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Abstract—Recent advances in wireless technology have made
it increasingly feasible to equip wireless nodes with multiple
radios, thereby allowing each radio to exploit channel diversity in
the form of orthogonal, non-overlapping transmission spectrums.
Multi-channel operation mitigates interference, but at the same
time raises new challenges for network optimization, in terms
of judicious channel assignment for efficient bandwidth utiliza-
tion. While previous research mostly studies optimizing channel
assignment for unicast, we focus instead on multicast, which is
an efficient mechanism for one-to-many data dissemination. We
derive a model for optimal multicast in multi-channel multi-radio
wireless networks under the assumption that channel assignment
is static. Our model employs network coding as the multicast
mechanism of choice, and exploits the broadcast nature of omni-
directional antennas for efficient bandwidth utilization. Based on
the model derived, we formulate optimal multicast as a linear
integer program. Two accompanying solutions are proposed: a
greedy channel assignment scheme and an improved iterative
scheme inspired by primal-dual algorithm design. The effec-
tiveness of the two schemes are empirically examined through
simulation studies, and are compared to results obtained from
solving the integer program as well as its linear programming
relaxation. Finally, we present an alternate model for optimal
multicast under the assumption that transmission frequencies
are not fixed divisions of the usable spectrum.

I. INTRODUCTION

Wireless networks have become increasingly prevalent as
the preferred choice for network connectivity in many military
and civil applications. For instance, wireless networks provide
mobility-friendly network access, and wireless LANs and
wireless mesh networks often constitute a cost-effective last
mile connection to the Internet.

A fundamental problem that limits the performance of
wireless networks is interference. Despite the advertised trans-
mission speeds for wireless networks, the actual goodput
achievable is approximately halved when interference effects
and medium access contention are taken into account [1].
Interference can be caused by external sources, or by transmis-
sion from nearby wireless nodes. As an example of the former,
the IEEE 802.11b and 802.11g standards, which operate in the
2.4 GHz spectrum, are susceptible to interference caused by
microwave ovens, bluetooth devices and even older cordless
telephones. To counter the effects of interference, channel
diversity can be exploited. The IEEE 802.11 standard divides
the usable spectrum into a number of channels; for example,
the 2.4000 GHz to 2.4835 GHz band is divided into 13
channels. Three of them (channels 1, 6 and 11) occupy non-
overlapping frequency spectrums, and transmissions on these

orthogonal channels do not interfere.

To take advantage of channel diversity, wireless nodes
can be equipped with multiple wireless network cards or
radios. Advances in wireless technology have demonstrated
that multiple radios per wireless node are a feasible and
cost-effective solution [2]. Furthermore, recent research has
shown that considerable performance gain can be achieved in
multi-channel multi-radio wireless environments [1]-[4]. This
raises interesting new challenges in the design of algorithms
and mechanisms that are capable of fully exploiting channel
diversity in multi-radio networks to optimize bandwidth usage,
network throughput or routing cost.

Previous research in multi-channel multi-radio wireless net-
works has studied optimal unicast or multi-session unicast [3],
[5], [6]. In contrast, we focus on the multicast problem instead.
Multicast is an efficient way of disseminating identical data to
multiple users and has numerous applications in both wireline
and wireless networks [7]-[10]. Unicast and multicast differ
in terms of what constitutes a judicious channel assignment
scheme, which assigns one of the available channels to each
radio at each node. The set of available channels is a limited
resource, and an optimal channel-to-radio assignment in the
case of unicast may not necessarily be optimal for interference-
free multicast routing. Consider the example in Figure 1. Here,
the source S needs to send information to potential receivers
Ty, To and T3. Each node is equipped with 3 radios of unit
capacity each, where separate radios are used to transmit and
receive. The channels used for transmission are indicated next
to each node. Channels are assigned so as to avoid interference,
hence neighbouring nodes (indicated by the dotted lines) do
not transmit on the same channel. Similarly, nodes receiving
transmissions from multiple neighbours receive on different
channels as well. In Figure 1(a), the channel assignment is
an optimal assignment in the case of unicast from S to
receiver 11, allowing receipt of both bits a and b for a total
throughput of 2 bits. Similar channel assignments can be made
sequentially for unicast flows from S to 75, and from S to
T5. However, these channel assignments would not work for a
network coded multicast session to all three receivers simulta-
neously. Exploiting network coding for bandwidth efficiency
requires us to send the logical XOR of bits a and b from node
v to Tb, and from node 75 to 77 and T5. Using the channel
assignment in Figure 1(a), node v would not be able to listen to
nodes u and w concurrently since both of these nodes transmit
on channel 3, and thus their transmissions would interfere at v.



Fig. 1. An optimal channel assignment scheme in the case of unicast
is shown in (a). The flow of bits a and b are shown from .S to 3. This
assignment differs from the optimal channel assignment for multicast,
shown in (b)

The optimal channel assignment for interference-free multicast
is instead shown in Figure 1(b). Node w transmits on channel
4 instead of 3, allowing for interference-free reception at v.

In this paper, we seek to derive a complete mathematical
model of multi-channel multi-radio wireless networks, and
formulate a mathematical program for solving the joint routing
and channel assignment problem for optimal multicast. We
exploit the principles of network coding [11], [12] for optimal
multicasting, and develop routing constraints that exploit the
broadcast property of wireless networks for efficient band-
width utilization. The result is a linear integer program that
computes a joint channel assignment and flow routing scheme,
achieving maximum end-to-end multicast throughput.

Since in practice integer programs can be solved for small
networks only, we design two algorithms for larger networks.
In the first algorithm, we relax the limitations imposed by
channel and radio availability, and solve the resulting linear
program for an ‘optimistic’ multicast flow. Channel assign-
ment then proceeds in a greedy fashion, in breadth-first order
along the computed flow. Then a new, feasible multicast flow
is computed by plugging the channel assignment information
into the optimal multicast integer program and solving the
resulting linear program. The second algorithm employs the
first one for generating an initial channel assignment. Then
it iteratively refines the channel assignment and the routing
scheme based on the new solution obtained. This is inspired
by primal-dual algorithm design, where a pair of primal and
dual solutions are iteratively refined until convergence. In each
iteration of the primal-dual algorithm, the new solutions in
the primal (dual) provide directions for updating the dual
(respectively, primal) in the next round [9]. We study these
two algorithms through extensive simulations, and show their
efficacy by comparing them with results obtained from solving
the integer program and its linear programming relaxation.
Finally, we also present an alternate model for channel as-
signment under the assumption of flexible spectrum division.

The rest of the paper is organized as follows. Section II
discusses related work. In Section III, we derive a mathemati-
cal framework to model multicast in multi-channel multi-radio
wireless networks, and present an integer program that maxi-
mizes end-to-end throughput. We then proceed to outline two
channel assignment algorithms. We show simulation results in

Section IV. Section V contains the alternate model for channel
assignment under the assumption of flexible spectrum division.
The paper is concluded in Section VI.

II. RELATED WORK

Multicast is used for one-to-many dissemination of data,
and is seen as an attractive data delivery mechanism, espe-
cially with the increased proliferation of applications such as
multimedia streaming. Consequently, the multicast problem
has received a lot of attention from the networking research
community [7], [13]-[15]. Computing optimal multicast rout-
ing (without network coding) is equivalent to the well-studied
problem of finding and packing Steiner trees [7], [16]. The
latter has however been shown to be NP-hard [17], though
constant approximation algorithms exist using LP round-
ing [18], primal-dual schemes [19] and minimum spanning
tree heuristics [20]. A more recent approach in the literature
is network coding, which exploits the encodable as well as
replicable property unique to data flows. The fundamental
result of network coding [11], [12] states that a target multicast
rate of d is achievable if and only if the rate d is a feasible
unicast rate from the source to each and every receiver. Using
this result, multicast can be reduced to computing the optimal
union of unicast flows to each and every receiver. The latter
can be computed efficiently using suitably formulated linear
programs [9], [10], [21].

Multi-channel wireless networks have recently received
attention from the research community, mostly in the context
of wireless mesh networks [22]. Raniwala et al. considered
the benefits of using multiple channels in wireless mesh
networks [3]. While prior work considered modifications to
the IEEE 802.11 MAC protocol, Raniwala et al. focused
on existing IEEE 802.11 MAC protocols, and presented a
load-aware channel assignment algorithm. Their algorithm is
based on a greedy heuristic. Nevertheless, they show via
simulations that even 2 radios per node can lead to throughput
improvement by a factor of 8. Raniwala and Chiueh [I]
extend this work by proposing distributed channel assignment
algorithms and demonstrate its effectiveness by performing
experiments on a 9-node network equipped with commodity
802.11a network cards. They find that in the context of long
lived TCP flows, aggregate throughput can be 5 times higher
compared to single channel operation.

The seminal work of Gupta and Kumar [23] studied and
characterized the achievable capacity of wireless ad-hoc net-
works with a single channel. Their work is applicable to the
multi-channel scenario under the assumption that radios are
not able to switch channels on a per packet basis. In subse-
quent work, Kyasanur and Vaidya [24] extend the analysis of
Gupta and Kumar and characterized the capacity region for
multi-channel networks where radios are allowed to switch
channels. They find that the capacity of multi-channel multi-
radio networks is highly dependent on the ratio between the
number of radios and available channels.

The channel assignment problem is known to be NP-hard,
and has received much attention in the literature. Notably,



Brzezinski et al. [25] study the problem from a graph theoretic
point of view. They characterize interference patterns using
line graphs, and present a scheme that partitions the network
using local pooling, a greedy scheduling algorithm due to
Dimakis and Walrand [26]. Brzezinski et al. use local pooling
to partition the network and show thereafter that simple
distributed channel assignment and scheduling algorithms is
sufficient to achieve maximal throughput. However, the latter
is true only for a restricted class of network topologies. In
contrast, Xing et al. [27] take an altogether different approach
and solve the channel assignment problem using coding theory.
Specifically, they use superimposed codes that are distributed
to nodes in the network. These nodes then attempt to choose
a channel based on these codes. However, this scheme suffers
from the large dimension of codes required, and the likelihood
of failure of the code in highly connected networks. Finally, a
more practical approach is considered by Ko ef al. [4] in which
a distributed greedy heuristic is used for channel assignment.
The heuristic entails that nodes continuously try to choose
channels that suffer the least interference. They show that this
assignment scheme is guaranteed to converge to an equilibrium
whereby no node can improve local interference by switching
channels. Experiments performed using IEEE 802.11a/g net-
work cards show a 50% improvement in throughput.

The use of multi-channels in multi-radio networks necessi-
tates the design of new routing metrics. Extending the notion
of the Expected Transmission Count (ETX) metric proposed
by De Couto et al. [28] for multi-hop wireless routing, Draves
et al. proposed the Weighted Cumulative Expected Trans-
mission Time (WCETT) [29] for multi-channel multi-radio
wireless networks. The proposed routing metric incorporates
the vagaries of multi-channel routing in that it explicitly takes
into account interference effects, which it tries to minimize.
The routing metric was subsequently implemented as a virtual
network driver, and experiments show that in a prototype
2-radio network, WCETT achieves 89% higher throughput
than ETX, and in comparison with shortest path routing, an
improvement of 254% in throughput is observed.

The work of Kodialam and Nandagopal [6] as well as
Alicherry et al. [5] is most relevant to the work presented in
this paper. Both form mathematical models of multi-channel
multi-radio networks. Interference due to transmissions on the
same channel is considered as a constraint, and linear program-
ming is used to provide a first approximation of the optimal
flow route. Kodialam and Nandagopal study multicommodity
routing, and provide heuristics for both static and dynamic
channel assignment. The channel assignment algorithm scales
the fractional flow computed by the linear program to integral
values by multiplication with a large factor, which is used to
guide scheduling in which a node is assigned a channel for
a set number of time slots dependent on flow values on that
channel. A similar flow scaling approach for scheduling and
channel assignment is presented by Alicherry et al., and in
addition, the authors show that the throughput achieved using
their method is within a constant factor of the optimal. In
contrast to both papers, we study multicast routing in multi-

channel multi-radio wireless networks instead.

ITI. MULTICAST ROUTING AND CHANNEL ASSIGNMENT

In this section, we define our wireless network model and
state our assumptions. We then proceed to model optimal mul-
ticast routing in multi-radio multi-channel wireless networks
as an integer program. Our integer program is complete in
that the constraints capture necessary and sufficient conditions
to ensure interference free routing assuming no scheduling is
allowed, i.e., we consider static channel assignment only in
this paper. Due to intractability of integer programs in general,
we further present two channel assignment algorithms in this
section. The first is a simple greedy assignment scheme, while
the second is a more sophisticated algorithm that iteratively
makes improvements on the residual network of the flow graph
to achieve higher throughput.

A. Preliminaries

A wireless network is modeled as a graph G = (V, E),
where V' and E denote the set of nodes and edges respectively.
Nodes are equipped with multiple radios with a uniform
coverage radius r. The set of radios in each node w is R(u),
and each radio can be tuned to any channel in the set of
channels K. The bandwidth on each radio is limited, and we
use ¢;(u) to denote the capacity of the j-th radio on node
u. Bach channel 7 € K is orthogonal to all other channels
j € K, in the sense that transmissions on channels 7,7 € K
do not interfere if ¢ # j. A node v is said to be a neighbour
of u if v is located within distance r of u. The set of u’s
neighbours is denoted N(u), while neighbours within two
hops of u are in the set Ny(u). An edge uve E if and only
if v € N(u). Edges are directed and symmetric due to the
uniform radius of coverage property. Our aim is to compute a
multicast routing that is optimal in the sense that it maximizes
end-to-end throughput from some designated source node s, to
the set of k& multicast receivers T' = {t1, ..., tx}. We abstract
the dissemination of data from the source to the set of receivers
as a network flow from the former to the latter. In reality,
a unit of flow can be considered to be an arbitrary unit of
information. For example, a unit of flow may correspond to a
bit of information, in which case the capacity of a radio would
indicate the corresponding limit of information flow per time
unit, e.g. bits per second.

For the purpose of computing the optimal flow, we model
the flow rate on a link using flow variables both with and
without an associated channel usage, and we will later define
how these variables are related. Recall that with network
coding, computing the optimal multicast flow is equivalent
to computing the optimal union of unicast flows from the
source to each and every receiver. We will call these unicast
flows conceptual flows [9], [21]. Conceptual flows coexist in
the sense that they do not compete for bandwidth. We denote
conceptual flow on a link as f;(.), which represents the flow
from the source to receiver ¢ € T'. A flow on a link uses one
of many available channels, and hence f}(.) is the conceptual
flow to receiver ¢ € T using channel i € K.



We will use binary variables to express how radios on a
node are assigned to channels. Further, we will distinguish
radios that are transmitting data from those that are listening.
The binary variables x(u) and y(u) for the node u have the
following interpretation

1 radio 5 on w transmits on channel ¢

x;(u) = { ) ey

0 otherwise

i 1 radio j on w listens on channel i,
yj(u) = { : )

0 otherwise

B. An Integer Programming Formulation

Having stated our model, we next need to clearly define
how the flow variables as well as binary variables are related.
The inter-dependence of these various flow variables is crucial
and together with the constraints that capture the effect of
interference, completely characterizes the feasible flow region.
In this section, we will state the requirements for a multicast
flow that is interference-free and optimal.

We begin with flow conservation. To more succinctly ex-
press flow conservation constraints, we introduce a virtual,
uncapacitated directed link ;9 from every t € T to s. For each
conceptual flow, flow conservation must therefore be observed
at every node in the network, captured by the following
constraint:

> fulw

u€EN (v)

- Y filou)=0 VteT,YweV @3)
u€N (v)

The above states that the sum of all incoming flow destined
to each receiver ¢ on edges wv for all neighbours u of v must
equal the sum of the conceptual flow on outgoing links. This
constraint must hold for all nodes in the network.

Employing network coding, a multicast rate d can only be
achieved if d is a feasible unicast rate to all receivers. Hence,
in the optimal multicast flow, a rate of d must be achieved by
each receiver:

fits)=d VteT &)

. d
The conceptual flow on a link wv can use one or more
channels, and so:

th uv)

ieK

= fi(w) Yuwwe E\NteT (5)

Recall that conceptual flows do not compete for band-
width [9], [21]. Hence, the actual outgoing flow from any
node on any channel is the maximum of all conceptual flows
using that channel on the node’s outgoing links. Note that the
max function is non-linear. However, the following constraint
captures our requirement in an equivalent fashion in the
context of the optimization problem:

Z fi(uv <Zc] i-u

vEN (u)

vVt € T,Vi € K,Yu € V(6)

There are several things worth noting about constraint (6).
First, (6) implicitly takes the wireless broadcast property into
consideration. The broadcast property is unique to wireless
networks, as transmission to any node in the neighbourhood
of u can be overheard by any node v € N(u). Clearly, any
multicast formulation should seek to exploit this property.
The constraint in (6) states that transmissions on channel ¢
can potentially flow to any neighbouring node, and further,
the bandwidth utilized by the broadcast is limited to the
capacity of the radio used for transmission. Note also that
(6) allows multiple radios to be used to transmit on a single
channel. Clearly, this results in interference and is undesirable.
Nevertheless, we will impose further restrictions to ensure that
at most one radio on a node can be assigned to a given channel.
The sum over all radios j € R(u) here then takes on a different
semantic, namely, regardless of the choice of radio used, the
flow is upper bounded by the bandwidth provisioned on that
radio. Finally, the binary variable xé(u) is used to ensure that
if a radio is used for any non-zero amount of outgoing flow
on channel ¢, then that radio is assigned to that channel.

Next, we relate incoming flow to channel assignment on
the listening radio of a node. We will use conceptual flow
variables on incoming links to state the following requirement
for channel assignment on the receiving radio:

> ftvu<Zc] wVteT,Vie K,NueV (7)
vEN (u)
The above constraint states that to receive flow on a given
channel, there must be at least one radio that is tuned to listen
on that channel. In the case of heterogeneous capacities on
radios, the flow across a link is bounded by the capacities of
both the transmitting and receiving radio, and thus the true
capacity is the minimum of these two radios. This model
works well in reality, since the IEEE 802.11 standard specifies
mechanisms for dynamic rate shifting [30], thereby allowing
the transmitting and receiving radios to agree on the acceptable
data rate.

Next we deal with channel assignment and node-radio con-
straints. First, a radio can either be transmitting or listening,
but never both:

ai(u) +yi(u) <1 Vie K,Vj€R(u),YueV  (8)

Second, the number of radios on any node is limited, and so:

ZZ.T ) < |R(u)| YueV 9
ZZ%

Third, a node can only transmit (receive) on a given channel
using a single radio to avoid local interference:

Zm )<1 Vie K,2YueV

Z yj(u

) < |R(w)| YueV (10)

11

)<1 Vie KVueV (12)



Finally, we require interference-free transmission. We
will impose constraints based on the protocol interference
model [6]. The IEEE 802.11 RTS-CTS mechanism requires
nodes to request clearance from the potential receiver before
transmitting. The protocol also acts as a virtual carrier sensing
mechanism, in that neighbouring nodes are capable of knowing
when there is an impending transmission by other nodes within
interference range. This substantially reduces the number of
collisions. In this model, neighbours of both the transmitter
and intended recipients should not transmit at the same time
on the same channel. The following constraint captures this
behaviour:

J vENs(u)

x;(v))g1 Vie K,YueV (13)

This final constraint requires that for a node u to transmit on a
given channel, no other node v within two hops of « is allowed
to transmit on that channel. Observe that this constraint can
easily be modified to work under the primary interference

model [5], [25] as well by replacing the set No(u) with N (u).

Our objective is to maximize the target multicast rate d. We
now present our integer program for optimizing end-to-end
multicast throughput in its entirety:

Maximize d (14)
Subject To
fits) =d vt (14a)
Z fi(uv) Z fi(vu) =0 V¢,V (14b)
uEN (v) u€N (v)
th w) = fi(uv) Y uv, Yt (l4c)
i€ K

Z ft uv <ZCJ

Vt, Vi, Yu (14d)

vEN (u)

> fitw <ch w)y' (u Vt, Vi, Yu (l4e)
vEN (u)

@;(u )+yj( u) <1 Vi, ¥, Vu (14)

sz] ) < |R(u)] Vu (14g)

Zzyj ) < [R(u)] Vau (14h)

Vi e K,Yu (14i)

ij (u) <1
PACES!
(@ + Y wiw) <1

J vEN2(u)
fe(uv), fi(uv) >0
x;(u) e {0, 1},y§(u) e {0,1}

C. Linear programming relaxation

Vi e K,Vu (14j)
Vi, Vu (14k)

Y uv, VY, Vi (14])
Vi, V3, Vu (14m)

The integer program presented in (14), is both accurate
and complete. However, solving it to exact optimality is
computationally infeasible when the input size is large. This is
due to the nature of the channel assignment problem, which is

1nherently NP-Hard. If one relaxes the binary variables (u)
and y;(u) to freely take on fractional values between 0 and
1, then the linear integer program in (14) degrades into a
linear program with continuous variables only, and can be
solved efficiently using interior-point algorithms or simplex
algorithms. Since the solution to the LP relaxation may assign
fractional values to «(u) and y (u), it is therefore not feasible
in general. Nonetheless, the maximum throughput computed
from the LP relaxation provides an upper-bound for the max-
imum throughput from the original integer program. We next
describe two algorithms for solving the integer program, and
use the LP relaxation as a benchmark for their performance
in simulation studies later on. Note that if the throughput
achieved by the algorithm is close to that achieved in the LP
relaxation, then it is even closer to the real feasible maximum
throughput (the optimal solution to the integer program).

D. A greedy channel assignment algorithm

The first of our two channel assignment algorithms is
relatively straightforward. The algorithm seeks to greedily
assign channels to create a viable, interference-free route from
the source to each and every receiver. We begin by solving
the following linear program (see also [21]) that computes the
optimal multicast flow using network coding.

Maximize d (15)

Subject To
ft(_)) =d vt (15a)
Z fe(uv) Z fi (vt V¢,V (15b)

u€N (v) u€EN (v)
Z Ji( uv ) < ch Vt,Vu (15¢)
vEN (u)

ft(uv) >0 vtV wv, Yu (15d)

The constraint in (15¢) captures the wireless broadcast
property, and further bounds the total outgoing flow from a
node w to the total available capacity of all radios on u. The
linear program in (15) does not compute a meaningful flow
since channel assignment and interference effects are not taken
into account. Nonetheless, it does give us an indication of how
important nodes are in the optimal flow. While a more fine-
grained approach can be considered by examining the amount
of outgoing flow on each node, we choose instead to consider
all nodes with non-zero flow as a first approximation. Let these
nodes be denoted by the set W. We can then safely prune all
other nodes in the network and consider only nodes in W for
channel assignment.

The greedy channel assignment algorithm proceeds in a
breadth-first search fashion, beginning at the source. If there
is an available radio at a node, we assign the first available
channel to that radio for transmission. Channel availability
depends on the interference model we choose; in the case of
the protocol interference model, we choose the first available
channel that is not being used for transmission by nodes within
2 hops. Next, we assign a free radio at each neighbour of the



Input: W, set of nodes to consider for assignment
NotDone := True ;
while NotDone do
Visited := 0 ;
enqueue(ToVisit, s);
while ToVisit # () do
u := dequeue(ToVisit) ;
Visited := Visited + {u} ;
foreach v € N(u) —v e W do

if v ¢ Visited and v ¢ ToVisit then
enqueue(ToVisit, v)
Pick available radio of j with highest capacity ;
Assign first available channel ¢ to j ;
if no available radio then
if u = s then
NotDone := false ;

else
continue ;
Algorithm 1: A greedy channel assignment algorithm

current node to listen on the chosen channel. This establishes a
connection between the node and its neighbours. We continue
to assign channels in this fashion (breadth-first) until each
receiver has been assigned a listening channel.

At this point, we have a feasible channel assignment to ac-
commodate flow from the source to all receivers. However, the
process has thus far only used one radio each for transmission
and reception on every node. Since nodes may have more than
two radios, the breadth-first assignment process repeats again
beginning at the source, while ensuring that these new channel
assignments do not interfere with the existing assignment. This
process repeats until there are no longer any unassigned radios.
Once this channel assignment stage is complete, the variables
#'(u) and yk(u) in (14) take on fixed values, and we can
then solve the resulting degraded linear program of IP (14)
for the optimal multicast flow. The complete greedy channel

assignment algorithm is shown in Algorithm 1.

E. An iterative channel assignment scheme

The greedy channel assignment scheme in Algorithm 1
can be improved. In this section, we pursue a solution that
iteratively improves the existing channel assignment based on
the computed flow graph. Our solution is inspired by primal-
dual algorithms, in particular the scheme used by Li [9]. The
primal-dual method of Li seeks to maximize multicast flow in
undirected networks iteratively, where in each iteration, the
computed flow is used to update the bandwidth allocation
in each orientation of the undirected links in the network.
Our iterative algorithm operates in a similar manner, using
the computed flow to guide and improve the existing channel
assignment in each iteration. The improved algorithm proceeds
in two phases. In the first phase, we run the greedy assignment
scheme iteratively on the residual network resulting from the
optimal flow computed by (14), and in the second phase, we
make adjustments to the assignment obtained in the first phase
to improve channel and radio usage.

Input: G = (V, E), graph model of wireless network
Compute Maxflow, let W be set of nodes with non-zero
flow ;
Run greedy assignment scheme in Algorithm 1 ;
NotDone := True ;
while NotDone do

Compute optimal flow with (14), let f be flow graph ;

Construct residual network G’ using f ;

Compute Maxflow, let W be set of nodes with

non-zero flow ;

Run greedy assignment scheme in Algorithm 1 ;

if No Available Radio/Channel or Maxflow is 0 then

NotDone := False ;

Visited := 0 ;
I=0;
Enqueue(ToVisit, s) ;
while ToVisit # () do

u := Dequeue(ToVisit) ;

if 3i' € K,j' € R(u)|y?,(u) = 1 then

foreach v € N(u) do
if 35¢ R(U)‘.’I}g (v) =1 then
if /7' (v) >0 and 3Ir € R(u)|yi(u) =0
and xi(u) = 0,Vi € K then

foreach v € N(u) do
Enqueue(ToVisit, v) ;
NotDone:=True ;

while NotDone do
Run Algorithm 1 on all nodes excluding I ;

Compute optimal flow using (14) ;

if No improvement in flow rate then
NotDone:= False ;

Algorithm 2: An iterative channel assignment scheme

Similar to Algorithm 1, we begin by computing the max
flow and considering only nodes with non-zero flow for chan-
nel assignment. Channels are assigned in a greedy fashion via
a breadth-first search beginning at the source node as before.
At this point, we have an initial channel assignment, which we
then use to solve the degraded linear program of (14). Using
the flow graph obtained from the degraded linear program of
(14), we construct the residual network by removing radios
with non-zero flow from each node. This results in decreased
capacity in each node, and once again, we repeat the process
of computing maxflow and greedy assignment. We continue in
this fashion until we no longer have any free radios/channels
or the max flow computation yields a zero flow rate.

At the end of the first phase, we may still have inefficient
channel assignments. In the second phase, we examine the
channel assignment as well as the flow graph, and adjust
the assignment to either improve bandwidth utilization or
free channel usage for possible use in future assignments.



Using a breadth-first search, we look for a node w that is
listening to some channel ¢, such that the incoming flow on that
channel is zero. This indicates either one of the following two
possibilities: u has been assigned to listen to some neighbour
v € N(u) that is not forwarding flow on channel i, or v is
indeed forwarding data but they are not intended for u. In
either case, we can take remedial action to improve channel
assignment. If the outgoing flow from v on channel i is zero,
then we can safely release the channel from use by u, v and
all w € N(v) that are also listening on 7. If v is transmitting
a non-zero flow rate, then we assign a new free radio of v to
transmit on free channel j (if both are available), and assign
u to listen on j instead of 4.

Due to the process of releasing channels that are not being
used, we now have more channels available, which may be
used by other nodes. We then iteratively do the following; run
the greedy assignment scheme once again while excluding the
nodes that released channels in the beginning of the second
phase, and compute the flow. If radios newly assigned with
the newly available channels have non-zero flow, we keep the
assignment; otherwise, we release it and repeat the assignment
phase while excluding these nodes from assignment as well.
We continue in this manner until the achieved flow can
no longer be improved. We state the entire procedure in
Algorithm 2. For succinctness, we slightly abuse notation in
Algorithm 2 and denote the outgoing flow on node u on
channel i with the variable f%(u), which has the following
interpretation

Fiw) =max > fi(u)
vEN (u)
IV. SIMULATION RESULTS

In order to study the effect of the number of radios and
available channels on end-to-end multicast throughput, we
ran simulations on various network topologies. We generated
wireless networks using the unit disk graph model, where
all nodes have a uniform radius of communication, r. Using
a square grid of appropriate size, we generated nodes by
assigning them to cells in the grid at random. Links between
nodes were created accordingly based on the parameter r.
For a given network, the choice of nodes in the multicast
group was chosen at random. Each node is equipped with
multiple radios, and the capacities of these radios are randomly
distributed between 10 and 50.

As stated before, integer programs are NP-hard and hence,
solving the integer program in (14) for large networks is a
computationally intensive process. Hence, for small networks,
we solved the integer program (IP) in (14), the linear program
(LP) relaxation of (14) and the solutions based on Algorithm
1 (Greedy) and Algorithm 2 (Iterative), while for larger
networks, only the results of the last three are compared. The
throughput shown for each solution is the average computed
from 4 separate simulation runs over randomly generated
topologies.

To solve integer and linear programs, we employed the GNU
Linear Programming Kit [31]. In particular, the branch and cut
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Fig. 2. End-to-end throughput for networks of size 10 with a multicast
group size of 5. Each node is equipped with 2 radios and the number
of available channels is varied from 2 to 8
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Fig. 3. End-to-end throughput as a function of the number of radios
in each node for networks of size 10. The multicast group size is 5,
and a total of 6 channels are available for use

method was used when solving integer programs while the
classic simplex algorithm of George Dantzig [32] was used to
solve linear programs.

Figure 2 shows the end-to-end throughput as computed by
the IP, LP as well as the Greedy and Iterative solutions of
Algorithm 1 and Algorithm 2 respectively for networks of size
10, with a multicast group size of 5 nodes, where each node is
equipped with two radios. We varied the number of available
channels and studied the effect on the computed throughput.
With fewer than 2 channels, no feasible multicast flow was
found, since with a single channel, multicast would only be
feasible if all receivers were neighbours of the source node.
As we increase the number of channels, the upper bound as
computed by the LP increases, but saturates at 5 channels
onward. At this point, the number of radios per node is the
limiting factor and further improvement is not possible unless
more radios per node are provisioned. The optimal throughput
as computed by the IP shows increased throughput as the
number of channels is increased, and the frue saturation point
is achieved at 6 channels onward. The Greedy algorithm is
only able to improve throughput when the number of channels
increases from 2 to 3, and is unable to utilize further addi-
tional channels. In contrast, the Iterative assignment scheme
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Fig. 4. End-to-end throughput for networks of size 100 with 10
multicast receivers and 2 radios per node, as a function of the number
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Fig. 5. Effect of the number of radios per node on end-to-end
throughput for networks of size 100. The number of available
channels is 8, and there are 10 multicast receivers

achieves higher throughput than the Greedy solution from 4
channels onward, and continues to increase throughput with
the increased availability of channels before saturating at 6
channels onward. At this point, the Iterative algorithm achieves
a throughput that is close to 75% of the optimal.

In Figure 3, we study the effect of the number of radios per
node on the achieved throughput, while fixing the number of
available channels at 6, on networks with 10 nodes. With a
single radio, achieved throughput is 0. This is because at least
two radios are needed, one to transmit and one to listen, as
captured by the constraints in (14). As we increase the number
of radios, the throughput computed by the IP increases. More
radios lead to increased bandwidth per node as long as
there are sufficient channels available for an interference-free
channel assignment. At 2 and 3 radios per node, the Iterative
algorithm significantly outperforms the Greedy solution. The
performance of the Greedy algorithm only improves when
more radios are available. This indicates that the Iterative
algorithm is more efficient at utilizing available resources
when there is a scarcity of radios.

In order to study the effect of available radios and channels
in a larger network, we abandon the IP and focus on the end-
to-end throughput as computed by the LP and the proposed
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Fig. 6. End-to-end throughput for various network sizes. Each node
has 4 radios and there are 8 channels available for assignment

algorithms. The former provides an upper bound on the
optimal throughput, while we wish to study the performance of
the latter in larger networks. Figure 4 shows the throughput as
computed by the LP and both algorithms for networks of 100
nodes and 10 multicast receivers, with two radios per node.
Similar to Figure 2, we observe an increase in the upper bound
of the throughput as the number of channels increases up to
a point before saturation, which occurs at 4 channels onward.
Once again, we attribute this behaviour to the limited number
of radios. The Greedy solution is able to increase throughput
marginally up to 6 channels before saturation occurs. The
Iterative assignment algorithm, on the other hand, performs
significantly better than the Greedy algorithm, and is able to
continually improve throughput, achieving close to 75% of the
upper bound on end-to-end throughput when 8 channels are
available.

We also examined the effect of varying the number of radios
in the same network setting with 100 nodes and 10 multicast
receivers. Available channels were fixed at 6, and Figure 5
shows the end-to-end throughput as computed by the LP and
both algorithms. As the number of radios increases, the upper
bound on achievable throughput grows. The Iterative algorithm
outperforms the Greedy solution in all cases, and is able to in-
crease throughput as the number of available radios increases.
The Greedy solution is also able to increase throughput with
more radios, but shows only marginal improvement when the
number of radios increases from 4 to 5. Again, this shows
that the Iterative algorithm computes channel assignments that
are more efficient at utilizing the available radios for higher
multicast throughput.

Finally, we study the effect of network size on the perfor-
mance of the LP and the algorithms, as shown in Figure 6.
The multicast group size is 10, each node is equipped with
4 radios and there are 8 available channels. Here, we see no
noticeable trend as the network size increases. However, we
note that the Iterative algorithm significantly outperforms the
Greedy solution for all network sizes.



V. FURTHER WORK

Due to the NP-hard nature of the channel assignment prob-
lem, it is infeasible to compute the optimal multicast flow for
very large multi-channel multi-radio networks. A little thought
shows that the problem inherently lies in the discrete nature
of orthogonal channels, with non-overlapping spectrum. The
latter is a concern, since the IEEE 802.11 standard specifies
13 channels, of which only 3 do not overlap.

The above motivates a new possible solution. Instead of
considering the predefined central frequencies for channels,
we allow radios to tune into any frequency in some specified
spectrum range. We seek to answer the following question:
what is the opportunity cost of a predefined spectrum to
channel allocation as opposed to a freely tunable radio in
the spectrum? Specifically, taking into account interference
effects, can freely tunable radios achieve better throughput
in multi-radio environments? We have formulated a network
model and a convex program to compute optimal multicast

throughput in such a scenario.

First, we translate the network in the following fashion; we
create as many copies of each node as there are radios. If node
w in the original network has R radios, then in the new network
we will have nodes u ... ug. Then, for each neighbour node
v € N(u) in the original network, we add edges between every
node u; and v; in the new network. Further, we add edges with
no capacity limit between every node u; and u; to model the
unrestricted internal flow from one radio to another in a single
node. Let this new network be the graph G = (V, E, EY)
where V' and E are the sets of nodes and edges respectlvely,
while E7 is the set of internal edges between nodes. Figure 7
shows an example of the network translation model. We now
state the convex program to compute optimal throughput in
this network

Maximize d (16)
Subject To
ft(ﬁ) = vt e T (16a)
S flww) = > fulow) = Yo € V,Vt € T (16b)
u€N (v) u€N (v)
> fw) < fi(w) Vit e T,Yu eV (l6c)
vEN (u)

fe(w) < c(u
a(v)Vv € Ni(v))e(u
Kl <Oé( )SK

>0

fr(w), fi(u)

The convex program in (16) is similar to the linear program
in (15), but differs in that the capacity of a node is now
a function f, of the transmission frequency chosen by the
node, a(u), and the transmission frequencies chosen by the
set of nodes within interference range, Ny(u). The function
f represents the amount of interference caused by the choice
of transmission frequencies of nodes, and has range between
0 and 1. Ko et al. [4] choose a convex function that depends
on the amount of channel overlap between adjacent channels
in their work. We believe a similar idea would work here,
but we were unable to run simulations using (16) due to

) Vt e T,Vu €V (16d)
) Yu €V (16e)
YueV (16f)

Yu € V,Y wve E (16g)

Fig. 7. An example of network translation to an equivalent network
in which each node represents a radio. The links shown using dotted
lines represent internal, uncapacitated links between radios within
a single node in the original network. The solid lines show links
between nodes in the new network that represent connectivity in the
original network

time constraints. Finally, note also that K; and K5 in the
convex program represent lower and upper bounds on the
usable frequency spectrum.

There is one more possibility to explore. One can consider
the linear programming relaxation of (14) and treat the frac-
tional values of #(u) and y(u) obtained as an indicator of
how long radio j should spend transmitting and receiving on
channel ¢ respectively. This raises a new algorithmic problem,
given fractional values of z(u) and y!(u), can we use
this to guide a scheduling algorithm that assigns channels
for a fraction of a fixed time slot? We believe that using
this dynamic channel assignment method, we can achieve
higher throughput than the static assignment we have studied
throughout this paper.

VI. CONCLUSION

In this paper, we study multicast using network coding
in wireless environments in which nodes are equipped with
multiple radios, capable of using channel diversity in the form
of non-overlapping transmission frequency bands. Previous
work on multi-channel networks have focused on unicast or
multi-session unicast. In contrast, we focus on the optimal
multicast problem.

We have developed a model that is complete and optimal.
Moreover, our model exploits the broadcast property in wire-
less networks, by employing network coded transmissions to
efficiently utilize available bandwidth. The channel assignment
problem, similar to colouring problems in graphs, is NP-hard,
which is reflected in the integer program model derived. We
have presented a simple, greedy channel assignment algorithm
as well as an improved solution that performs channel as-
signment iteratively using the residual network of the flow
computed.

The results from simulations performed have provided us
with an insight into how end-to-end throughput is affected by
the availability of both channels and radios per node. We find
that the iterative algorithm utilizes the available radios and
channels more efficiently and thereby achieves higher end-to-
end throughput as compared to the greedy channel assignment
scheme. We intend to pursue the work presented here further
with the ultimate goals of characterizing the feasible flow
region of multi-channel multi-radio wireless networks, and



developing efficient algorithms to approximate the optimal
flow via scheduling.
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