
 1

TCP over WiMAX: A Measurement Study

Emir Halepović, Qian Wu, Carey Williamson, Majid Ghaderi
Department of Computer Science

University of Calgary, Canada
{emirh, qianwu, carey, mghaderi}@cpsc.ucalgary.ca

Abstract
We present active measurement results from a

commercial IEEE 802.16/WiMAX-based network, with
primary focus on TCP performance. We compare four TCP
variants, namely New Reno, Cubic, Vegas and Veno, using
throughput, round-trip time (RTT), and retransmission
rate metrics. While all TCP variants achieve similar
throughput, they do so in different ways, with different
impacts on the network performance. We identify adverse
effects of TCP window auto-tuning in this environment
and demonstrate that congestion losses dominate random
wireless errors on the physical link. We reveal several
issues for this WiMAX-based network, including limited
bandwidth for TCP, high RTT and jitter, and unfairness
during bidirectional transfers. Such a network environment
may be challenging for many wireless Internet
applications, such as remote login, VoIP and video
streaming.

Keywords
Measurement, Performance, 802.16, WiMAX, TCP

1. Introduction
Wireless Internet access is an essential requirement for

today’s tech-savvy users, including students, consumers,
travelers, and business users. However, users often have to
make the choice between fixed high-speed local access
(e.g., WiFi networks), or low-speed mobile wide-area
access (e.g., cellular data networks). There is a strong
desire to bridge this gap and offer high-speed mobile
access, with performance comparable to wired broadband.

One promising technology is based on the IEEE 802.16
family of standards, commonly referred to as WiMAX
(Worldwide Interoperability for Microwave Access). While
WiMAX is commonly viewed as a metropolitan-area
technology (WMAN), it can offer a service range of up to
50 km, under ideal conditions. Currently, the major market
area of WiMAX is Internet access for residential and small
business users, as an alternative to cable and DSL access.

The purpose of our study is to investigate the
performance characteristics of WiMAX-based networks,
and to assess their potential impact on the user-perceived
experience with Internet applications. This paper focuses
on transport-layer behavior, specifically the Transmission
Control Protocol (TCP). To the best of our knowledge, this

is one of the first detailed studies of TCP performance on a
commercial WiMAX network.

The first goal of our study is to characterize a WiMAX
network and identify any important effects of the new
technology on performance. In the particular network that
we study, the network path has sub-optimal routing, with
high round-trip time (RTT), and high RTT variability,
which may adversely affect interactive Internet
applications such as Web browsing, as well as delay-
sensitive applications such as media streaming and VoIP.
The available bandwidth in the network is limited by the
vendor’s configuration of the wireless modem, and the
achievable throughput varies, depending on the
deployment location.

The second goal is to compare four TCP variants on the
WiMAX network. While all TCP variants tested can
achieve similar throughput, they do so in different ways,
with different impacts on the network performance. Our
measurement results demonstrate that TCP segment
retransmissions are mainly triggered by congestion losses
induced by TCP, rather than transmission losses due to
wireless channel errors. The Automatic Repeat Request
(ARQ) mechanism employed by WiMAX successfully
shields TCP from transmission losses, allowing all TCP
variants to function reasonably well. However, we find that
bidirectional TCP transfers degrade network performance,
which may be an obstacle for users running applications
that require bidirectional data transfer, such as file-sharing
or video conferencing applications.

The rest of the paper is organized as follows. Section 2
provides background on WiMAX and TCP, and reviews
related work. Experimental methodology and network
characterization are discussed in Section 3. Section 4
presents the measurement results and analysis for
unidirectional transfers. Additional experiments and
results are discussed in Section 5. Conclusions and future
research directions are given in Section 6.

2. Background and Related Work

2.1 WiMAX
IEEE 802.16 is a family of standards for local and

metropolitan area networks that define physical (PHY) and
medium access control (MAC) layers of the air interface.
The fixed and mobile components of the standard have

 2

recently been consolidated under the 802.16e™-2005
document [6].

The WiMAX MAC layer supports point-to-multipoint
(PMP) and mesh topologies, both of which contain
elements for efficiently dealing with shared access
medium. In PMP topology, a WiMAX network is divided
into cells and sectors consisting of one base station (BS)
and many subscriber stations (SS), similar to a cellular
telephone network. This architecture naturally lends itself
to PMP operation in the downlink direction, from BS to
SS, where time-division duplex (TDD) or frequency-
division duplex (FDD) is used. In practice, TDD is
typically used, where the BS dynamically adjusts the
duration of the downlink and uplink portions of the data
frame, depending on the requirements. Uplink direction
access is usually TDMA, with BS controlling access and
scheduling.

The 802.16 standard explicitly supports Quality of
Service (QoS) differentiation. SS’s are assigned access
slots on a demand basis. An SS may request access
continuously or upon user request, depending on the class
of service. Implementation of QoS policies is not specified
in the standard, but rather left to vendors to decide.

The MAC layer is connection-oriented. All service
flows are mapped to connections between BS and SS, in a
one connection per service flow fashion. For example, one
TCP connection would be mapped to two MAC
connections, one for each direction of the TCP transfer.
Connections map the requirement of service flows to
bandwidth requests on the uplink. Each connection
typically uses a timer-based ARQ mechanism.

Adaptive modulation is used to achieve the highest
possible data rate for a given link quality. Modulation can
be adjusted at very short time intervals (within each frame
that is typically 5 ms long), allowing for robust
transmission links and high system capacity. The OFDM
mechanism uses many individual carriers to transmit user
data, and effectively adapts to multi-path fading in the
wireless environment. Combined with TDD and adaptive
modulation, it enables high channel utilization, capacity
and data rate when deployed in a non-line-of-sight (NLOS)
environment, such as urban areas. Depending on the
frequency range and modulation used, WiMAX can
theoretically achieve a data rate of over 120 Mbps, and 50
km in range.

While often seen as an evolutionary extension of WiFi,
WiMAX has several important differences. Wireless
channel access is controlled by the BS in PMP mode, in
contrast to WiFi where the access point contends with
mobile nodes for channel access. WiMAX is intended for
infrastructure deployment as a long-range access
technology rather than for short-range home and office
networking. Licensed spectrum is predominantly used for
WiMAX, and QoS is explicitly supported, unlike in WiFi.

2.2 TCP
TCP is a reliable, connection-oriented data transfer

protocol, with well-established mechanisms for flow and
congestion control based on the sliding window. In this
study, we use TCP variants that include only sender-side
modifications. This section outlines the basic operation of
four TCP variants, and justifies their inclusion in this
study. Interested readers are referred to the original
literature for more details.

TCP New Reno is a well-studied and prevalent TCP
variant in the Internet [3]. Its main components are the
slow start algorithm and congestion avoidance phase. Slow
start allows the sender to grow its window rapidly to
capture bandwidth. The congestion avoidance phase
following the slow start grows the congestion window
linearly, promoting fairness and stability. Loss is detected
either by a triple duplicate acknowledgment (ACK), in
which case the congestion window is halved, or a
retransmission timeout (RTO), in which case it is reduced
to one segment. The congestion window evolves in
Additive Increase Multiplicative Decrease (AIMD)
fashion, which is appropriate for congestion-induced loss,
but not for random loss due to wireless transmission errors.
TCP New Reno is evaluated in this study as a baseline
TCP variant.

Cubic is a TCP variant for networks with high
bandwidth-delay product (BDP). It is characterized by an
aggressive (cubic) window growth function that is
independent of RTT [16]. Upon loss, it reduces the window
by a factor of 0.8. Cubic is the default TCP variant in
newer Linux kernels, and therefore makes a good choice
for this study.

TCP Vegas is a modified New Reno that detects loss
proactively earlier; it can retransmit before receiving the
third duplicate ACK or RTO timer expires [2]. The
congestion avoidance mechanism keeps the appropriate
amount of data in the network, and congestion window
increases and decreases in a linear fashion. Congestion
window stability and low retransmission rate make Vegas
a good choice for wireless networks.

TCP Veno specifically targets wireless networks, by
combining Reno and Vegas mechanisms to deduce
whether a network is congested or random loss is more
likely [4]. Congestion window evolution is determined by
throughput estimates, and reduction factors are 0.5 for
congestion loss and 0.8 for random loss. Veno’s efficient
bandwidth utilization and low retransmission rate make it
attractive for wireless links.

Regardless of the TCP variant employed, a recently
introduced improvement for dealing with high BDP links
is TCP window auto-tuning [18]. Auto-tuning is the
default Linux kernel feature that dynamically adjusts the
sender’s and receiver’s window to better utilize available

 3

link capacity. The kernel monitors TCP throughput and
when it estimates that more bandwidth is available than
the default window sizes are able to use, it then increases
the default window size, which is then advertised to the
other endpoint of the connection. This mechanism is
effective for high bandwidth links, since it reduces the time
required for the TCP sender to utilize the available link
capacity.

2.3 Related Work
Wireless links are inherently lossy and are subject to

errors due to path loss, interference, channel fading, and
handoffs. TCP was originally designed for wired links with
low packet error rate (PER), where packet loss happens
predominantly due to congestion. Wireless links pose a
challenge to TCP, which cannot distinguish between
different causes of loss. This results in reduction of
throughput, and underutilization of a wireless link [17].

Several approaches have been proposed as a remedy for
wireless TCP problems, including end-to-end and link-
layer solutions, as well as connection splitting [1, 17].
While the proposed solutions attempt to address the
fundamental issue of the high bit-error rate (BER), the
heterogeneity of wireless networks may still require
different mechanisms for each type of network. Not all
wireless environments are equal; therefore, TCP’s
performance problems may be more acute in some types of
wireless networks than in others.

In cellular networks, the important factors affecting
TCP performance are handoffs, temporary signal
interruptions by obstacles, high delay, and delay variance
[10]. WiFi networks based on IEEE 802.11 standards, with
high data rates and low mobility, cause problems for TCP
through contention-based access, hidden and exposed
nodes, and dynamic rate-adaptation [5, 17].

WiMAX networks are a new kind of wireless network.
Often, they are evaluated using analysis and simulation of
PHY and MAC layers [15, 19, 20], since live
measurements are lacking or preliminary [14], mostly due
to sporadic deployment. The reported analytical and
simulation results indicate that improvements in TCP
performance would result from different modulation
schemes between data and ACK channels, proper ARQ
settings, a TCP-friendly MAC scheduling policy, and
appropriately tuned ACK handling [15, 20].

The fact that different wireless networks require
different mechanisms for optimizing TCP performance
provides motivation for our work. It is important to
characterize WiMAX-based networks in order to
understand their behavior and their impact on TCP.
Furthermore, we need to understand which parameters
affect the TCP performance, and why.

3. Experimental Methodology

3.1 Network Environment
The network under consideration is an early

commercial offering of a fixed WiMAX service deployed
across Canada by two network providers. The indoor
wireless modem we use is Motorola Expedience RSU-
2510F, operating inside the licensed 2496-2690 MHz
band. Expedience technology uses TDD/OFDM
combination with 4/16/64 QAM modulations and 3 - 6
MHz channels. The modem connects via Ethernet to the
user computer. The MAC layer protocol and scheduling
policy are not publicly available. Therefore, we treat the
wireless modem as a black box.

The service provider limits the maximum data rates to
1.5 Mbps on the downlink and 256 Kbps on the uplink.
Nomadic movement between base stations is fully
supported, while mobility during a session is not (though it
is still possible at low speeds).

The experimental test-bed consists of two commodity
laptops, one connected to the wireless modem and another
to the University of Calgary campus network using a 100
Mbps Ethernet LAN (Figure 1). Two different test
locations for the wireless end of the test-bed are used; one
on campus and one in a residential setting.

Both laptops are running Linux with kernel version
2.6.20, which supports the pluggable on-demand TCP
congestion control algorithms used in this study. This
kernel’s default settings are TCP Cubic with auto-tuning,
timestamp option, and SACK enabled.

We use netperf [12] for TCP transfers and iperf [12] for
UDP streams. We collect the traffic traces using tcpdump
[12] and post-process them with tcptrace [12], tstat [12],
and other custom tools.

Measurements were made between April 2007 and
March 2008. The length of the study allowed us to observe
long-term changes in WiMAX network behavior.

100 Mbps
Ethernet

100 Mbps
Ethernet

256 kbps

Motorola
RSU-2510

Internet

Campus
Router

1.5 Mbps

100 Mbps
Ethernet

100 Mbps
Ethernet

256 kbps

Motorola
RSU-2510

Internet

Campus
Router

1.5 Mbps

Figure 1: Experimental setup

 4

3.2 Network Characterization
To better interpret the TCP-related measurements, we

include a brief description of the network path. We use the
pchar tool [12] to measure available bandwidth, RTT, and
loss, using UDP probes. The path measurements are
summarized in Table 1.

Table 1: Network path characteristics

 Downlink Uplink

Date Jun 8 Jun 26 Jul 4 Feb 15

Hops 16 16 13 14

µRTT (ms) 118.2 125.0 124.4 107.3

σRTT (ms) 0.9 3.2 6.4 3.1

Wired µRTT (ms) 88.2 88.1 65.3 75.0

Wired σRTT (ms) 0.07 0.12 n/a n/a

Wireless µRTT (ms) 30.0 37.0 59.1 32.3

Wireless σRTT (ms) n/a n/a 30.0 3.8

Bottleneck BW (kbps) 385 497 87.5 162.8

Packet loss 9% 11% 1% 8%

The network path between the test endpoints consists of

13 to 16 hops, some of which change over time, which is
expected in today’s Internet. The overall mean RTT (µRTT)
is very high, consistently exceeding 100 ms. Closer
analysis reveals that the major contributors to the RTT are
cross-continental hops on the backbone network from
Calgary to Toronto (about 3,000 km) and back. In the
downlink direction, the total µRTT of 118.2 ms is composed
of 88.2 ms on the wired and 30.0 ms on the wireless
portion of the path. It is unusual that the wired portion
accounts for almost 75% of the total RTT. This shows
inefficient routing, with all traffic routed through Toronto.
High delay can affect latency-sensitive applications such as
telnet and VoIP. Performance will differ depending on the
geographic location of users.

We next consider the standard deviation (σRTT) of RTT.
The results in Table 1 show the µRTT and σRTT of the wired
and wireless hops, as computed by pchar. Wireless portion
consists of a single wireless hop over the WiMAX link.
For the downlink, σRTT for the total path exceeds that of
the wired portion by an order of magnitude. This indicates
higher RTT variations on the wireless hop. For the uplink,
the measured σRTT for the wireless hop is again larger than
the overall σRTT, sometimes by an order of magnitude. It is
reasonable to expect higher RTT variation on the wireless
hop due to higher PER and the ARQ employed by WiMAX
[20]. Note that pchar reports σRTT only for the partial path
and not for individual hops, hence several entries in Table
1 are marked “n/a”.

3.3 MAC and PHY Layer Characteristics
Before addressing TCP behavior over WiMAX, we first

conduct several experiments with UDP constant-bit-rate
(CBR) streams, to gain basic insights into the wireless
scheduler behavior without TCP’s flow and congestion
control effects. We show downlink throughput and loss in
Figure 2. We note that throughput closely follows the
sending rate with minimal loss until the sending rate
reaches the link limit of 1.5 Mbps with a 2.6% datagram
loss rate. Further increasing the sending rate causes the
throughput to saturate the link capacity, with loss rates
increasing. The uplink throughput results are similar. The
only difference is that more losses occur; these reach 4.9%
when the sending rate equals the link capacity of 256
Kbps.

From these results we can conclude that the scheduler
allocates as much bandwidth as the data backlog in the
buffers requires up to the link capacity. Trying to send
more data than the available capacity, even up to 4 Mbps,
does not appear to degrade the throughput or penalize the
sender in any way, unlike the phenomenon observed in
CDMA networks [11].

Next we measure throughput with respect to a
qualitative measure of signal strength, namely the lights on
the wireless modem. We refer to this as the Signal
Strength Indicator (SSI). SSI of 1 indicates the weakest
and 5 the strongest signal. This is a crude estimate of the
actual signal strength, but nevertheless it reveals
interesting behavior. The throughput measurements for
both directions are shown in Figure 3. Bar height indicates
the average throughput and error bars indicate the range of
throughputs measured. Error bars indicate the range of
values in all plots in the paper. For each SSI value, we run
10 consecutive 30-second CBR streams at the maximum
link rate in each direction. The experiments were
conducted at the residential location.

The downlink is characterized by two different
throughput regimes. For SSI of 2 – 5 inclusive, throughput
near capacity is achieved with little variation except for
SSI of 2, which exhibits more variability. Datagram loss
rates for SSI of 2 to 5 are in 2.1% to 2.9% range, which is
in the same order of magnitude as in pchar tests. For SSI

0.0

0.3

0.5

0.8

1.0

1.3

1.5

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Sending rate (Mbps)

T
hr

ou
gh

pu
t (

M
bp

s)

0%

5%

10%

15%

20%

25%

30%

D
at

ag
ra

m
 lo

ss
 ra

te

DL Throughput
DL Loss

Figure 2: Throughput of UDP CBR transfers

 5

of 1, average throughput is at about 78% of the link
capacity with loss rate of 20%. Uplink behavior is similar,
with the difference that SSI of 1 and 2 appear to achieve
the lower throughput level (88% of the capacity) and SSI
of 3 to 5 the higher (shown on secondary axis). Overall,
user should expect near maximal throughput with SSI of 2
– 5 on the downlink and for SSI 3 – 5 on the uplink. For
lower SSI levels, achievable throughput is still 78% - 88%
of the link capacity.

These results, although coarse-grained, show that even
the weak signal and its corresponding modulation can
achieve good throughput. This confirms the design
expectation of efficient adaptation to channel conditions.
When sending rate is equal to the maximum link capacity
and the signal is weaker, the adjusted modulation reduces
available bandwidth and causes higher datagram loss rate
proportional to the reduction in throughput. This allows us
to estimate the achievable throughput with the
conservative modulation. This is relevant for comparing
performance on two experimental locations, campus and
residential. At campus location, SSI of 2 dominates
throughout the experiments with occasional transitions to
1, 3 and 4, whereas at the residential location, SSI of 5 is
typical. The position of the modem can be easily adjusted
to obtain the desired SSI at the residential location and
facilitate experiments with different SSI levels.

The two experimental locations differ in the long-term
performance characteristics. During the first 3 months of
tests at the campus location, throughput achieved in both
directions was near link capacity. The rest of the test
period was characterized by much lower throughput on the
downlink, although the modem location and SSI did not
change. At the residential location, throughput was
consistently near the maximum throughout the test period.
We discuss the campus location throughput with additional
experiments and results later in the paper.

4. Results for Unidirectional Transfers

4.1 Downlink Performance
Throughput. We compare throughput and other

metrics, with respect to socket buffer size and TCP variant.
Each experiment consists of a series of 60-second data

transfers. Sender’s and receiver’s socket buffer sizes,
which determine the limit on the TCP congestion window,
are set to 8, 16, 32 and 64 KB. Auto-tuned case is
considered the largest size because it initially uses
receiver’s default advertised window of 85.33 KB.
Downlink experiments are repeated five times per day, for
7 days.

Throughput is reported based on netperf output, which
actually measures goodput, defined as user data
successfully transferred per unit time. Figure 4 shows the
mean and range of throughputs measured as the socket
buffer size grows from 8 KB to auto-tuned. Throughput of
all TCP variants is window-limited when using smaller
buffer sizes from 8 to 32 KB. Larger buffer sizes clearly
benefit each TCP variant and allow them to utilize the full
link bandwidth of 1.5 Mbps. In this case, throughput is
loss-limited.

All TCP variants achieve similar throughput for each of
the buffer sizes tested, though Vegas has slightly lower
throughput (about 96% of that achieved by the other TCP
variants). For the two largest buffer sizes, Vegas’
throughput ranges widely from 0.9 to 1.5 Mbps. About
20% of Vegas flows achieve no more than 1.3 Mbps.
Lower throughput is expected from Vegas due to its
conservative window growth behavior.

Overall, it appears that, even though very different in
their congestion control mechanisms, all four TCP variants
utilize the available bandwidth equally well.

RTT. The second metric of interest is RTT. We choose
one experiment to compare RTT across all TCP variants.
Figure 5 shows the mean and range of RTT values
corresponding to one test connection for each socket buffer
size and TCP variant. All TCP variants experience similar
mean RTT values for each buffer size. However, RTT jitter
is very high. Figure 6 shows that RTT is highly variable
throughout the connection. The minimum RTT is
consistently around 120 ms for all TCP variants, with the
distinctive lower bound due to the high path propagation
delay.

Retransmissions. After investigating TCP throughput
and RTT, we turn to segment retransmission rate,
expressed as the percentage of retransmitted segments
during each connection.

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

1 2 3 4 5

Signal Strength Indicator

D
o

w
n

lin
k

th
ro

ug
h

pu
t (

M
b

ps
)

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38
DL Throughput UL Throughput

U
pl

in
k

th
ro

u
gh

p
ut

 (M
bp

s)

Figure 3: UDP Throughput vs. SSI

0.0

0.3

0.6

0.9

1.2

1.5

8 KB 16 KB 32 KB 64 KB Auto-tuned

Socket buffer size

T
hr

o
ug

hp
ut

 (M
bp

s)

New Reno

Cubic

Vegas

Veno

Figure 4: Downlink TCP throughput

0

100

200

300

400

500

8 KB 16 KB 32 KB 64 KB Auto-
tuned

Socket buffer size

R
T

T
 (

m
s)

New Reno Cubic Vegas Veno

Figure 5: Downlink RTT

 6

We find some significant differences between TCP
variants. Figure 7 shows the average retransmission rates
corresponding to each TCP variant and socket buffer size.
The overall trend is that larger buffer sizes result in higher
retransmission rates. This is not surprising, given that 64
KB and larger buffers produce congestion windows
exceeding the BDP, leading us to conclude that most
retransmissions are due to congestion losses.

The auto-tuned case bears more consideration. There is
a clear jump in retransmission rates, which approach 3%
for Cubic. For New Reno, Cubic and Veno, auto-tuning
more than doubled the retransmissions compared to 64 KB
buffer size, with Cubic suffering the four-fold jump. Vegas
is least affected by large buffer sizes and auto-tuning.

4.2 Uplink Performance
We present uplink measurements of throughput, RTT

and retransmission rate for 16 experiments performed over
an 8-day period, twice per day. We use buffer sizes of 8, 16
and 32 KB, as well as auto-tuned. The 32 KB buffer size
appears to be adequate to utilize the uplink capacity fully.

Throughput. In Figure 8, we show mean throughput
and range for all TCP variants for different buffer sizes.
The trends are similar to downlink results. As buffer size
increases, throughput increases. The differences between
TCP variants are more pronounced for uplink than
downlink flows. TCP Veno achieves the highest
throughput for 32 KB and auto-tuned buffer, with low
variability. This is one indication that Veno performs well
in a bandwidth constrained environment.

RTT. The mean and range of RTT values from one
experiment are plotted in Figure 9. We observe that there
are both similarities and dissimilarities with downlink
results. Most importantly, uplink RTT is much higher,

nearly double on average. Mean RTT is similar across
buffer sizes and lies in the 200 to 300 ms range. This very
high RTT poses potential performance problems for delay-
sensitive applications, such as telnet and VoIP. We further
note that minimum RTT is mostly stable around 200 ms.
However, maximum RTT is excessively high, reaching
nearly 10 times the minimum. Therefore, higher delay
spikes are to be expected on uplink. We further notice
some oddities, such as unusually high RTT range for
smaller buffer sizes, but also extremely high RTT for a
combination of Cubic and auto-tuning.

Retransmissions. Compared to the downlink,
retransmission rates are much higher on the uplink (Table
2).

Average retransmission rate increases with buffer size
for New Reno and Cubic, but not for Vegas and Veno.
Veno in fact has nearly the same mean retransmission
rates for 16 KB buffer and larger. To utilize the available
link capacity fully, TCP requires at least the 32 KB buffer,
at which all TCP variants record comparable
retransmission rates. With auto-tuning, however,
retransmissions significantly increase over the 32 KB
buffer rates for New Reno and Cubic, by factors of 1.34
and 1.37, respectively.

4.3 Loss Process and Effects of Auto-Tuning
To analyze the dynamics within each TCP connection,

we employ time-series plots of congestion window values.
Congestion window is tracked using outstanding data
calculated by tcptrace, as a good approximation. We divide
the results into two groups. The first group includes
smaller buffer sizes of 8, 16 and 32 KB, which do not
allow a single flow to utilize the link bandwidth fully. The
second group, 64 KB and auto-tuned buffers, allows full
link utilization. These two groups cause different behavior

100

120

140

160

180

200

220

240

260

280

300

0 5 10 15 20 25 30 35 40 45

R
T

T
 (

m
s)

Connection time (mm:ss)
Figure 6: RTT variability

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

8 KB 16 KB 32 KB 64 KB Auto-
tunedSocket buffer size

R
et

ra
ns

m
iti

on
 R

at
e

New Reno

Cubic

Vegas

Veno

Figure 7: Downlink retransmissions

0.00

0.05

0.10

0.15

0.20

0.25

0.30

8 KB 16 KB 32 KB Auto-tuned

Socket buffer size

T
hr

ou
gh

pu
t (

M
bp

s)

New Reno
Cubic
Vegas
Veno

Figure 8: Uplink throughput

0

500

1000

1500

2000

2500

3000

8 KB 16 KB 32 KB Auto-tuned
Socket buffer size

R
T

T
 (m

s)

New Reno
Cubic
Vegas
Veno

Figure 9: Uplink RTT

Table 2: Uplink retransmission rates

Buffer
size

New
Reno Cubic Vegas Veno

8 KB 3.3% 4.7% 4.6% 4.0%
16 KB 4.7% 4.8% 4.0% 5.0%
32 KB 5.3% 6.1% 4.3% 5.2%
Auto 7.1% 8.4% 5.0% 5.2%

 7

in congestion window evolution and retransmissions
throughout the lifetime of a connection.

When smaller buffer size is used, the congestion
window remains steady throughout the connection. There
is only an occasional segment retransmission, if any,
experienced by each TCP variant using each of the three
smaller buffer sizes. The observed behavior pattern further
confirms that all TCP variants perform equally when they
are limited by small buffer size.

The second group of results, using larger buffer sizes,
64 KB and auto-tuned, illustrate the effect of larger buffers
on retransmissions and some specific effects of auto-
tuning. We discuss only Cubic and New Reno due to
limited space. Vegas and Veno exhibit the same qualitative
behavior as New Reno.

For easier understanding and comparison, we plot the
congestion window evolution for Cubic as observed on a
(wired) cable modem link with 5 Mbps downlink and auto-
tuned buffer (Figure 10). We can see that Cubic very
quickly enters its standard pattern based on a cubic
function. This trace even uses auto-tuning, without any
detrimental effect.

Figure 11 shows that with 64 KB buffer, both Cubic and
New Reno reach approximately the same window size
before experiencing loss. It takes both under 10 seconds to
enter the congestion avoidance phase and start seeing
losses, followed by periods of window reductions and
growth. New Reno follows the well-known AIMD window
evolution pattern.

We can also see that most retransmissions are caused by
timeouts, since the congestion window size is reduced to
one segment. What is not visible in the plot is that many
retransmissions occur in pairs. These pairs of
retransmissions occur at the end of the congestion
avoidance epoch. The first retransmission is due to a triple

duplicate ACK, followed by RTO triggering the second
retransmission. The segments retransmitted within the pair
are usually different. The natural question is whether the
second retransmission is caused by a spurious timeout

Detailed examination of three traces reveals that the
segment retransmitted due to RTO is never acknowledged
sooner than the minimum RTT of the connection, meaning
that it was not in transit when retransmitted. We also
found that the ACK for the first retransmitted segment
(due to a triple duplicate ACK) does not cumulatively
include the second retransmitted segment (due to RTO),
which again means that the segment retransmitted due to
RTO was not in transit when retransmitted. This suggests
that RTO was inevitable and caused by real segment loss
and not delay variations due to ARQ on the link layer.
Therefore, we find no evidence that spurious timeouts
regularly occur. Timestamp option is used for TCP, which
also helps avoid spurious timeouts.

We next explore the effects of TCP window auto-tuning
in more detail. The initial indicators that auto-tuning may
adversely affect TCP performance are the high
retransmission rates (Figure 7).

Congestion window evolution with auto-tuning is
shown in Figure 12 for Cubic and New Reno. The plot of
the Cubic connection shows very erratic adjustments of the
congestion window. We see that only in the late portion of
the flow does Cubic manage to enter into its steady-state
operating pattern, where the window oscillates around the
BDP. Auto-tuning clearly confuses the Cubic algorithm, by
making it attempt to capture bandwidth far beyond the
available limit. New Reno and Veno show similar initial
behavior, but they reduce the window growth much sooner,
and then enter into their normal operating pattern. TCP
Vegas appears to be largely unaffected by auto-tuning, and
does not attempt to increase the congestion window like

0

50000

100000

150000

200000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP Cubic, Auto-tuned window, Cable modem

Figure 10: Cubic operation on cable

modem

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP Cubic, 64KB buffer

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP Cubic, 64KB buffer

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP New Reno, 64KB buffer

0

10000

20000

30000

40000

50000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP New Reno, 64KB buffer

Figure 11: Cubic (left) and New Reno (right)

with 64 KB buffer on WiMAX link

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP Cubic, Auto-tuned window

0

50000

100000

150000

200000

250000

300000

0 5 10 15 20 25 30 35 40 45 50 55 60C
on

ge
st

io
n

w
in

do
w

 (
by

te
s)

Connection time (seconds)

TCP New Reno, Auto-tuned window

Figure 12: Cubic (left) and New Reno (right) with auto-tuning on WiMAX link

 8

other variants, regardless of the available buffer size.

4.4 Multiple Connections
We run multiple connections to investigate fairness in

TCP throughput between connections. We start all
connections from the same end machine at approximately
the same time and let them run concurrently for 60
seconds over downlink. Figure 13 shows the average and
range of throughputs for 4 and 10 concurrent connections.
Mean throughput is proportional to the number of
concurrent connections, i.e. 4 connections achieve 25% of
total throughput each, and 10 connections achieve 10% of
total throughput each, on average. This confirms that
multiple connections fully utilize the available bandwidth.
The range indicates fairness among connections and we
see that fairness is very high for New Reno, Vegas and
Veno. Cubic registers higher range, but it does not cause
any connection to starve.

For more formal fairness evaluation, we use Jain’s
Fairness Index (JFI) [7]. JFI is always in the interval [0, 1],
where value of 1 means perfect fairness, where all flows
achieve their fair share of bandwidth. JFI is calculated as:

()
∑
∑

=
2

2

21),...,,(
i

i
n

xn

x
xxxf ,

where xi = Oi/Ti, Oi is observed throughput of flow i, and Ti
is fair throughput of flow i. Fair throughput is calculated
by any appropriate means, and in this scenario it is the
total available throughput divided by number of concurrent
flows n.

In our test case, JFI exceeds 0.91 even for Cubic with
10 connections, and exceeds 0.98 in all other cases. This
result confirms the design objective of WiMAX MAC
layer, where BS-controlled access facilitates fairness for
same-class traffic in the same direction, in contrast to
CSMA/CA in WiFi, which allows unfairness to occur [5].

4.5 TCP Throughput Model
In Figure 14, we compare the TCP New Reno

throughput measurements to known models from the
literature. We are interested in a fit to a model when
throughput is window-limited, i.e. for buffer sizes of 8, 16,
and 32 KB. We find that the nearest match, although not

very good, is to the simplest model: B = 0.75W/RTT;
where B is the throughput, W is the maximum advertised
congestion window size and RTT is the average RTT of the
connection [9]. It appears that the model predicts the trend
of the measurements well, but overestimates the
throughput. Further exploration of the appropriate model
is left for future work.

5. Additional Experiments and Results

5.1 Throughput at Campus Location
We repeated measurements about three months after the

first set of results were collected at campus location and
noticed that the network does not offer maximum
throughput anymore. To establish that we are not
observing a transient state we continued to monitor
network performance at this location for the next 8
months, and determined that low throughput persists.

In Figure 15 we plot the long-term observations of
downlink throughput, taken from one-minute New Reno
connections on each hour for 2 weeks. We observe that
throughput varies and does not reach even 1 Mbps. These
results also confirm that time of day does not play a role.

It is very difficult to compare TCP variants under these
conditions, given the fluctuations in achievable
throughput. We conducted two sets of experiments with 1-
minute connection using each TCP variant back-to-back,
repeated 20 times, so that each of 20 measurements for
each variant comes from 4-5 minute intervals. Throughput
fluctuated, but TCP Veno consistently recorded highest
throughput. Vegas performed slowest of the four variants.
Further comparison of TCP variants is left for future work.

We do not have PHY layer measurements or access to
the base station to determine user load, therefore we cannot
positively identify the cause of lower throughput. However,
we have a plausible explanation using other measurements.
We eliminate poor channel conditions because moving the
modem to the best place at the window, where SSI is a
stable 5, does not help the throughput. Even more
surprisingly, UDP throughput is near the maximum,
completely unaffected. Uplink throughput remained stable
near the maximum, with occasional drops, but not
drastically like on the downlink. UDP streams and uplink

0.0

0.1

0.2

0.3

0.4

0.5

Cubic New Reno Vegas Veno
TCP Variant

T
hr

ou
gh

pu
t (

M
bp

s)

4 connections 10 connections

Figure 13: TCP connections

fairly share bandwidth

0.0

0.5

1.0

1.5

2.0

120 130 140 150 160 170 180 190

RTT (ms)

T
h

ro
ug

h
pu

t (
M

b
p

s)

8 KB 8 KB Model
16 KB 16 KB Model
32 KB 32 KB Model

Figure 14: TCP throughput

model (residential)

0.0

0.2

0.4

0.6

0.8

1.0

0 48 96 144 192 240 288 336 384
Hourly measurements

T
hr

ou
gh

pu
t (

M
bp

s)

Figure 15: Long-term
throughput (campus)

 9

TCP connections were run immediately before and after
the downlink tests.

The findings suggest that some traffic classification
scheme may be in effect on the downlink, and that the
best-effort class is under-provisioned for the number of
users, causing TCP throughput to suffer and fluctuate over
intervals of 1 minute. We continue to investigate the
causes for the reduced throughput at campus location.

5.2 TCP Throughput Model
In contrast to the residential location, we observe higher

loss rates under low-throughput regime on campus, from
1.8% to 4.2% for New Reno connections. TCP throughput
is now loss-limited rather than window or bandwidth-
limited. In Figure 16 we show a good match of the TCP
throughput model from [13].

5.3 Bidirectional Performance
Another important scenario in modern networks is

concurrent uplink and downlink flows, as occurs in some
peer-to-peer file sharing applications. This scenario reveals
unfairness towards the downlink flow.

At residential location, where achievable throughput is
stable and near full link capacity, we use 5-minute New
Reno download and 3-minute New Reno upload. The
upload starts about 1 minute after the download, such that
the download connection runs alone for 1 minute before
and after the upload. We use 64 KB buffer size that allows
full link capacity utilization in both directions. Throughput
results of two chosen experiments in Figure 17 clearly
show that downlink throughput falls and then fluctuates
while uplink connection is active. Overall results for the
overlap period are shown in Table 3. Download recovers to
near maximum link throughput after the upload completes.
Uplink flow throughput remains stable throughout the
connection, as if it were running alone. Correlation
coefficient of -0.71 indicates significant negative
correlation between uplink and downlink throughput.

The unfairness is further exacerbated under low-
throughput conditions at campus location. Due to
throughput fluctuations, we use one 1-hour long New Reno
connection in each direction. To get an approximate

available bandwidth, we run five single-connection
downlink tests before and after the experiment.

Table 3 shows the overall results for 1-hour trace.
Throughput on uplink is higher than on downlink, and
retransmission rate is higher on downlink than on uplink.
Reduction in downlink throughput is much higher than on
uplink, assuming that the available link throughput before
and after the experiment is a good approximation of the
available link capacity throughout the experiment.
Downlink RTT is very high, more than double RTT when
full downlink capacity is available. Therefore, concurrent
connections penalize downlink flow significantly more
than uplink flow, in throughput, RTT, as well as loss rate.

After detailed analysis of the campus trace, we find the
cause for the unfairness is ACK compression, which is a
known problem affecting asymmetric links [8]. The trace
inspection reveals that ACK arrivals occur in groups with
gaps between them. The frequency histogram of ACK
inter-arrival times (IAT) in Figure 18 shows that majority
of ACK’s arrive within 1 ms of each other. Gaps between
arrivals last mostly between 90 and 400 ms, and between 5
and 20 ms, indicated by spikes in frequencies. This is in
sharp contrast to the single TCP connection whose ACK
arrivals are predominantly within 6-8 ms.

6. Summary and Conclusions
In this paper, we present the measurement results from

an early commercial deployment of a WiMAX-based
broadband wireless access network. We examine the
network path characteristics and compare performance of
uplink and downlink bulk data transfer for four TCP
variants: New Reno, Cubic, Vegas and Veno.

The main results indicate that the WiMAX link does
not adversely affect the intended operation of TCP

0.0

0.2

0.4

0.6

0.8

1.0

1.6% 2.0% 2.4% 2.8% 3.2% 3.6% 4.0% 4.4%
Loss rate (%)

T
hr

ou
gh

pu
t (

M
bp

s)

New Reno 64 KB Measured
Padhye et al. model (RTT=134 ms)
Padhye et al. model (measured RTT and loss)

Figure 16: TCP throughput

model (campus)

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 60 120 180 240 300
Connection time (seconds)

T
hr

ou
g

hp
ut

 (M
b

ps
)

DL Throughput
UL Throughput

Figure 17: Bidirectional

throughput

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600

ACK IAT (ms, not linear scale)

A
C

K
 F

re
q

u
en

cy

Figure 18: ACK IAT histogram

Table 3. Bidirectional performance

 Residential Campus
 Downlink Uplink Downlink Uplink
Before and after
Throughput (Mbps)

1.37 0.24 0.40 0.21

Throughput (Mbps) 1.13 0.22 0.14 0.18
Average RTT (ms) 178 189 321 334
Retransmission rate 0.50% 7.03% 5.18% 3.41%

 10

variants, but that it is not well-suited for the aggressive
Cubic and window auto-tuning. Therefore, the default
settings of newer Linux kernels, namely TCP Cubic and
auto-tuning are not recommended for connections
traversing WiMAX links. While all TCP variants achieve
similar throughput, they do so in different ways, from the
very aggressive Cubic, to conservative and efficient Vegas.
New Reno and Veno occupy the middle ground with robust
performance and moderate loss. ARQ mechanism
successfully shields TCP from random transmission losses.
Adaptive modulation employed by WiMAX effectively
utilizes available bandwidth depending on the channel
conditions, and achieves very high user throughput across
signal strength levels.

Several performance issues identified can be attributed
to causes other than WiMAX physical channel. Very high
RTT is an artifact of inefficient routing involving
transcontinental links. Unfairness during bidirectional
transfers happens due to the known problem of ACK
compression, but it could be reduced with better channel
management that would eliminate congestion of TCP
flows. The WiMAX link, however, is responsible for high
variability in RTT during the connections, to which Vegas
and Veno adapt most successfully.

While the results we present are specific to this
particular WiMAX-based network, they are useful as an
initial report on TCP performance obtained in this type of
environment, which reflects the state-of-the-art for a
commercially deployed WiMAX service. Our future work
will continue by measuring TCP performance for other
Internet applications, including VoIP and multimedia
streaming, as well as effects of TCP window auto-tuning
on other network technologies, such as WiFi.

References
[1] H. Balakrishnan, V. N. Padmanabhan, et al., The

Effects of Asymmetry on TCP Performance, Proc. of
MobiCom, Budapest, Hungary, 1997.

[2] L. S. Brakmo, S. W. O'Malley, et al., TCP Vegas: new
techniques for congestion detection and avoidance,
Proc. of SIGCOMM, London, United Kingdom, 1994.

[3] S. Floyd, T. Henderson, et al. RFC 3782: The
NewReno Modification to TCP's Fast Recovery
Algorithm, IETF, http://www.ietf.org/rfc/rfc3782.txt.

[4] C. P. Fu and S. C. Liew, TCP Veno: TCP
enhancement for transmission over wireless access
networks, IEEE Journal on Selected Areas in
Communications, vol. 21, pp. 216-228, 2003.

[5] M. Heusse, F. Rousseau, et al., Performance Anomaly
of 802.11b, Proc. of INFOCOM, San Francisco, CA,
2003.

[6] IEEE Std 802.16e(TM)-2005 and IEEE Std
802.16(TM)-2004/Cor 1-2005, IEEE Standard for
Local and Metropolitan Area Networks - Part 16: Air

Interface for Fixed and Mobile Broadband Wireless
Access Systems.

[7] R. Jain, A. Durresi, et al. Throughput Fairness Index:
An Explanation,
http://www.cse.wustl.edu/~jain/atmf/ftp/af_fair.pdf.

[8] L. Kalampoukas, A. Varma, et al., Improving TCP
throughput over two-way asymmetric links: analysis
and solutions, Proc. of SIGMETRICS, Madison, WI,
United States, 1998.

[9] J. Kurose and K. Ross, Computer Networking: A Top-
Down Approach, 4 ed: Pearson Education, Inc., 2008.

[10] Y. Lee, Measured TCP Performance in CDMA 1x
EV-DO Network, Proc. of PAM, Adelaide, Australia,
2006.

[11] K. Mattar, A. Sridharan, et al., TCP over CDMA2000
Networks: A Cross-Layer Measurement Study, Proc.
of PAM, Louvain-la-Neuve, Belgium, 2007.

[12] Network Monitoring Tools, SLAC,
http://www.slac.stanford.edu/xorg/nmtf/nmtf-
tools.html.

[13] J. Padhye, V. Firoiu, et al., Modeling TCP
Throughput: A Simple Model and its Empirical
Validation, Proc. of SIGCOMM, Vancouver, BC,
Canada, 1998.

[14] J. A. Perez, B. Donnet, et al., Preliminary Analysis of
the TCP Behavior in 802.16 Networks, Proc. of
WEIRD Workshop on WiMAX, Wireless and
Mobility, Coimbra, Portugal, 2007.

[15] S. Ramachandran, C. W. Bostian, et al., A link
adaptation algorithm for IEEE 802.16, Proc. of
WCNC, New Orleans, LA, 2005.

[16] I. Rhee and L. Xu, CUBIC: A New TCP-Friendly
High-Speed TCP Variant, Proc. of PFLDnet, Lyon,
France, 2005.

[17] Y. Tian, K. Xu, et al., TCP in Wireless Environments:
Problems and Solutions, in IEEE Communications
Magazine, vol. 43, 2005, pp. S27-S32.

[18] E. Weigle and W. Feng, Dynamic right-sizing: a
simulation study, Proc. of ICCCN, Scottsdale, AZ,
2001.

[19] J. Wu, D. Kim, et al., TCP Performance over the
WiBro Compatible 802.16e Systems, Proc. of ICACT,
Gangwon-Do, Korea, 2007.

[20] X. Yang, M. Venkatachalam, et al., Exploiting the
MAC layer flexibility of WiMAX to systematically
enhance TCP performance, Proc. of Mobile WiMAX
Symposium 2007, Orlando, FL, 2007.

