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Abstract—We consider the problem of optimal cluster-based
data gathering in Wireless Sensor Networks (WSNs) when neby
readings are spatially correlated. Due to the dense nature fo
WSNSs, data samples taken from nearby locations are statistally
similar. We show how this data correlation can be exploited @
reduce the amount of data to be transmitted in the network and
thus conserve energy. While much attention in recent years ds
been paid to analyzing and optimizing cluster-based WSNs ém
various perspectives, the problem of energy-efficient clasring of
WSNs in presence of data correlation is not yet fully explord.
In this paper, we model a single-cluster network and analytally
characterize the optimal cluster size subject to its distace
from the sink as well as the degree of correlation. Contrary
to existing approaches, our findings show that heterogenesu
sized clusters, where the clusters further from the sink are
larger, are more energy-efficient. We also propose a heurigt
greedy clustering algorithm to find a near-optimal solutionto the
problem of energy-efficient clustering. Simulation resuls confirm
the effectiveness of having heterogeneous-sized clust@ms/VSNs.

Index Terms—energy-efficiency, clustering, data correlation,
data compression, wireless sensor networks.

I. INTRODUCTION

savings are possible if the volume of communicated data
is reduced using compression. While data compressiorf itsel
requires additional processing, the amount of energy redui
for CPU operations in sensor nodes is orders of magnitude
lower than that for data transmission [4].

In dense deployments of sensor nodes in a WSN, it is
expected that the readings from nearby nodes are strongly co
related [5]. For example, in a camera sensor network for mon-
itoring the environment, it is likely that multiple proxira
located camera sensors detect the same phenomenon. In this
case, it usually suffices to send one instance of the obsamnvat
to the sink. This property can be exploited to aggregate and
compress the collected data before sending it to the sink [6]

Clusteringis a well-established technique for reducing data
collection costs in WSNSs [7]. In this technique, sensor 3ode
are grouped into disjoint sets, with each set managed by-a des
ignatedCluster-Head(CH), selected from among the sensor
nodes. The cluster members send their collected obsemgatio
(which are likely to be highly correlated) to their CH. The
CH suppresses the local redundancies and communicates the
compressed data to the sink possibly via multi-hop transmis

A Wireless Sensor NetworfWSN) consists of a large sion. This approach avoids sending redundant data to tke sin
number of sensor nodes that cooperate to monitor environmeand thus helps save energy. Organizing sensor nodes to form

tal conditions (e.g., temperature, precipitation, radiivity)

such cluster-based topologies is a widely accepted saltio

in a given geographic area [1]. The sensor nodes have #eergy conservation. In addition to the opportunity foraloc
capability to collect (sense) data from the environment amlata compression, this approach can coordinate the aedivit
cooperate with other sensor nodes to relay the data to aatentf cluster members, and address scalability issues (ewging
processing center, known as the sink, using multi-hop e&®l and communication costs) in large WSNs. Hence, this class of
communication. WSNs are used in a wide range of agriclWSNs is potentially viewed as the most energy-efficient and

tural, environmental, industrial, manufacturing, mititaand
security monitoring applications.

long-lived class of sensor networks [5].
Numerous clustering algorithms for WSNs have been pro-

The minute size of sensor nodes (typically the size of a smalbsed in the literature. These algorithms vary in their ob-
coin) means that they operate using limited-capacity batie jectives, which may include load balancing, fault-toleran
One example iBerkeley’s Smart Dustith a volume of no increased connectivity, reduced delay, and maximal nétwor
more than a few cubic millimeters that can store on the orflerlongevity. A good survey appears in [7].

1 Joule of energy [2]. Nevertheless, critical WSN applizasi

While the existing energy-aware clustering algorithms ig-

require long-term operation in remote, unattended, and eveore the effect of data correlation on the optimal clusteingi

hostile environments in which it is often difficult or impdsie

and its impact on saving energy, in this paper, we propose and

to replace the sensor batteries. In the past few yearsewvaluate a novel WSN clustering strategy that exploits data
considerable volume of research has studied various methodrrelation. That is, the nodes within each cluster havensgtr

of energy conservation in WSNSs.

internal correlation, while the inter-cluster data depsrat is

Since data transmission can account for up to 70% of thegligible. To this end, we carefully analyze the mutuatetf
power consumed in typical sensor nodes [3], substantiagyjgneof cluster size and the distance from the sink on reducirgj tot



network energy consumption. Although it is computatiopallof becoming a CH is fixed, LEACH results in clusters that are
difficult to find optimal-sized clusters, we propose a moden average of the same size throughout the entire network.

to obtain a near-optimal solution for forming energy-efiti  pattemet al. consider the impact of spatial data correlation
clusters in the network. In a nutshell, the main contritngio o, three different class of routing schemes: Distributedr&e
of this paper are as follows: Coding (DSC), Routing Driven Compression (RDC), and
« We develop a model to incorporate the effect of spati@ompression Driven Routing (CDR) [11]. They show that
data correlation while forming energy-efficient clusters iRDC is best suited for WSNs with low correlation, while CDR
the network. is most appropriate for highly-correlated data fields. sitgh
« Unlike conventional clustering algorithms that result inhe authors consider data correlation as an important rfacto
uniform clusters of almost the same size, we advocaie reducing network energy consumption, their analysis is
heterogeneous-sized clusters in the network, where fiddamentally based on a static cluster size throughout the
clusters further from the sink are larger than those locategitire network. A near-optimal value for this cluster sise i

CIOS_e to the sink. _ _ then suggested that works equally well across a wide range
« We Justlfy the proposed clustering strategy using analysi$ correlation degrees. In contrast, our findings show that t
and simulation. optimal cluster sizes vary with respect to the cluster dista

The remainder of the paper is organized as follows. See-the sink, and the degree of correlation. Therefore, there
tion Il reviews recent literature on WSN optimization. Wil no identical and globally optimal size for the whole cluster
Section Ill presents a simple motivating example for ouhat minimize the entire network energy consumption.

work, an analytical model for spatial data dependency iscjyster-based sensor networks generally outperform non-
reviewed in Section IV. Subsequently, we briefly discuss arg;stered WSNs [5]. The authors show that clusters should
compare two existing methods for modeling lossless/losgymprise nodes with highly correlated data-readings. They
data compression. In Section V, we propose a simple on&rpjuated their model for a simple linear distributions ofles,
cluster network model and examine the joint effect of dalghg formulated the optimal size of the clusters as a function
correlation, distance from the sink, and network density Qs distance to the sink, and the number of nodes with similar
optimal cluster size. In Section VI, we propose a heuristigata-readings. For simplicity of calculations, they assdra
greedy clustering algorithm that confirms our findings abogfopally-fixed aggregation factor for all clusters. As wellwi
heterogeneous cluster sizes. Finally, Section VII coredutie gee |ater in this paper, data correlation is typically asslim
paper and suggests some interesting areas for future workiyy pe a decreasing function of distance. Hence the level of
Il. RELATED WORK data aggregation/compression depends on the distribofion

. . nodes inside the network and thereby cannot be the same for
Cristescugt al. analyze the effect of applying a Well-knownalII nodes

method of distributed source coding, Slepian-Wolf Coding o ) ) ) ]
(SWC) [8], for data compression in WSNs and proved that A_ distributed, randomized WSN _cIusterlng algorithm with
the shortest path tree yields the optimal gathering tree farhierarchy of clusters proposed in [12]. In that paper, the
any fixed rate allocation [9]. SWC requires side informatiofiPtimal probability of becoming a CH is computed. Also, the
about both the entire network topology and the exact dd@@ximum number of hops allowed for each non-CH node
correlation model to allocate the optimal set of data rates 0 reach the designated CH is quantified. They develop a
sensor nodes. This information, however, is hard to actifevedistributed hierarchical clustering algorithm based oasth
practice. Moreover, applying optimal SWC in WSN results iRfé-computed optimal values and show that increasing the
an imbalanced rate allocation, with the highest load imgosBUmber of clustering levels in the hierarchy results in érett
on nodes near sink. Energy depletion for the nodes near §€rdy savings. While the paper provides an energy-efficien
sink can disrupt the operation of the entire network. Vasioinethod of network clustering, it does not consider the corre
approximation algorithms are proposed and evaluated in lﬂg'on between nearby reported observations while cafigct
for the optimal SWC. The authors, however, argue that tHformation.
optimal rate allocation problem is aP-complete problem. Li and AlRegib consider the problem of energy-efficient
LEACH [10] is a classic probabilistic clustering algorithmcluster-based distributed estimation in WSNs, where thema
It aims to distribute the traffic load evenly among sensorasodgoal is to determine the optimal cluster size and the number o
and reduce the network energy consumption. The LEACtlusters to minimize the total energy cost of the networi.[13
algorithm proceeds in rounds. In each round, each sensortheir approach, sensor nodes send quantized versions of
node independently decides whether or not to become a @t¢ir observations to their respective CHs. CHs make a local
according to a probability function. On average, this fiortt estimation of the cluster data using a lossy estimator named
makes each node become a CH for a similar period of time, &:-UE, and directly send the estimate to the sink. The sink
suring fair balancing of energy consumption among all nodasses another estimator called quasi-BLUE to make the final
Although LEACH performs local data fusion to compress thestimation based on all the received signals. Althoughr thei
cluster information, it does not consider data correlatibren proposed clustering algorithm shows significant energy sav
forming optimal-sized clusters. Moreover, since the philitg  ings, the effect of data correlation is again neglected.



[1l. M OTIVATING EXAMPLE: A LINEAR NETWORK We exhaustively enumerate and evaluate all possible cluste

Given a network of nodes, there are many ways to grc,lg,gnfigurations, starting with a single cluster of size 10d an
the nodes together to form independent clusters. The gendhgn considering two-cluster configurations of sizgs9),
problem of minimum cost clustering is a more complicated if2: 8), (3,7), -..(9,1), and then three-cluster configurations,

stance of theminimum cost network correlated data gatherinind so on, finishing with 10 individual clusters of size 1.
problem. which is known to balP-complete [91. able | summarizes the top 10 cluster patterns with the lowes

energy requirements.

oy TABLE |
I * I I‘_ - ToP10CLUSTER PATTERNS WITH LOWEST ENERGY CONSUMPTIQN
/-\ f-\ HEE N | e—

I + I | Low Correlation Medium Correlation High Correlation

\ \ / / rank | pattern energy| pattern energy| pattern energy

Sink Sensors 1 (2,35  193.94| (2,3,5) 179.83| (1,2,2,5) 102.48

2 (2,4,4) 193.95| (1,4,5) 179.96| (2,2,2,4) 102.48

Fig. 1. A linear sensor network topology 3 (3.3,4) 193.96| (1,3,6) 180.15| (2,3,5) 103.25

4 (1,2,3,4) 193.97| (1,1,35)  180.24| (3,2,5) 103.93

5 (1,4,5) 194.01| (2,4,4) 180.26| (2,4,4) 104.55

We focus on a simple scenario of a small linear network® (1,1,35) 194.02 (2.2,6) 180.45| (1,2,34) 104.70

; hich bl h ivel I iol (1,1,4,4) 194.03| (4,6) 180.50| (2,2,6) 105.07
or which we are able to ex austl\{ey compute a possibleg (3.2.5) 194.04| (3.2.5) 180.54| (1.3.2.4) 105.38
permutations of the clusters and their energy consumpsiea ( 9 (1,2,2,5) 194.05| (3,3,4) 180.60| (2,2,4,2) 105.88
Fig. 1). To this end, we deterministically plagesensor nodes _10 | (2134) 194.05 (1,1,44)  180.67| (2125 106.06

at equal distances apart along a horizontal line segmeht wit

the sink at the left end. Clearly, even for small networks, th ) o _
number of cluster permutations rapidly growsragcreases; The results in Table | indicate that data compression plays a

thus, here we just consider a network of size= 10. Let significant role in reducing the total network energy congum
(a1, as, . .. anm) represent a cluster configuration in which therion- For example, the results for the high correlation acen
arem clusters and,; denotes the size of thé&" cluster, fori ¢ Show that energy consumption is reduced by almost 50%
1,...,m. For example, tuplé3, 1,2, 4) represents a network Compared to low correlation case. Furthermore, the impoeta

with 4 clusters where the cluster closest to the sink hasO8appropriate clustering is also evident in the high cartieh
nodes. scenario. For instance, the tenth-best clustefiagd,, 2, 5), has

We assume that each sensor node within the cluster seAdae higher energy consumption than the best cluster config-
only a single instance of its readings to the CH. Clustedhea!ration, (1,2,2,5). and the very worst cluster configuration
are located at the left edge of each cluster. This assumpt@Hdied.(1,1,...1), is over 50% worse (not shown). For the
ensures that the collected information is transmitted tdwa OW correlation scenario, the top 10 cluster configuratialhs
the sink over the shortest possible path. The CH aggregdié¥e comparable energy consumption (within 0.06% of each
and compresses the collected readings and transmits @sir?éher)-
representative message to the sink. The size of the conegress Studying the cluster sizes in Table I is also insightful. The
message depends on the joint entropy of the cluster, as WiPst prevalent configurations have 3 or 4 clusters (only one
be discussed later in Section IV. 2-cluster configuration appears in Table I). More impotiant

Data transmissions between the cluster members and fest of these cluster patterns have monotonically incngasi
CHs, and also from the CHs to the sink are using multfluster size as you move away from the sink. There are a few
hop communication basis. In this approach, we assume tB¥€eptions in each column (e.g., tf#2,5) cluster configura-
the radio range of sensors only covers their immediate reigpn), but even in these cases, the size of the rightmosteslus
bor(s). This ensures the minimum transmission energy whife always larger than the size of the leftmost cluster. This
guaranteeing the network connectivity. Therefore, in ptde Motivates exploring new methods of clustering that, unlike
communicate the data to the CH, a sensor needs to make @¢éting algorithms, produce heterogeneous-sized chiste
of the intermediate sensor nodes to reach the CH. Likewisen the following section, we review the mathematical back-
the CH relies upon intermediate sensors to forward theedusground of the problem and formally investigate the impoctan

information to the sink. of data compression in energy-constrained WSNSs.
Based on the above assumptions, we calculate the total
network energy consumption of each clustering pattern when IV. EORMAL PROBLEM DEFINITION

three different degrees of data correlation (low, mediurd an

high) are present. To configure the degree of data corralatio The individual sensor nodes within the WSN are considered
we assume the dependency between sample readings expostatistically identical information sources. We assumat th
tially decreases with distance at a fixed rate. The highdriss t sensor readings are normally distributed with mean zero and
rate, the lower is the degree of correlation. varianceo?. Thus, the set of all observations (in a cluster



of size N) can be formalized as a zero-meanlti-variate wherea = ;2 is the correlation exponent antl; denotes
Gaussian distributiort. the Euclidean distance between sensor nadasd ;.

Since the properties of Gaussian sources are already wellFor brevity, we define the parametdf = exp(—a). W is
explored in the literature, this assumption makes our ealca normalized parameter.€., 0 < W < 1) representing the
lations easier. Furthermore, in terms of the number of biteegree of correlation, wherl@ = 0 represents no correlation,
required to represent the field, Gaussian distribution & tlandW = 1 represents high correlation€., globally identical
worst case [14]. Thus, our results can be applied as a bowlibervations).
for other sources as well. )

Gaussian fields can be represented with a symmetRe Data Compression Model
positive-definite covariance matrix¥ = [o;j]nxn. Each Cluster members observe some spatial stochastic process at
elemento;;, expresses the data dependence between readigigscific points in time. Lef = {s;,i = 1,2,..., N} be the
from sensor nodesand ;. set of N sample observations captured Nycluster members.

In the following subsections, we formalize the data corrdRecall that we assume a continuous data model, where sensor
lation and compression models used in our analyses. readings are drawn from a normal distribution. In order to
discretize the continuous readings, the cluster membeadiyo
guantize their observations and transmit them to the CHeSin

In many distributed information systems, it is often assdmehe originally transmitted data is quantized, the recarcséd
that sample observations are spatially correlated. Suate-coversion of data at the CH is subject to some distortion
lation is generally formalized by eovariance functionwhich Denoting the reconstructed version®by S, we consider the
is a non-negative decreasing function of Euclidean digtanenean-squared erro(MSE) between two observations as the
The limiting values are 1 att = 0 and 0 atd = oo, measure of distortion. Since the maximum tolerable digtort
whered represents the Euclidean distance between two samatethe receiver i, it requires that:
readings. In other words, as the Euclidean distance between
two sample observations increases, the correlation betwee
them monotonically approaches zero.

A. Data Correlation Model

E[IS-S|IIP)<D. 4)

. o i There are two approaches for computing the number of bits
A general model for spatial correlation is proposed n [15}equired to represent the quantized observafiosubject to
Denoting the random field of interest {5 (u),u € D CR'}, e given distortionD. Below, we briefly summarize the two
the covariance between two sample observations at Io‘sa“%proaches and describe their relation to each other.
u andv is expressed by: 1) Rate Distortion Theoryin Rate Distortion Theory, the
cov {S(u), S(v)} = o2 Ky(|lu —vl|) , (1) Minimum required number of blt_s to repre_sent_a multi-variat
Gaussian sourc€'(0, Xy« n) subject to a distortion bounB
where ¢? is the variance of each sample observatioper source is given by:
|I-|l denotes the Euclidean distance, af@(|ju — v|) =

N
corr {S(u), S(v)} denotes an isotropic correlation function 1 An
: ’ N,D)=— 1 — 5
with ¢ = (61,---,0.) € © C R¢ as the set of parameters R(N, D) 2 nZ:l OgQ(Dn) ’ ®)
controlling the range of correlation and smoothness/roegh - _ )
of the random field [15]. where\; > \o... > Ay are the eigenvalues of the covariance

Depending on the inherent characteristics of the randdR@lrix ¥, andD,,’s are expressed as follows:
field, several types of covariance models can be defined. 0, ifO<\,
The_ most common kinds arBpherica] Power Exponential n = { An, Otherwise
Rational Quadratic and Matérn [15]. N
I_n this paper, we use tr_le Power Ex_ponent_ial mc_)del for ZD” —N.D
which the correlation function over a distandeis defined ot
as:

(6)

. ; For sufficiently small values oD Wherer:[:1 An > D,
Ky " (d) = exp(—(d/61)™) , (2) there exists any < N such thath,, > 6 > Ay,t1.

whered, > 0 andfs € (0,2]. Consequently§ can be computed from the following relation:

More specifically, in our analyses, we use a special type of 1 N
the Power Exponential, known as Squared Exponential cor- 0 = . N-D - Z An |- (7)
relation model. Adopting the Squared Exponential corietat 0
model, we express the elements of the covariance matrix as 2) Source Coding and EntropyEor discrete information
oij = 0 exp(—adfj) : 3) sgurces,_the entropy function yields the minimum numk_Jer of
bits required to encode the source. However, for a contiauou
1Hereafter, we use the terms “multi-variate Gaussian Bigtion”, “Gaus- Sour(.:e’ due to the infinite pr-eC|S|on-, t_h? number of bits
sian random field” and “Gaussian field” interchangeably. required to encode the source is also infinite.

n=no+1



If a continuous source is discretized by a uniform quantizer In the following subsection, we study the effect of data
of step sizeA, the entropy of the quantized source denoteztbmpression on suppressing the local data redundancies and
by H(S?) is given by [16]: also the relation between the two aforementioned methods of

H(S2) ~ h(S) — log, AN | ®) modeling data compression.
C. On the Importance of Data Compression

To examine the importance of data compression in WSNs
h(S) = _/p(g) log, p(S)dS . (9) with correlated data, we model the savings that can be
s achieved by compressing the cluster data.
For a continuous multi-variate Gaussian source, the eptrop Consider a cluster withV nodes that are uniformly and

whereh(S) is the differential entropy of' given by

function is given by [16]: randomly distributed spatially. For different degrees of-c
1 N relation (7), we consider the metri€Compression Ratiol’,
h(S) = 7 logy(2me) " [Z] (10)  that measures the amount of reduction that can be achieved by

where|X| denotes the determinant of the full-rank covariancé. P essing the cluster information compared to the aggeeg

. . . . Size of the cluster data without compression as follows:
matrix X (i.e., the product of its eigenvalues,,). P

With our special correlation model, the covariance matrix . _ H(SP,sP,...88)

¥ becomes singular, a& — oo. Under such conditions, it T N -H(SP) ’ 15
has been shown that the differential entropysS), is given R(N, D) (15)
by [17]: I =S RtDy -

h(S) = %10g2(27m)9<2>|2|+ , (11) where H(SP) and H(SP,S9,...SR) are the entropy of a

single source and the joint entropy of the whole clusteresttbj
where[X|* ande(X) denote the product of non-zero eigenvalto distortion D, respectively. Also,R(1, D) and R(N, D)
ues (.e., principal componentsnd the rank ok, respectively. respectively denote the rates at which a single source and th
Therefore: cluster entirely are coded with distortian.
H(S2) ~ h(S) — logy AYE) | (12) Fig. 2 i_IIustrat(_as the effect of data correlation on the
Compression Ratio.
For a uniform quantizer with step siz&, the per source  The first interesting observation is the similarity betwéten
distortion is given byA?/12 [18]. Hence, to achieve therate distortion and entropy curves. As seen from Fig. 2, both

distortion D, we require that: theories indicate almost the same reduction for a fixed level
2 of distortion and data correlation. We note that rate digtor
A =12D , (13) . . .
provides a theoretical lower bound on the number of bits
and, consequently required to represent continuous samples [17]. The entropy
b 1 e | o(5) 5o/t technique, on the other hand, is sub-optimal, yet more joadct
H(S7) =~ 5 loga(g5) 82" . (14) and easier to be implemented. Hence, in this paper, we use

W=0.1 D=0.1 W=09 D=0.1
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the entropy technique to model the size of the cluster aftguantize their observations, and transmit them to the sink,
compression. either directly (single-hop) or via other sensor nodes {imul
As seen in previous subsection, our analysis of the entrofhep). For successful data transmission, a minimum received
based compression is asymptotic in the sense that the effeoiver level~ is required. We assume a large-scale fading
of minor components of the covariance matrix are neglectathannel between each transmitter and receiver, in which the
This is the reason why in Fig. 2, the entropy curve is slightlseceived power is inversely proportional to the square ef th
below the rate distortion curve. However, it is important tdistance between the transmitter and the receiver. Thexefo
note that the difference between the two presented curveshe energy £) required to transmib bits over distancel is
the maximum possible error, as Gaussian fields represent ginen by [19]:
worst case scenario [17]. )
As evident from Fig. 2, the higher the degree of data B = ybd” . (16)

correlation is, the gree_m_ar are the savings from cOMprgssif, simplicity and without loss of generality, hereafter we
the cluster data. Surprisingly, even with a very low degree ssume that — 1

data correlationiy” = 0.1), the cluster data can be compresse In our analysis, we consider two communication schemes

th)/VoEe(-)tgwdtrc]) fits dorlgt]llnallsae. In thethlghly Cﬁ_rrele_ltedsc; direct and cluster-based) and compute the total tran&miss
(W = 0.9), the reduction is even greater, resulting in a hu ower required to report all observations to the sink.

saving in power consumption of the network.
As the number of nodes in the cluster increases, the COR- pirect Communication with Local Compression

pression Ratio levels off. This observation can be expthase . . C

follows. When the number of nodes in the cluster is relagivel In this scheme, each_ sensor in the d'_Sk individually quan-

small, the data dependency between sample observationdZgS and COMPresses its own observat|on and"transmlts the

high, since cluster members are all geographically close TSsage directly to the S"Tk' Clearly, this naive form of

each other. In this case, adding more nodes to the clusg@mmunicationis suboptimal; nonetheless, we use thissehe

(with the same density throughout the cluster) dramay'cal?s a baseline to characterize the performance of the cluster

improves the savings, since the observations from the nggsed method. . , .
nodes are likely similar to those from other nodes in the Let b, denote the minimum number of bits required to

cluster. As the cluster radius expands, and more nodes jgmcode each observation. For a sensor node at polar comrdina

the cluster, the similarity between observations fromatiage (/>?): @ shown in Fig. 3, the transn;|35|on cost for sending
nodes throughout the cluster reduces. In other words, mgadi® Message to the sink B(r, ) = b,d*(r,6), whered(r, 0)
from new members at the periphery of the cluster are orify the Euclidean distance frorfr,6) to the sink. The total
weakly correlated with the readings from most of the nodd@nsmission power’; consumed by all sensors is obtained
in the cluster, and have negligible effect on the CompressiBY intégrating over the disk as follows:

Ratio.

R 27
P, = / / by (r2 + 12— 2rLcost) prdfdr
V. A SIMPLE SINGLE CLUSTER MODEL o Jo
2 p2 4
In this section, we develop a model to examine the effect of = 2mpby (L R + R_> 7
cluster size and distance from the sink on energy consumptio 2 4

Consider a circular cluster of radiug at distancel, from the  \here the factoprdfdr represents the expected number of
sink in which nodes are uniformly distributed with averaggansor nodes in the differential “rectangle” shown in Fig. 3
densityp (see Fig. 3). Thus, the expected number of sensors

in the cluster isN' = pm R*. For simplicity of calculations, we B. Cluster-Based Communication with Joint Compression
assume that the CH is located at the center of the clustes. Thi

assumption is consistent with many clustering schereeas (
LEACH [10] and EEHC [12]).

(17)

In cluster-based communication, each sensor sends its quan
tized observation to the CH. The CH losslessly compresses
all N messages and transmits the compressed version to the
sink. Denoting the compressed message sizéphythe total
transmission cost is given by

R 27
L 30 P. = / / (b1r2) prdfdr + by L?
o Jo

sink

. (18)

R
= 27pr1 (I) +bNL2.

Equation (14) can be used to compute the minimum number
Fig. 3. A circular cluster of radiugt at distancel. from the sink. of bits required to represent the size of an individual senso
reading §:), and the entire cluster data after compresstop) (
Cluster members observe some spatial stochastic procéssa pre-specified target distortian.
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C. Optimal Cluster Size suffice if each sensor node reports its data to its immediate
In this subsection, we evaluate the impact of the clustgfighbor. Since both observations are identical, the meigh
size on the total energy consumption. To this end, we defilf¥ node needs only forward one instance of the observation.
the performance metritEnergy Ratio” as the ratio of energy Thus, the optlmal cluster ra@us will decrease such thah eac

required to collect the network data in cluster-based mithBode forms its own local neighborhood.

to the direct communication scheme. 3) Impact of Network Density on Optimal Cluster SiZde
P next interesting analysis is the effect of network densityttee
E ° (19) optimal size of the clusters, for a given level of correlatio

Fa In this analysis, we fix the position of the cluster at dis&anc

To compute our numerical examples of Energy Ratio, wk from the sink and study how the Energy Ratio changes as
place an arbitrary CH at distancé from the sink and the network becomes denser. According to Fig. 6, the optimal
dynamically expand the cluster radius for a given node cluster radius shrinks as the network density increaseis Th
density p. For different distances,, we run our simulations result is intuitive in the sense that adding more nodes to the
for 1000 random cluster configurations and report the aweragetwork for a fixed degree of data correlation is expected to
Energy Ratio. have the same effect as increasing the data correlatioe&egr

1) Impact of Distance on Optimal Cluster Siz&ig. 4 for a fixed density.
shows the relationship between energy consumption (@brtic
axis, lower is better) and cluster radius (horizontal axs) .
different distanced. (the four lines on the graph). The results o}
in Fig. 4 suggest that, for any given distanfe there is a
different optimal cluster radius, at which the Energy Rasio
minimized. For example, the upper line fér = 1 has its
minimum energy consumption near a radiusidbE 1, while
the lower line forL = 20 has its minimum neak = 7.

In general, the farther the cluster is from the sink, thedarg
the optimal radius is. In other words, the optimal clustee $&
not uniform throughout the network. This insight is impaitta o3
since many existing energy-aware clustering schemes, suc oz
as LEACH [10] and EEHC [12], assume homogeneous-size!
clusters that are uniformly distributed in the WSN.

2) Impact of Correlation Degree on Optimal Cluster Size: o 1 2 3
We next focus on the effect of data correlation degree on the
optimal size of the clusters. Fig. 5 shows that as more degigg 6. The joint effect of the cluster sizeVj and the node density) on
of correlation increases, the optimal cluster radius $istiffor the Energy Ratio £) for L = 10 andW = 0.75.
higher degrees of correlation, nearby observations arlyig
coupled with each other. In the extreme case whEre- 1.00, In the following section, we propose a heuristic clustering
all the observations are globally identical. Thereforeydtuld algorithm that closely verifies our findings in this section.

0.8-

o o
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o o o
s

4 5 6 9 10
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VI. SIMULATION EXPERIMENTS for n to join. The procedure repeats until all the noded/in

To verify our results from the previous section, we simulaf@® Visited. Therefore, the time complexity of the algaritfs

a centralized greedy clustering algorithm to find nearropti of O([V[?).

solutions for the clustering problem in a 2-D network. B. Simulation Results

A. Greedy Clustering Algorithm In our simulation, we uniformly scatter 400 sensor nodes

The greedy algorithm selects the WSN node with the highd8t & symmetric WSN with the sink at the center (0,0).
cost to reach the sink, and then assigns it to the candidate Che physical placement of WSN nodes is the same in all
for which the overall energy reduction is largest. The nod¥periments; only the data correlation degree changes. The
joins the best candidate cluster and is marked. The algoritlutput of our greedy algorithm on this network is depicted in
iteratively performs this task until all the nodes in the WSNg. 7.

are marked. Algorithm 1 shows the details. Non-uniform cluster sizes are clearly evident in Fig. 7a.
Clusters further from the sink are larger in radius, coesist
Algorithm 1 greedy clustering{/, sink) with the results in Fig. 4 and Fig. 5. For higher degrees of
~ — correlation, the number of visually distinct clusters regs
V=V /I Initially, all nodes are unmarked. ; _ .
and there is greater affinity to proximal nodes. In the exaem
2: repeat ~ case of Fig. 7d withiWw = 1.0, the resulting topology
3 en,n + maxenergyg, sink), Vo e V C V} - L
. . resembles a Minimum Spanning Tree (MST) for the network,
4. CH<+n /I Setn as an isolated cluster of size 1. L . )
e . , though it still differs from (and is more energy-efficienat)
5  Opmaz &0 /I Initialize maximum observed gain to Z€10.4 o MST
6 for vevery nodev € V7 (v # n) do The diverse behaviours in Fig. 7 show the important effect
7 gl < energyf, v) . : : .
: of spatial data correlation on optimal cluster formatiohe¥e
8: €y < energyq, sink) . . X . .
. . . . simulation results are also consistent with our analytieslilts
9: assignf, v) /Il Tentatively assign n to v's cluster. .
, , for this problem.
10: el < energyg, sink)
11 0 4 (en +€,) = (en +ev) /I Compute the gain. VII. CONCLUSION AND FUTURE WORK
12: if &> 0,nqz then

In this paper, we studied the joint effects of data corre-
lation, distance, and network density on forming optimal-
sized clusters that require less power than conventional ap
proaches. We showed that unlike most of the existing cluster
ing approaches that produce uniform clusters throughaat th
Ir\_/vhole network, heterogeneous-sized clusters are morgyner
efficient in WSNs with spatial data correlation.

Our current analyses are based on a simple single cluster
model. Although we have verified the correctness of our
] N hypotheses with the outputs from a heuristic greedy clingjer

In Algorithm 1, V" and V' denote the set of all WSN nodesy|gorithm as well as the optimal solution of a linear network
and all unmarked WSN nodes, respectivelyis the energy fyrther systematic studies of more generalized multitelus
gain achieved by adding nodeto a cluster and, ..., denotes petyworks are needed. We are also working on a distributed
the maximum energy gain attained by adding ned® any yersion of the proposed greedy clustering algorithm that ca

of the existing clusters. Subroutinenergy{:;, v) computes pg implemented and tested on real WSNs.
the required energy to transmit the data from nade v.

The amount of data to be transmitted is proportional to the ACKNOWLEDGMENTS
number of members in the cluster @f(assuming: as a CH).

13: Omaz < 0 /I Update max gain value observed.
14: CH < v [l Setv as the best candidate CH far.
15: end if

16: removef, v) // ' Undo this tentative assignment.
17.  end for

18: assignf, C'H) // Permanently assign n to the best cluste
190 V«V—{n} I/ Remove n from further consideration.
20: until V =2 /I Repeat until all nodes are marked.
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