consider data correlationwhen
forming optimal-sized clusters. Moreover, since the probability

of becoming a CH is fixed, LEACH results in clusters that are
on average of the same size throughout the entire network.

Pattemet al. consider the impact of spatial data correlation
on three different class of routing schemes: Distributed Source
Coding (DSC), Routing Driven Compression (RDC), and
Compression Driven Routing (CDR) [11]. They show that
RDC is best suited for WSNs with low correlation, while CDR
is most appropriate for highly-correlated data fields. Although
the authors consider data correlation as an important factor
in reducing network energy consumption, their analysis is
fundamentally based on a static cluster size throughout the
entire network. A near-optimal value for this cluster size is
then suggested that works equally well across a wide range
of correlation degrees. In contrast, our findings show that the
optimal cluster sizes vary with respect to the cluster distance
to the sink, and the degree of correlation. Therefore, thereis
no identical and globally optimal size for the whole clusters
that minimize the entire network energy consumption.

Cluster-based sensor networks generally outperform non-
clustered WSNs [5]. The authors show that clusters should
comprise nodes with highly correlated data-readings. They
evaluated their model for a simple linear distributions of nodes,
and formulated the optimal size of the clusters as a function
of distance to the sink, and the number of nodes with similar
data-readings. For simplicity of calculations, they assumed a
globally-fixed aggregation factor for all clusters. As we will
see later in this paper, data correlation is typically assumed
to be a decreasing function of distance. Hence the level of
data aggregation/compression depends on the distributionof
nodes inside the network and thereby cannot be the same for
all nodes.

A distributed, randomized WSN clustering algorithm with
a hierarchy of clusters proposed in [12]. In that paper, the
optimal probability of becoming a CH is computed. Also, the
maximum number of hops allowed for each non-CH node
to reach the designated CH is quantified. They develop a
distributed hierarchical clustering algorithm based on these
pre-computed optimal values and show that increasing the
number of clustering levels in the hierarchy results in better
energy savings. While the paper provides an energy-efficient
method of network clustering, it does not consider the corre-
lation between nearby reported observations while collecting
information.

Li and AlRegib consider the problem of energy-efficient
cluster-based distributed estimation in WSNs, where the major
goal is to determine the optimal cluster size and the number of
clusters to minimize the total energy cost of the network [13].
In their approach, sensor nodes send quantized versions of
their observations to their respective CHs. CHs make a local
estimation of the cluster data using a lossy estimator named
BLUE, and directly send the estimate to the sink. The sink
uses another estimator called quasi-BLUE to make the final
estimation based on all the received signals. Although their
proposed clustering algorithm shows significant energy sav-
ings, the effect of data correlation is again neglected.



III. M OTIVATING EXAMPLE : A L INEAR NETWORK

Given a network of nodes, there are many ways to group
the nodes together to form independent clusters. The general
problem of minimum cost clustering is a more complicated in-
stance of theminimum cost network correlated data gathering
problem, which is known to beNP-complete [9].
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Fig. 1. A linear sensor network topology

We focus on a simple scenario of a small linear network
for which we are able to exhaustively compute all possible
permutations of the clusters and their energy consumption (see
Fig. 1). To this end, we deterministically placen sensor nodes
at equal distances apart along a horizontal line segment with
the sink at the left end. Clearly, even for small networks, the
number of cluster permutations rapidly grows asn increases;
thus, here we just consider a network of sizen = 10. Let
(a1, a2, . . . am) represent a cluster configuration in which there
arem clusters andai denotes the size of theith cluster, fori ∈
1, . . . ,m. For example, tuple(3, 1, 2, 4) represents a network
with 4 clusters where the cluster closest to the sink has 3
nodes.

We assume that each sensor node within the cluster sends
only a single instance of its readings to the CH. Cluster-heads
are located at the left edge of each cluster. This assumption
ensures that the collected information is transmitted towards
the sink over the shortest possible path. The CH aggregates
and compresses the collected readings and transmits a single
representative message to the sink. The size of the compressed
message depends on the joint entropy of the cluster, as will
be discussed later in Section IV.

Data transmissions between the cluster members and the
CHs, and also from the CHs to the sink are using multi-
hop communication basis. In this approach, we assume that
the radio range of sensors only covers their immediate neigh-
bor(s). This ensures the minimum transmission energy while
guaranteeing the network connectivity. Therefore, in order to
communicate the data to the CH, a sensor needs to make use
of the intermediate sensor nodes to reach the CH. Likewise,
the CH relies upon intermediate sensors to forward the cluster
information to the sink.

Based on the above assumptions, we calculate the total
network energy consumption of each clustering pattern when
three different degrees of data correlation (low, medium and
high) are present. To configure the degree of data correlation,
we assume the dependency between sample readings exponen-
tially decreases with distance at a fixed rate. The higher is this
rate, the lower is the degree of correlation.

We exhaustively enumerate and evaluate all possible cluster
configurations, starting with a single cluster of size 10, and
then considering two-cluster configurations of sizes(1, 9),
(2, 8), (3, 7), . . .(9, 1), and then three-cluster configurations,
and so on, finishing with 10 individual clusters of size 1.
Table I summarizes the top 10 cluster patterns with the lowest
energy requirements.

TABLE I
TOP 10 CLUSTER PATTERNS WITH LOWEST ENERGY CONSUMPTION.

Low Correlation Medium Correlation High Correlation

rank pattern energy pattern energy pattern energy

1 (2,3,5) 193.94 (2,3,5) 179.83 (1,2,2,5) 102.48
2 (2,4,4) 193.95 (1,4,5) 179.96 (2,2,2,4) 102.48
3 (3,3,4) 193.96 (1,3,6) 180.15 (2,3,5) 103.25
4 (1,2,3,4) 193.97 (1,1,3,5) 180.24 (3,2,5) 103.93
5 (1,4,5) 194.01 (2,4,4) 180.26 (2,4,4) 104.55
6 (1,1,3,5) 194.02 (2,2,6) 180.45 (1,2,3,4) 104.70
7 (1,1,4,4) 194.03 (4,6) 180.50 (2,2,6) 105.07
8 (3,2,5) 194.04 (3,2,5) 180.54 (1,3,2,4) 105.38
9 (1,2,2,5) 194.05 (3,3,4) 180.60 (2,2,4,2) 105.88
10 (2,1,3,4) 194.05 (1,1,4,4) 180.67 (2,1,2,5) 106.06

The results in Table I indicate that data compression plays a
significant role in reducing the total network energy consump-
tion. For example, the results for the high correlation scenario
show that energy consumption is reduced by almost 50%
compared to low correlation case. Furthermore, the importance
of appropriate clustering is also evident in the high correlation
scenario. For instance, the tenth-best clustering,(2, 1, 2, 5), has
3.5% higher energy consumption than the best cluster config-
uration, (1, 2, 2, 5). and the very worst cluster configuration
studied,(1, 1, . . . 1), is over 50% worse (not shown). For the
low correlation scenario, the top 10 cluster configurationsall
have comparable energy consumption (within 0.06% of each
other).

Studying the cluster sizes in Table I is also insightful. The
most prevalent configurations have 3 or 4 clusters (only one
2-cluster configuration appears in Table I). More importantly,
most of these cluster patterns have monotonically increasing
cluster size as you move away from the sink. There are a few
exceptions in each column (e.g., the(3, 2, 5) cluster configura-
tion), but even in these cases, the size of the rightmost cluster
is always larger than the size of the leftmost cluster. This
motivates exploring new methods of clustering that, unlike
existing algorithms, produce heterogeneous-sized clusters.

In the following section, we review the mathematical back-
ground of the problem and formally investigate the importance
of data compression in energy-constrained WSNs.

IV. FORMAL PROBLEM DEFINITION

The individual sensor nodes within the WSN are considered
statistically identical information sources. We assume that
sensor readings are normally distributed with mean zero and
varianceσ2. Thus, the set of all observations (in a cluster



of size N ) can be formalized as a zero-meanmulti-variate
Gaussian distribution1.

Since the properties of Gaussian sources are already well-
explored in the literature, this assumption makes our calcu-
lations easier. Furthermore, in terms of the number of bits
required to represent the field, Gaussian distribution is the
worst case [14]. Thus, our results can be applied as a bound
for other sources as well.

Gaussian fields can be represented with a symmetric
positive-definite covariance matrixΣ = [σij ]N×N . Each
element,σij , expresses the data dependence between readings
from sensor nodesi andj.

In the following subsections, we formalize the data corre-
lation and compression models used in our analyses.

A. Data Correlation Model

In many distributed information systems, it is often assumed
that sample observations are spatially correlated. Such corre-
lation is generally formalized by acovariance function, which
is a non-negative decreasing function of Euclidean distance.
The limiting values are 1 atd = 0 and 0 at d = ∞,
whered represents the Euclidean distance between two sample
readings. In other words, as the Euclidean distance between
two sample observations increases, the correlation between
them monotonically approaches zero.

A general model for spatial correlation is proposed in [15].
Denoting the random field of interest by

{

S(u), u ∈ D ⊆ R
l
}

,
the covariance between two sample observations at locations
u andv is expressed by:

cov {S(u), S(v)} = σ2Kϑ(‖u− v‖) , (1)

where σ2 is the variance of each sample observation,
‖·‖ denotes the Euclidean distance, andKϑ(‖u − v‖) =
corr {S(u), S(v)} denotes an isotropic correlation function
with ϑ = (θ1, · · · , θc)

′ ∈ Θ ⊂ R
c as the set of parameters

controlling the range of correlation and smoothness/roughness
of the random field [15].

Depending on the inherent characteristics of the random
field, several types of covariance models can be defined.
The most common kinds areSpherical, Power Exponential,
Rational Quadratic, andMatérn [15].

In this paper, we use the Power Exponential model for
which the correlation function over a distanced is defined
as:

KPE
ϑ (d) = exp(−(d/θ1)

θ2) , (2)

whereθ1 > 0 andθ2 ∈ (0, 2].
More specifically, in our analyses, we use a special type of

the Power Exponential, known as Squared Exponential cor-
relation model. Adopting the Squared Exponential correlation
model, we express the elements of the covariance matrix as

σij = σ2 exp(−ad2ij) , (3)

1Hereafter, we use the terms “multi-variate Gaussian distribution”, “Gaus-
sian random field” and “Gaussian field” interchangeably.

wherea = θ−2
1 is the correlation exponent anddij denotes

the Euclidean distance between sensor nodesi andj.
For brevity, we define the parameterW = exp(−a). W is

a normalized parameter (i.e., 0 < W < 1) representing the
degree of correlation, whereW = 0 represents no correlation,
andW = 1 represents high correlation (i.e., globally identical
observations).

B. Data Compression Model

Cluster members observe some spatial stochastic process at
specific points in time. LetS = {si, i = 1, 2, . . . , N} be the
set ofN sample observations captured byN cluster members.
Recall that we assume a continuous data model, where sensor
readings are drawn from a normal distribution. In order to
discretize the continuous readings, the cluster members locally
quantize their observations and transmit them to the CH. Since
the originally transmitted data is quantized, the reconstructed
version of data at the CH is subject to some distortionD.
Denoting the reconstructed version ofS by Ŝ, we consider the
mean-squared error(MSE) between two observations as the
measure of distortion. Since the maximum tolerable distortion
at the receiver isD, it requires that:

E[‖S − Ŝ‖2] ≤ D . (4)

There are two approaches for computing the number of bits
required to represent the quantized observationŜ subject to
the given distortionD. Below, we briefly summarize the two
approaches and describe their relation to each other.

1) Rate Distortion Theory:In Rate Distortion Theory, the
minimum required number of bits to represent a multi-variate
Gaussian sourceG(0,ΣN×N) subject to a distortion boundD
per source is given by:

R(N,D) =
1

2

N
∑

n=1

log2(
λn

Dn

) , (5)

whereλ1 ≥ λ2 . . . ≥ λN are the eigenvalues of the covariance
matrix Σ, andDn’s are expressed as follows:

Dn =

{

θ, if θ < λn

λn, otherwise,
N
∑

n=1

Dn = N ·D

(6)

For sufficiently small values ofD where
∑N

n=1 λn ≥ D,
there exists an0 ≤ N such thatλn0

> θ ≥ λn0+1.
Consequently,θ can be computed from the following relation:

θ =
1

n0

(

N ·D −

N
∑

n=n0+1

λn

)

. (7)

2) Source Coding and Entropy:For discrete information
sources, the entropy function yields the minimum number of
bits required to encode the source. However, for a continuous
source, due to the infinite precision, the number of bits
required to encode the source is also infinite.



If a continuous source is discretized by a uniform quantizer
of step size∆, the entropy of the quantized source denoted
by H(S∆) is given by [16]:

H(S∆) ≈ h(S)− log2 ∆
N , (8)

whereh(S) is the differential entropy ofS given by

h(S) = −

∫

S

p(S) log2 p(S)dS . (9)

For a continuous multi-variate Gaussian source, the entropy
function is given by [16]:

h(S) =
1

2
log2(2πe)

N |Σ| , (10)

where|Σ| denotes the determinant of the full-rank covariance
matrix Σ (i.e., the product of its eigenvalues,λn).

With our special correlation model, the covariance matrix
Σ becomes singular, asN → ∞. Under such conditions, it
has been shown that the differential entropy,h(S), is given
by [17]:

h(S) =
1

2
log2(2πe)

̺(Σ)|Σ|+ , (11)

where|Σ|+ and̺(Σ) denote the product of non-zero eigenval-
ues (i.e., principal components) and the rank ofΣ, respectively.
Therefore:

H(S∆) ≈ h(S)− log2 ∆
̺(Σ) . (12)

For a uniform quantizer with step size∆, the per source
distortion is given by∆2/12 [18]. Hence, to achieve the
distortionD, we require that:

∆2 = 12D , (13)

and, consequently

H(SD) ≈
1

2
log2(

πe

6D
)̺(Σ)|Σ|+ . (14)

In the following subsection, we study the effect of data
compression on suppressing the local data redundancies and
also the relation between the two aforementioned methods of
modeling data compression.

C. On the Importance of Data Compression

To examine the importance of data compression in WSNs
with correlated data, we model the savings that can be
achieved by compressing the cluster data.

Consider a cluster withN nodes that are uniformly and
randomly distributed spatially. For different degrees of cor-
relation (W ), we consider the metricCompression Ratio, Γ ,
that measures the amount of reduction that can be achieved by
compressing the cluster information compared to the aggregate
size of the cluster data without compression as follows:

ΓH =
H(SD

1 , SD
2 , . . . SD

N )

N ·H(SD
∗
)

,

ΓR =
R(N,D)

N ·R(1, D)
.

(15)

whereH(SD
∗
) andH(SD

1 , SD
2 , . . . SD

N ) are the entropy of a
single source and the joint entropy of the whole cluster subject
to distortion D, respectively. Also,R(1, D) and R(N,D)
respectively denote the rates at which a single source and the
cluster entirely are coded with distortionD.

Fig. 2 illustrates the effect of data correlation on the
Compression Ratio.

The first interesting observation is the similarity betweenthe
rate distortion and entropy curves. As seen from Fig. 2, both
theories indicate almost the same reduction for a fixed level
of distortion and data correlation. We note that rate distortion
provides a theoretical lower bound on the number of bits
required to represent continuous samples [17]. The entropy
technique, on the other hand, is sub-optimal, yet more practical
and easier to be implemented. Hence, in this paper, we use
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Fig. 2. Compression Ratio (Γ ) (Rate Distortion (R) vs. Entropy Coding (H))



the entropy technique to model the size of the cluster after
compression.

As seen in previous subsection, our analysis of the entropy-
based compression is asymptotic in the sense that the effect
of minor components of the covariance matrix are neglected.
This is the reason why in Fig. 2, the entropy curve is slightly
below the rate distortion curve. However, it is important to
note that the difference between the two presented curves is
the maximum possible error, as Gaussian fields represent the
worst case scenario [17].

As evident from Fig. 2, the higher the degree of data
correlation is, the greater are the savings from compressing
the cluster data. Surprisingly, even with a very low degree of
data correlation (W = 0.1), the cluster data can be compressed
to one-third of its original size. In the highly correlated case
(W = 0.9), the reduction is even greater, resulting in a huge
saving in power consumption of the network.

As the number of nodes in the cluster increases, the Com-
pression Ratio levels off. This observation can be explained as
follows. When the number of nodes in the cluster is relatively
small, the data dependency between sample observations is
high, since cluster members are all geographically close to
each other. In this case, adding more nodes to the cluster
(with the same density throughout the cluster) dramatically
improves the savings, since the observations from the new
nodes are likely similar to those from other nodes in the
cluster. As the cluster radius expands, and more nodes join
the cluster, the similarity between observations from disparate
nodes throughout the cluster reduces. In other words, readings
from new members at the periphery of the cluster are only
weakly correlated with the readings from most of the nodes
in the cluster, and have negligible effect on the Compression
Ratio.

V. A SIMPLE SINGLE CLUSTER MODEL

In this section, we develop a model to examine the effect of
cluster size and distance from the sink on energy consumption.
Consider a circular cluster of radiusR at distanceL from the
sink in which nodes are uniformly distributed with average
densityρ (see Fig. 3). Thus, the expected number of sensors
in the cluster isN = ρπR2. For simplicity of calculations, we
assume that the CH is located at the center of the cluster. This
assumption is consistent with many clustering schemes (e.g.,
LEACH [10] and EEHC [12]).

dθ
θ

dr

r

R

L

CH sink

Fig. 3. A circular cluster of radiusR at distanceL from the sink.

Cluster members observe some spatial stochastic process,

quantize their observations, and transmit them to the sink,
either directly (single-hop) or via other sensor nodes (multi-
hop). For successful data transmission, a minimum received
power levelγ is required. We assume a large-scale fading
channel between each transmitter and receiver, in which the
received power is inversely proportional to the square of the
distance between the transmitter and the receiver. Therefore,
the energy (E) required to transmitb bits over distanced is
given by [19]:

E = γbd2 . (16)

For simplicity and without loss of generality, hereafter we
assume thatγ = 1.

In our analysis, we consider two communication schemes
(direct and cluster-based) and compute the total transmission
power required to report all observations to the sink.

A. Direct Communication with Local Compression

In this scheme, each sensor in the disk individually quan-
tizes and compresses its own observation and transmits the
message directly to the sink. Clearly, this naı̈ve form of
communication is suboptimal; nonetheless, we use this scheme
as a baseline to characterize the performance of the cluster-
based method.

Let b1 denote the minimum number of bits required to
encode each observation. For a sensor node at polar coordinate
(r, θ), as shown in Fig. 3, the transmission cost for sending
a message to the sink isP (r, θ) = b1d

2(r, θ), whered(r, θ)
is the Euclidean distance from(r, θ) to the sink. The total
transmission powerPd consumed by all sensors is obtained
by integrating over the disk as follows:

Pd =

∫ R

0

∫ 2π

0

b1
(

r2 + L2 − 2rLcosθ
)

ρrdθdr

= 2πρb1

(

L2R2

2
+

R4

4

)

,

(17)

where the factorρrdθdr represents the expected number of
sensor nodes in the differential “rectangle” shown in Fig. 3.

B. Cluster-Based Communication with Joint Compression

In cluster-based communication, each sensor sends its quan-
tized observation to the CH. The CH losslessly compresses
all N messages and transmits the compressed version to the
sink. Denoting the compressed message size bybN , the total
transmission cost is given by

Pc =

∫ R

0

∫ 2π

0

(

b1r
2
)

ρrdθdr + bNL2

= 2πρb1

(

R4

4

)

+ bNL2.

(18)

Equation (14) can be used to compute the minimum number
of bits required to represent the size of an individual sensor
reading (b1), and the entire cluster data after compression (bN )
for a pre-specified target distortionD.
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sink (L) on the Energy Ratio (E) for ρ = 6.25 andW = 0.75.

C. Optimal Cluster Size

In this subsection, we evaluate the impact of the cluster
size on the total energy consumption. To this end, we define
the performance metric“Energy Ratio” as the ratio of energy
required to collect the network data in cluster-based method
to the direct communication scheme.

E =
Pc

Pd

. (19)

To compute our numerical examples of Energy Ratio, we
place an arbitrary CH at distanceL from the sink and
dynamically expand the cluster radiusR for a given node
densityρ. For different distancesL, we run our simulations
for 1000 random cluster configurations and report the average
Energy Ratio.

1) Impact of Distance on Optimal Cluster Size:Fig. 4
shows the relationship between energy consumption (vertical
axis, lower is better) and cluster radius (horizontal axis)for
different distancesL (the four lines on the graph). The results
in Fig. 4 suggest that, for any given distanceL, there is a
different optimal cluster radius, at which the Energy Ratiois
minimized. For example, the upper line forL = 1 has its
minimum energy consumption near a radius ofR = 1, while
the lower line forL = 20 has its minimum nearR = 7.

In general, the farther the cluster is from the sink, the larger
the optimal radius is. In other words, the optimal cluster size is
not uniform throughout the network. This insight is important,
since many existing energy-aware clustering schemes, such
as LEACH [10] and EEHC [12], assume homogeneous-sized
clusters that are uniformly distributed in the WSN.

2) Impact of Correlation Degree on Optimal Cluster Size:
We next focus on the effect of data correlation degree on the
optimal size of the clusters. Fig. 5 shows that as more degree
of correlation increases, the optimal cluster radius shrinks. For
higher degrees of correlation, nearby observations are tightly
coupled with each other. In the extreme case whereW = 1.00,
all the observations are globally identical. Therefore, itwould
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Fig. 5. The joint effect of the cluster size (N ) and the correlation degree
(W ) on the Energy Ratio (E) for ρ = 6.25 andL = 10.

suffice if each sensor node reports its data to its immediate
neighbor. Since both observations are identical, the neighbor-
ing node needs only forward one instance of the observation.
Thus, the optimal cluster radius will decrease such that each
node forms its own local neighborhood.

3) Impact of Network Density on Optimal Cluster Size:The
next interesting analysis is the effect of network density on the
optimal size of the clusters, for a given level of correlation.
In this analysis, we fix the position of the cluster at distance
L from the sink and study how the Energy Ratio changes as
the network becomes denser. According to Fig. 6, the optimal
cluster radius shrinks as the network density increases. This
result is intuitive in the sense that adding more nodes to the
network for a fixed degree of data correlation is expected to
have the same effect as increasing the data correlation degree
for a fixed density.
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Fig. 6. The joint effect of the cluster size (N ) and the node density (ρ) on
the Energy Ratio (E) for L = 10 andW = 0.75.

In the following section, we propose a heuristic clustering
algorithm that closely verifies our findings in this section.



VI. SIMULATION EXPERIMENTS

To verify our results from the previous section, we simulate
a centralized greedy clustering algorithm to find near-optimal
solutions for the clustering problem in a 2-D network.

A. Greedy Clustering Algorithm

The greedy algorithm selects the WSN node with the highest
cost to reach the sink, and then assigns it to the candidate CH
for which the overall energy reduction is largest. The node
joins the best candidate cluster and is marked. The algorithm
iteratively performs this task until all the nodes in the WSN
are marked. Algorithm 1 shows the details.

Algorithm 1 greedy clustering(V, sink)

1: Ṽ = V // Initially, all nodes are unmarked.
2: repeat
3: εn, n← max{energy(v, sink), ∀v ∈ Ṽ ⊆ V }
4: CH ← n // Setn as an isolated cluster of size 1.
5: δmax ← 0 // Initialize maximum observed gain to zero.
6: for every nodev ∈ V (v 6= n) do
7: εvn ← energy(n, v)
8: εv ← energy(v, sink)
9: assign(n, v) // Tentatively assign n to v’s cluster.

10: ε′v ← energy(v, sink)
11: δ ← (εvn + ε′v)− (εn + εv) // Compute the gain.
12: if δ > δmax then
13: δmax ← δ // Update max gain value observed.
14: CH ← v // Setv as the best candidate CH forn.
15: end if
16: remove(n, v) // Undo this tentative assignment.
17: end for
18: assign(n, CH) // Permanently assign n to the best cluster.
19: Ṽ ← Ṽ − {n} // Remove n from further consideration.
20: until Ṽ = ∅ // Repeat until all nodes are marked.

In Algorithm 1, V and Ṽ denote the set of all WSN nodes
and all unmarked WSN nodes, respectively.δ is the energy
gain achieved by adding noden to a cluster andδmax denotes
the maximum energy gain attained by adding noden to any
of the existing clusters. Subroutineenergy(u, v) computes
the required energy to transmit the data from nodeu to v.
The amount of data to be transmitted is proportional to the
number of members in the cluster ofu (assumingu as a CH).
Subroutineassign(i, v)adds nodei to the set of members of
the cluster whose CH isv. Subroutineremove(i, v)removes
nodei from the set of members ofv. Statement̃V ← Ṽ −{n}
removesn from the set of unmarked nodes, assuring it will
not be revisited in future iterations of the algorithm.

In Algorithm 1, all the nodes are initially unmarked, and
thus considered as isolated clusters of size 1, which directly
send their data to the sink. In each iteration of the algorithm,
the noden ∈ Ṽ with the highest energy requirement to reach
the sink is chosen. Then, for everyv ∈ V , the algorithm
computes the gain achieved by adding noden to v. The node
that achieves the largest gain is selected as the candidate CH

for n to join. The procedure repeats until all the nodes inV
are visited. Therefore, the time complexity of the algorithm is
of O(|V |2).

B. Simulation Results

In our simulation, we uniformly scatter 400 sensor nodes
in a symmetric WSN with the sink at the center (0,0).
The physical placement of WSN nodes is the same in all
experiments; only the data correlation degree changes. The
output of our greedy algorithm on this network is depicted in
Fig. 7.

Non-uniform cluster sizes are clearly evident in Fig. 7a.
Clusters further from the sink are larger in radius, consistent
with the results in Fig. 4 and Fig. 5. For higher degrees of
correlation, the number of visually distinct clusters reduces,
and there is greater affinity to proximal nodes. In the extreme
case of Fig. 7d withW = 1.0, the resulting topology
resembles a Minimum Spanning Tree (MST) for the network,
though it still differs from (and is more energy-efficient than)
the MST.

The diverse behaviours in Fig. 7 show the important effect
of spatial data correlation on optimal cluster formation. These
simulation results are also consistent with our analyticalresults
for this problem.

VII. C ONCLUSION AND FUTURE WORK

In this paper, we studied the joint effects of data corre-
lation, distance, and network density on forming optimal-
sized clusters that require less power than conventional ap-
proaches. We showed that unlike most of the existing cluster-
ing approaches that produce uniform clusters throughout the
whole network, heterogeneous-sized clusters are more energy-
efficient in WSNs with spatial data correlation.

Our current analyses are based on a simple single cluster
model. Although we have verified the correctness of our
hypotheses with the outputs from a heuristic greedy clustering
algorithm as well as the optimal solution of a linear network,
further systematic studies of more generalized multi-cluster
networks are needed. We are also working on a distributed
version of the proposed greedy clustering algorithm that can
be implemented and tested on real WSNs.
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