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Abstract 
We present active measurement results from a 

commercial IEEE 802.16/WiMAX-based network, with 
primary focus on TCP performance. We compare four TCP 
variants, namely New Reno, Cubic, Vegas and Veno, using 
throughput, round-trip time (RTT), and retransmission 
rate metrics. While all TCP variants achieve similar 
throughput, they do so in different ways, with different 
impacts on the network performance. We identify adverse 
effects of TCP window auto-tuning in this environment 
and demonstrate that congestion losses dominate random 
wireless errors on the physical link. We reveal several 
issues for this WiMAX-based network, including limited 
bandwidth for TCP, high RTT and jitter, and unfairness 
during bidirectional transfers. Such a network environment 
may be challenging for many wireless Internet 
applications, such as remote login, VoIP and video 
streaming. 
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1. Introduction 
Wireless Internet access is an essential requirement for 

today’s tech-savvy users, including students, consumers, 
travelers, and business users. However, users often have to 
make the choice between fixed high-speed local access 
(e.g., WiFi networks), or low-speed mobile wide-area 
access (e.g., cellular data networks). There is a strong 
desire to bridge this gap and offer high-speed mobile 
access, with performance comparable to wired broadband.  

One promising technology is based on the IEEE 802.16 
family of standards, commonly referred to as WiMAX 
(Worldwide Interoperability for Microwave Access). While 
WiMAX is commonly viewed as a metropolitan-area 
technology (WMAN), it can offer a service range of up to 
50 km, under ideal conditions. Currently, the major market 
area of WiMAX is Internet access for residential and small 
business users, as an alternative to cable and DSL access. 

The purpose of our study is to investigate the 
performance characteristics of WiMAX-based networks, 
and to assess their potential impact on the user-perceived 
experience with Internet applications. This paper focuses 
on transport-layer behavior, specifically the Transmission 
Control Protocol (TCP). To the best of our knowledge, this 

is one of the first detailed studies of TCP performance on a 
commercial WiMAX network. 

The first goal of our study is to characterize a WiMAX 
network and identify any important effects of the new 
technology on performance. In the particular network that 
we study, the network path has sub-optimal routing, with 
high round-trip time (RTT), and high RTT variability, 
which may adversely affect interactive Internet 
applications such as Web browsing, as well as delay-
sensitive applications such as media streaming and VoIP. 
The available bandwidth in the network is limited by the 
vendor’s configuration of the wireless modem, and the 
achievable throughput varies, depending on the 
deployment location. 

The second goal is to compare four TCP variants on the 
WiMAX network. While all TCP variants tested can 
achieve similar throughput, they do so in different ways, 
with different impacts on the network performance. Our 
measurement results demonstrate that TCP segment 
retransmissions are mainly triggered by congestion losses 
induced by TCP, rather than transmission losses due to 
wireless channel errors. The Automatic Repeat Request 
(ARQ) mechanism employed by WiMAX successfully 
shields TCP from transmission losses, allowing all TCP 
variants to function reasonably well. However, we find that 
bidirectional TCP transfers degrade network performance, 
which may be an obstacle for users running applications 
that require bidirectional data transfer, such as file-sharing 
or video conferencing applications. 

The rest of the paper is organized as follows. Section 2 
provides background on WiMAX and TCP, and reviews 
related work. Experimental methodology and network 
characterization are discussed in Section 3. Section 4 
presents the measurement results and analysis for 
unidirectional transfers. Additional experiments and 
results are discussed in Section 5. Conclusions and future 
research directions are given in Section 6. 

2. Background and Related Work 

2.1 WiMAX 
IEEE 802.16 is a family of standards for local and 

metropolitan area networks that define physical (PHY) and 
medium access control (MAC) layers of the air interface. 
The fixed and mobile components of the standard have 
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recently been consolidated under the 802.16e™-2005 
document [6].  

The WiMAX MAC layer supports point-to-multipoint 
(PMP) and mesh topologies, both of which contain 
elements for efficiently dealing with shared access 
medium. In PMP topology, a WiMAX network is divided 
into cells and sectors consisting of one base station (BS) 
and many subscriber stations (SS), similar to a cellular 
telephone network. This architecture naturally lends itself 
to PMP operation in the downlink direction, from BS to 
SS, where time-division duplex (TDD) or frequency-
division duplex (FDD) is used. In practice, TDD is 
typically used, where the BS dynamically adjusts the 
duration of the downlink and uplink portions of the data 
frame, depending on the requirements. Uplink direction 
access is usually TDMA, with BS controlling access and 
scheduling.  

The 802.16 standard explicitly supports Quality of 
Service (QoS) differentiation. SS’s are assigned access 
slots on a demand basis. An SS may request access 
continuously or upon user request, depending on the class 
of service. Implementation of QoS policies is not specified 
in the standard, but rather left to vendors to decide. 

The MAC layer is connection-oriented. All service 
flows are mapped to connections between BS and SS, in a 
one connection per service flow fashion. For example, one 
TCP connection would be mapped to two MAC 
connections, one for each direction of the TCP transfer. 
Connections map the requirement of service flows to 
bandwidth requests on the uplink. Each connection 
typically uses a timer-based ARQ mechanism. 

Adaptive modulation is used to achieve the highest 
possible data rate for a given link quality. Modulation can 
be adjusted at very short time intervals (within each frame 
that is typically 5 ms long), allowing for robust 
transmission links and high system capacity. The OFDM 
mechanism uses many individual carriers to transmit user 
data, and effectively adapts to multi-path fading in the 
wireless environment. Combined with TDD and adaptive 
modulation, it enables high channel utilization, capacity 
and data rate when deployed in a non-line-of-sight (NLOS) 
environment, such as urban areas. Depending on the 
frequency range and modulation used, WiMAX can 
theoretically achieve a data rate of over 120 Mbps, and 50 
km in range. 

While often seen as an evolutionary extension of WiFi, 
WiMAX has several important differences. Wireless 
channel access is controlled by the BS in PMP mode, in 
contrast to WiFi where the access point contends with 
mobile nodes for channel access. WiMAX is intended for 
infrastructure deployment as a long-range access 
technology rather than for short-range home and office 
networking. Licensed spectrum is predominantly used for 
WiMAX, and QoS is explicitly supported, unlike in WiFi. 

2.2 TCP 
TCP is a reliable, connection-oriented data transfer 

protocol, with well-established mechanisms for flow and 
congestion control based on the sliding window. In this 
study, we use TCP variants that include only sender-side 
modifications. This section outlines the basic operation of 
four TCP variants, and justifies their inclusion in this 
study. Interested readers are referred to the original 
literature for more details. 

TCP New Reno is a well-studied and prevalent TCP 
variant in the Internet [3]. Its main components are the 
slow start algorithm and congestion avoidance phase. Slow 
start allows the sender to grow its window rapidly to 
capture bandwidth. The congestion avoidance phase 
following the slow start grows the congestion window 
linearly, promoting fairness and stability. Loss is detected 
either by a triple duplicate acknowledgment (ACK), in 
which case the congestion window is halved, or a 
retransmission timeout (RTO), in which case it is reduced 
to one segment. The congestion window evolves in 
Additive Increase Multiplicative Decrease (AIMD) 
fashion, which is appropriate for congestion-induced loss, 
but not for random loss due to wireless transmission errors. 
TCP New Reno is evaluated in this study as a baseline 
TCP variant. 

Cubic is a TCP variant for networks with high 
bandwidth-delay product (BDP). It is characterized by an 
aggressive (cubic) window growth function that is 
independent of RTT [16]. Upon loss, it reduces the window 
by a factor of 0.8. Cubic is the default TCP variant in 
newer Linux kernels, and therefore makes a good choice 
for this study. 

TCP Vegas is a modified New Reno that detects loss 
proactively earlier; it can retransmit before receiving the 
third duplicate ACK or RTO timer expires [2]. The 
congestion avoidance mechanism keeps the appropriate 
amount of data in the network, and congestion window 
increases and decreases in a linear fashion. Congestion 
window stability and low retransmission rate make Vegas 
a good choice for wireless networks. 

TCP Veno specifically targets wireless networks, by 
combining Reno and Vegas mechanisms to deduce 
whether a network is congested or random loss is more 
likely [4]. Congestion window evolution is determined by 
throughput estimates, and reduction factors are 0.5 for 
congestion loss and 0.8 for random loss. Veno’s efficient 
bandwidth utilization and low retransmission rate make it 
attractive for wireless links. 

Regardless of the TCP variant employed, a recently 
introduced improvement for dealing with high BDP links 
is TCP window auto-tuning [18]. Auto-tuning is the 
default Linux kernel feature that dynamically adjusts the 
sender’s and receiver’s window to better utilize available 
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link capacity. The kernel monitors TCP throughput and 
when it estimates that more bandwidth is available than 
the default window sizes are able to use, it then increases 
the default window size, which is then advertised to the 
other endpoint of the connection. This mechanism is 
effective for high bandwidth links, since it reduces the time 
required for the TCP sender to utilize the available link 
capacity.  

2.3 Related Work 
Wireless links are inherently lossy and are subject to 

errors due to path loss, interference, channel fading, and 
handoffs. TCP was originally designed for wired links with 
low packet error rate (PER), where packet loss happens 
predominantly due to congestion. Wireless links pose a 
challenge to TCP, which cannot distinguish between 
different causes of loss. This results in reduction of 
throughput, and underutilization of a wireless link [17]. 

Several approaches have been proposed as a remedy for 
wireless TCP problems, including end-to-end and link-
layer solutions, as well as connection splitting [1, 17]. 
While the proposed solutions attempt to address the 
fundamental issue of the high bit-error rate (BER), the 
heterogeneity of wireless networks may still require 
different mechanisms for each type of network.  Not all 
wireless environments are equal; therefore, TCP’s 
performance problems may be more acute in some types of 
wireless networks than in others.  

In cellular networks, the important factors affecting 
TCP performance are handoffs, temporary signal 
interruptions by obstacles, high delay, and delay variance 
[10]. WiFi networks based on IEEE 802.11 standards, with 
high data rates and low mobility, cause problems for TCP 
through contention-based access, hidden and exposed 
nodes, and  dynamic rate-adaptation [5, 17].  

WiMAX networks are a new kind of wireless network. 
Often, they are evaluated using analysis and simulation of 
PHY and MAC layers [15, 19, 20], since live 
measurements are lacking or preliminary [14], mostly due 
to sporadic deployment. The reported analytical and 
simulation results indicate that improvements in TCP 
performance would result from different modulation 
schemes between data and ACK channels, proper ARQ 
settings, a TCP-friendly MAC scheduling policy, and 
appropriately tuned ACK handling [15, 20]. 

The fact that different wireless networks require 
different mechanisms for optimizing TCP performance 
provides motivation for our work. It is important to 
characterize WiMAX-based networks in order to 
understand their behavior and their impact on TCP. 
Furthermore, we need to understand which parameters 
affect the TCP performance, and why. 

3. Experimental Methodology 

3.1 Network Environment 
The network under consideration is an early 

commercial offering of a fixed WiMAX service deployed 
across Canada by two network providers. The indoor 
wireless modem we use is Motorola Expedience RSU-
2510F, operating inside the licensed 2496-2690 MHz 
band. Expedience technology uses TDD/OFDM 
combination with 4/16/64 QAM modulations and 3 - 6 
MHz channels. The modem connects via Ethernet to the 
user computer. The MAC layer protocol and scheduling 
policy are not publicly available. Therefore, we treat the 
wireless modem as a black box. 

The service provider limits the maximum data rates to 
1.5 Mbps on the downlink and 256 Kbps on the uplink. 
Nomadic movement between base stations is fully 
supported, while mobility during a session is not (though it 
is still possible at low speeds).  

The experimental test-bed consists of two commodity 
laptops, one connected to the wireless modem and another 
to the University of Calgary campus network using a 100 
Mbps Ethernet LAN (Figure 1). Two different test 
locations for the wireless end of the test-bed are used; one 
on campus and one in a residential setting. 

Both laptops are running Linux with kernel version 
2.6.20, which supports the pluggable on-demand TCP 
congestion control algorithms used in this study. This 
kernel’s default settings are TCP Cubic with auto-tuning, 
timestamp option, and SACK enabled. 

We use netperf [12] for TCP transfers and iperf [12] for 
UDP streams. We collect the traffic traces using tcpdump 
[12] and post-process them with tcptrace [12], tstat [12], 
and other custom tools. 

Measurements were made between April 2007 and 
March 2008. The length of the study allowed us to observe 
long-term changes in WiMAX network behavior. 
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Figure 1: Experimental setup 
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3.2 Network Characterization 
To better interpret the TCP-related measurements, we 

include a brief description of the network path. We use the 
pchar tool [12] to measure available bandwidth, RTT, and 
loss, using UDP probes. The path measurements are 
summarized in Table 1. 

 
Table 1: Network path characteristics 

 Downlink Uplink 

Date Jun 8 Jun 26 Jul 4 Feb 15 

Hops 16 16 13 14 

µRTT (ms) 118.2 125.0 124.4 107.3 

σRTT (ms) 0.9 3.2 6.4 3.1 

Wired µRTT (ms) 88.2 88.1 65.3 75.0 

Wired σRTT (ms) 0.07 0.12 n/a n/a 

Wireless µRTT (ms) 30.0 37.0 59.1 32.3 

Wireless σRTT (ms) n/a n/a 30.0 3.8 

Bottleneck BW (kbps) 385 497 87.5 162.8 

Packet loss 9% 11% 1% 8% 

 
The network path between the test endpoints consists of 

13 to 16 hops, some of which change over time, which is 
expected in today’s Internet. The overall mean RTT (µRTT) 
is very high, consistently exceeding 100 ms. Closer 
analysis reveals that the major contributors to the RTT are 
cross-continental hops on the backbone network from 
Calgary to Toronto (about 3,000 km) and back. In the 
downlink direction, the total µRTT of 118.2 ms is composed 
of 88.2 ms on the wired and 30.0 ms on the wireless 
portion of the path. It is unusual that the wired portion 
accounts for almost 75% of the total RTT. This shows 
inefficient routing, with all traffic routed through Toronto. 
High delay can affect latency-sensitive applications such as 
telnet and VoIP. Performance will differ depending on the 
geographic location of users. 

We next consider the standard deviation (σRTT) of RTT. 
The results in Table 1 show the µRTT and σRTT of the wired 
and wireless hops, as computed by pchar. Wireless portion 
consists of a single wireless hop over the WiMAX link. 
For the downlink, σRTT for the total path exceeds that of 
the wired portion by an order of magnitude. This indicates 
higher RTT variations on the wireless hop. For the uplink, 
the measured σRTT for the wireless hop is again larger than 
the overall σRTT, sometimes by an order of magnitude. It is 
reasonable to expect higher RTT variation on the wireless 
hop due to higher PER and the ARQ employed by WiMAX 
[20]. Note that pchar reports σRTT only for the partial path 
and not for individual hops, hence several entries in Table 
1 are marked “n/a”. 

3.3 MAC and PHY Layer Characteristics 
Before addressing TCP behavior over WiMAX, we first 

conduct several experiments with UDP constant-bit-rate 
(CBR) streams, to gain basic insights into the wireless 
scheduler behavior without TCP’s flow and congestion 
control effects. We show downlink throughput and loss in 
Figure 2. We note that throughput closely follows the 
sending rate with minimal loss until the sending rate 
reaches the link limit of 1.5 Mbps with a 2.6% datagram 
loss rate. Further increasing the sending rate causes the 
throughput to saturate the link capacity, with loss rates 
increasing. The uplink throughput results are similar. The 
only difference is that more losses occur; these reach 4.9% 
when the sending rate equals the link capacity of 256 
Kbps.  

From these results we can conclude that the scheduler 
allocates as much bandwidth as the data backlog in the 
buffers requires up to the link capacity. Trying to send 
more data than the available capacity, even up to 4 Mbps, 
does not appear to degrade the throughput or penalize the 
sender in any way, unlike the phenomenon observed in 
CDMA networks [11]. 

Next we measure throughput with respect to a 
qualitative measure of signal strength, namely the lights on 
the wireless modem. We refer to this as the Signal 
Strength Indicator (SSI). SSI of 1 indicates the weakest 
and 5 the strongest signal. This is a crude estimate of the 
actual signal strength, but nevertheless it reveals 
interesting behavior. The throughput measurements for 
both directions are shown in Figure 3. Bar height indicates 
the average throughput and error bars indicate the range of 
throughputs measured. Error bars indicate the range of 
values in all plots in the paper. For each SSI value, we run 
10 consecutive 30-second CBR streams at the maximum 
link rate in each direction. The experiments were 
conducted at the residential location. 

The downlink is characterized by two different 
throughput regimes. For SSI of 2 – 5 inclusive, throughput 
near capacity is achieved with little variation except for 
SSI of 2, which exhibits more variability. Datagram loss 
rates for SSI of 2 to 5 are in 2.1% to 2.9% range, which is 
in the same order of magnitude as in pchar tests. For SSI 
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Figure 2: Throughput of UDP CBR transfers 
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of 1, average throughput is at about 78% of the link 
capacity with loss rate of 20%. Uplink behavior is similar, 
with the difference that SSI of 1 and 2 appear to achieve 
the lower throughput level (88% of the capacity) and SSI 
of 3 to 5 the higher (shown on secondary axis). Overall, 
user should expect near maximal throughput with SSI of 2 
– 5 on the downlink and for SSI 3 – 5 on the uplink. For 
lower SSI levels, achievable throughput is still 78% - 88% 
of the link capacity. 

These results, although coarse-grained, show that even 
the weak signal and its corresponding modulation can 
achieve good throughput. This confirms the design 
expectation of efficient adaptation to channel conditions. 
When sending rate is equal to the maximum link capacity 
and the signal is weaker, the adjusted modulation reduces 
available bandwidth and causes higher datagram loss rate 
proportional to the reduction in throughput. This allows us 
to estimate the achievable throughput with the 
conservative modulation. This is relevant for comparing 
performance on two experimental locations, campus and 
residential. At campus location, SSI of 2 dominates 
throughout the experiments with occasional transitions to 
1, 3 and 4, whereas at the residential location, SSI of 5 is 
typical. The position of the modem can be easily adjusted 
to obtain the desired SSI at the residential location and 
facilitate experiments with different SSI levels. 

The two experimental locations differ in the long-term 
performance characteristics. During the first 3 months of 
tests at the campus location, throughput achieved in both 
directions was near link capacity. The rest of the test 
period was characterized by much lower throughput on the 
downlink, although the modem location and SSI did not 
change. At the residential location, throughput was 
consistently near the maximum throughout the test period. 
We discuss the campus location throughput with additional 
experiments and results later in the paper. 

4. Results for Unidirectional Transfers  

4.1 Downlink Performance 
Throughput. We compare throughput and other 

metrics, with respect to socket buffer size and TCP variant. 
Each experiment consists of a series of 60-second data 

transfers. Sender’s and receiver’s socket buffer sizes, 
which determine the limit on the TCP congestion window, 
are set to 8, 16, 32 and 64 KB. Auto-tuned case is 
considered the largest size because it initially uses 
receiver’s default advertised window of 85.33 KB. 
Downlink experiments are repeated five times per day, for 
7 days. 

Throughput is reported based on netperf output, which 
actually measures goodput, defined as user data 
successfully transferred per unit time. Figure 4 shows the 
mean and range of throughputs measured as the socket 
buffer size grows from 8 KB to auto-tuned. Throughput of 
all TCP variants is window-limited when using smaller 
buffer sizes from 8 to 32 KB. Larger buffer sizes clearly 
benefit each TCP variant and allow them to utilize the full 
link bandwidth of 1.5 Mbps. In this case, throughput is 
loss-limited.  

All TCP variants achieve similar throughput for each of 
the buffer sizes tested, though Vegas has slightly lower 
throughput (about 96% of that achieved by the other TCP 
variants). For the two largest buffer sizes, Vegas’ 
throughput ranges widely from 0.9 to 1.5 Mbps. About 
20% of Vegas flows achieve no more than 1.3 Mbps. 
Lower throughput is expected from Vegas due to its 
conservative window growth behavior. 

Overall, it appears that, even though very different in 
their congestion control mechanisms, all four TCP variants 
utilize the available bandwidth equally well. 

RTT. The second metric of interest is RTT. We choose 
one experiment to compare RTT across all TCP variants. 
Figure 5 shows the mean and range of RTT values 
corresponding to one test connection for each socket buffer 
size and TCP variant. All TCP variants experience similar 
mean RTT values for each buffer size. However, RTT jitter 
is very high. Figure 6 shows that RTT is highly variable 
throughout the connection. The minimum RTT is 
consistently around 120 ms for all TCP variants, with the 
distinctive lower bound due to the high path propagation 
delay. 

Retransmissions. After investigating TCP throughput 
and RTT, we turn to segment retransmission rate, 
expressed as the percentage of retransmitted segments 
during each connection.  
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Figure 3: UDP Throughput vs. SSI 
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Figure 4: Downlink TCP throughput 
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We find some significant differences between TCP 
variants. Figure 7 shows the average retransmission rates 
corresponding to each TCP variant and socket buffer size. 
The overall trend is that larger buffer sizes result in higher 
retransmission rates. This is not surprising, given that 64 
KB and larger buffers produce congestion windows 
exceeding the BDP, leading us to conclude that most 
retransmissions are due to congestion losses.  

The auto-tuned case bears more consideration. There is 
a clear jump in retransmission rates, which approach 3% 
for Cubic. For New Reno, Cubic and Veno, auto-tuning 
more than doubled the retransmissions compared to 64 KB 
buffer size, with Cubic suffering the four-fold jump. Vegas 
is least affected by large buffer sizes and auto-tuning. 

4.2 Uplink Performance 
We present uplink measurements of throughput, RTT 

and retransmission rate for 16 experiments performed over 
an 8-day period, twice per day. We use buffer sizes of 8, 16 
and 32 KB, as well as auto-tuned. The 32 KB buffer size 
appears to be adequate to utilize the uplink capacity fully. 

Throughput. In Figure 8, we show mean throughput 
and range for all TCP variants for different buffer sizes. 
The trends are similar to downlink results. As buffer size 
increases, throughput increases. The differences between 
TCP variants are more pronounced for uplink than 
downlink flows. TCP Veno achieves the highest 
throughput for 32 KB and auto-tuned buffer, with low 
variability. This is one indication that Veno performs well 
in a bandwidth constrained environment. 

RTT. The mean and range of RTT values from one 
experiment are plotted in Figure 9. We observe that there 
are both similarities and dissimilarities with downlink 
results. Most importantly, uplink RTT is much higher, 

nearly double on average. Mean RTT is similar across 
buffer sizes and lies in the 200 to 300 ms range. This very 
high RTT poses potential performance problems for delay-
sensitive applications, such as telnet and VoIP. We further 
note that minimum RTT is mostly stable around 200 ms. 
However, maximum RTT is excessively high, reaching 
nearly 10 times the minimum. Therefore, higher delay 
spikes are to be expected on uplink. We further notice 
some oddities, such as unusually high RTT range for 
smaller buffer sizes, but also extremely high RTT for a 
combination of Cubic and auto-tuning. 

Retransmissions. Compared to the downlink, 
retransmission rates are much higher on the uplink (Table 
2).  

Average retransmission rate increases with buffer size 
for New Reno and Cubic, but not for Vegas and Veno. 
Veno in fact has nearly the same mean retransmission 
rates for 16 KB buffer and larger. To utilize the available 
link capacity fully, TCP requires at least the 32 KB buffer, 
at which all TCP variants record comparable 
retransmission rates. With auto-tuning, however, 
retransmissions significantly increase over the 32 KB 
buffer rates for New Reno and Cubic, by factors of 1.34 
and 1.37, respectively.  

4.3 Loss Process and Effects of Auto-Tuning 
To analyze the dynamics within each TCP connection, 

we employ time-series plots of congestion window values. 
Congestion window is tracked using outstanding data 
calculated by tcptrace, as a good approximation. We divide 
the results into two groups. The first group includes 
smaller buffer sizes of 8, 16 and 32 KB, which do not 
allow a single flow to utilize the link bandwidth fully. The 
second group, 64 KB and auto-tuned buffers, allows full 
link utilization. These two groups cause different behavior 

100

120

140

160

180

200

220

240

260

280

300

0 5 10 15 20 25 30 35 40 45

R
T

T
 (

m
s)

Connection time (mm:ss)  
Figure 6: RTT variability 

0.0%

0.5%

1.0%

1.5%

2.0%

2.5%

3.0%

8 KB 16 KB 32 KB 64 KB Auto-
tunedSocket buffer size

R
et

ra
ns

m
iti

on
 R

at
e

New Reno

Cubic

Vegas

Veno

 
Figure 7: Downlink retransmissions 
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Figure 8: Uplink throughput 
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Table 2: Uplink retransmission rates 

Buffer 
size 

New 
Reno Cubic Vegas Veno 

8 KB 3.3% 4.7% 4.6% 4.0% 
16 KB 4.7% 4.8% 4.0% 5.0% 
32 KB 5.3% 6.1% 4.3% 5.2% 
Auto 7.1% 8.4% 5.0% 5.2% 
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in congestion window evolution and retransmissions 
throughout the lifetime of a connection. 

When smaller buffer size is used, the congestion 
window remains steady throughout the connection. There 
is only an occasional segment retransmission, if any, 
experienced by each TCP variant using each of the three 
smaller buffer sizes. The observed behavior pattern further 
confirms that all TCP variants perform equally when they 
are limited by small buffer size. 

The second group of results, using larger buffer sizes, 
64 KB and auto-tuned, illustrate the effect of larger buffers 
on retransmissions and some specific effects of auto-
tuning. We discuss only Cubic and New Reno due to 
limited space. Vegas and Veno exhibit the same qualitative 
behavior as New Reno. 

For easier understanding and comparison, we plot the 
congestion window evolution for Cubic as observed on a 
(wired) cable modem link with 5 Mbps downlink and auto-
tuned buffer (Figure 10). We can see that Cubic very 
quickly enters its standard pattern based on a cubic 
function. This trace even uses auto-tuning, without any 
detrimental effect. 

Figure 11 shows that with 64 KB buffer, both Cubic and 
New Reno reach approximately the same window size 
before experiencing loss. It takes both under 10 seconds to 
enter the congestion avoidance phase and start seeing 
losses, followed by periods of window reductions and 
growth. New Reno follows the well-known AIMD window 
evolution pattern.  

We can also see that most retransmissions are caused by 
timeouts, since the congestion window size is reduced to 
one segment. What is not visible in the plot is that many 
retransmissions occur in pairs. These pairs of 
retransmissions occur at the end of the congestion 
avoidance epoch. The first retransmission is due to a triple 

duplicate ACK, followed by RTO triggering the second 
retransmission. The segments retransmitted within the pair 
are usually different. The natural question is whether the 
second retransmission is caused by a spurious timeout  

Detailed examination of three traces reveals that the 
segment retransmitted due to RTO is never acknowledged 
sooner than the minimum RTT of the connection, meaning 
that it was not in transit when retransmitted. We also 
found that the ACK for the first retransmitted segment 
(due to a triple duplicate ACK) does not cumulatively 
include the second retransmitted segment (due to RTO), 
which again means that the segment retransmitted due to 
RTO was not in transit when retransmitted. This suggests 
that RTO was inevitable and caused by real segment loss 
and not delay variations due to ARQ on the link layer. 
Therefore, we find no evidence that spurious timeouts 
regularly occur. Timestamp option is used for TCP, which 
also helps avoid spurious timeouts. 

We next explore the effects of TCP window auto-tuning 
in more detail. The initial indicators that auto-tuning may 
adversely affect TCP performance are the high 
retransmission rates (Figure 7). 

Congestion window evolution with auto-tuning is 
shown in Figure 12 for Cubic and New Reno. The plot of 
the Cubic connection shows very erratic adjustments of the 
congestion window. We see that only in the late portion of 
the flow does Cubic manage to enter into its steady-state 
operating pattern, where the window oscillates around the 
BDP. Auto-tuning clearly confuses the Cubic algorithm, by 
making it attempt to capture bandwidth far beyond the 
available limit. New Reno and Veno show similar initial 
behavior, but they reduce the window growth much sooner, 
and then enter into their normal operating pattern. TCP 
Vegas appears to be largely unaffected by auto-tuning, and 
does not attempt to increase the congestion window like 
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Figure 12: Cubic (left) and New Reno (right) with auto-tuning on WiMAX link 
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other variants, regardless of the available buffer size. 

4.4 Multiple Connections 
We run multiple connections to investigate fairness in 

TCP throughput between connections. We start all 
connections from the same end machine at approximately 
the same time and let them run concurrently for 60 
seconds over downlink. Figure 13 shows the average and 
range of throughputs for 4 and 10 concurrent connections. 
Mean throughput is proportional to the number of 
concurrent connections, i.e. 4 connections achieve 25% of 
total throughput each, and 10 connections achieve 10% of 
total throughput each, on average. This confirms that 
multiple connections fully utilize the available bandwidth. 
The range indicates fairness among connections and we 
see that fairness is very high for New Reno, Vegas and 
Veno. Cubic registers higher range, but it does not cause 
any connection to starve.  

For more formal fairness evaluation, we use Jain’s 
Fairness Index (JFI) [7]. JFI is always in the interval [0, 1], 
where value of 1 means perfect fairness, where all flows 
achieve their fair share of bandwidth. JFI is calculated as: 

( )
∑
∑

=
2

2

21 ),...,,(
i

i
n

xn

x
xxxf , 

where xi = Oi/Ti, Oi is observed throughput of flow i, and Ti 
is fair throughput of flow i. Fair throughput is calculated 
by any appropriate means, and in this scenario it is the 
total available throughput divided by number of concurrent 
flows n.  

In our test case, JFI exceeds 0.91 even for Cubic with 
10 connections, and exceeds 0.98 in all other cases. This 
result confirms the design objective of WiMAX MAC 
layer, where BS-controlled access facilitates fairness for 
same-class traffic in the same direction, in contrast to 
CSMA/CA in WiFi, which allows unfairness to occur [5]. 

4.5 TCP Throughput Model  
In Figure 14, we compare the TCP New Reno 

throughput measurements to known models from the 
literature. We are interested in a fit to a model when 
throughput is window-limited, i.e. for buffer sizes of 8, 16, 
and 32 KB. We find that the nearest match, although not 

very good, is to the simplest model: B = 0.75W/RTT; 
where B is the throughput, W is the maximum advertised 
congestion window size and RTT is the average RTT of the 
connection [9]. It appears that the model predicts the trend 
of the measurements well, but overestimates the 
throughput. Further exploration of the appropriate model 
is left for future work.  

5. Additional Experiments and Results  

5.1 Throughput at Campus Location 
We repeated measurements about three months after the 

first set of results were collected at campus location and 
noticed that the network does not offer maximum 
throughput anymore. To establish that we are not 
observing a transient state we continued to monitor 
network performance at this location for the next 8 
months, and determined that low throughput persists. 

In Figure 15 we plot the long-term observations of 
downlink throughput, taken from one-minute New Reno 
connections on each hour for 2 weeks. We observe that 
throughput varies and does not reach even 1 Mbps. These 
results also confirm that time of day does not play a role. 

It is very difficult to compare TCP variants under these 
conditions, given the fluctuations in achievable 
throughput. We conducted two sets of experiments with 1-
minute connection using each TCP variant back-to-back, 
repeated 20 times, so that each of 20 measurements for 
each variant comes from 4-5 minute intervals. Throughput 
fluctuated, but TCP Veno consistently recorded highest 
throughput. Vegas performed slowest of the four variants. 
Further comparison of TCP variants is left for future work. 

We do not have PHY layer measurements or access to 
the base station to determine user load, therefore we cannot 
positively identify the cause of lower throughput. However, 
we have a plausible explanation using other measurements. 
We eliminate poor channel conditions because moving the 
modem to the best place at the window, where SSI is a 
stable 5, does not help the throughput. Even more 
surprisingly, UDP throughput is near the maximum, 
completely unaffected. Uplink throughput remained stable 
near the maximum, with occasional drops, but not 
drastically like on the downlink. UDP streams and uplink 
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TCP connections were run immediately before and after 
the downlink tests. 

The findings suggest that some traffic classification 
scheme may be in effect on the downlink, and that the 
best-effort class is under-provisioned for the number of 
users, causing TCP throughput to suffer and fluctuate over 
intervals of 1 minute. We continue to investigate the 
causes for the reduced throughput at campus location. 

5.2 TCP Throughput Model  
In contrast to the residential location, we observe higher 

loss rates under low-throughput regime on campus, from 
1.8% to 4.2% for New Reno connections. TCP throughput 
is now loss-limited rather than window or bandwidth-
limited. In Figure 16 we show a good match of the TCP 
throughput model from [13]. 

5.3 Bidirectional Performance 
Another important scenario in modern networks is 

concurrent uplink and downlink flows, as occurs in some 
peer-to-peer file sharing applications. This scenario reveals 
unfairness towards the downlink flow. 

At residential location, where achievable throughput is 
stable and near full link capacity, we use 5-minute New 
Reno download and 3-minute New Reno upload. The 
upload starts about 1 minute after the download, such that 
the download connection runs alone for 1 minute before 
and after the upload. We use 64 KB buffer size that allows 
full link capacity utilization in both directions. Throughput 
results of two chosen experiments in Figure 17 clearly 
show that downlink throughput falls and then fluctuates 
while uplink connection is active. Overall results for the 
overlap period are shown in Table 3. Download recovers to 
near maximum link throughput after the upload completes. 
Uplink flow throughput remains stable throughout the 
connection, as if it were running alone. Correlation 
coefficient of -0.71 indicates significant negative 
correlation between uplink and downlink throughput. 

The unfairness is further exacerbated under low-
throughput conditions at campus location. Due to 
throughput fluctuations, we use one 1-hour long New Reno 
connection in each direction. To get an approximate 

available bandwidth, we run five single-connection 
downlink tests before and after the experiment.  

Table 3 shows the overall results for 1-hour trace. 
Throughput on uplink is higher than on downlink, and 
retransmission rate is higher on downlink than on uplink. 
Reduction in downlink throughput is much higher than on 
uplink, assuming that the available link throughput before 
and after the experiment is a good approximation of the 
available link capacity throughout the experiment. 
Downlink RTT is very high, more than double RTT when 
full downlink capacity is available. Therefore, concurrent 
connections penalize downlink flow significantly more 
than uplink flow, in throughput, RTT, as well as loss rate.  

After detailed analysis of the campus trace, we find the 
cause for the unfairness is ACK compression, which is a 
known problem affecting asymmetric links [8]. The trace 
inspection reveals that ACK arrivals occur in groups with 
gaps between them. The frequency histogram of ACK 
inter-arrival times (IAT) in Figure 18 shows that majority 
of ACK’s arrive within 1 ms of each other. Gaps between 
arrivals last mostly between 90 and 400 ms, and between 5 
and 20 ms, indicated by spikes in frequencies. This is in 
sharp contrast to the single TCP connection whose ACK 
arrivals are predominantly within 6-8 ms.  

6. Summary and Conclusions 
In this paper, we present the measurement results from 

an early commercial deployment of a WiMAX-based 
broadband wireless access network. We examine the 
network path characteristics and compare performance of 
uplink and downlink bulk data transfer for four TCP 
variants: New Reno, Cubic, Vegas and Veno.  

The main results indicate that the WiMAX link does 
not adversely affect the intended operation of TCP 

0.0

0.2

0.4

0.6

0.8

1.0

1.6% 2.0% 2.4% 2.8% 3.2% 3.6% 4.0% 4.4%
Loss rate (%)

T
hr

ou
gh

pu
t (

M
bp

s)

New Reno 64 KB Measured
Padhye et al. model (RTT=134 ms)
Padhye et al. model (measured RTT and loss)

 
Figure 16: TCP throughput  

model (campus) 

0.0

0.3

0.6

0.9

1.2

1.5

1.8

0 60 120 180 240 300
Connection time (seconds)

T
hr

ou
g

hp
ut

 (M
b

ps
)

DL Throughput
UL Throughput

 
Figure 17: Bidirectional  

throughput 

0

2000

4000

6000

8000

10000

12000

14000

16000

1 2 3 4 5 10 20 30 40 50 60 70 80 90 100 200 300 400 500 600

ACK IAT (ms, not linear scale)

A
C

K
 F

re
q

u
en

cy

 
Figure 18: ACK IAT histogram 

Table 3. Bidirectional performance 

 Residential Campus 
 Downlink Uplink Downlink Uplink 
Before and after 
Throughput (Mbps) 

1.37 0.24 0.40 0.21 

Throughput (Mbps) 1.13 0.22 0.14 0.18 
Average RTT (ms) 178 189 321 334 
Retransmission rate 0.50% 7.03% 5.18% 3.41% 
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variants, but that it is not well-suited for the aggressive 
Cubic and window auto-tuning. Therefore, the default 
settings of newer Linux kernels, namely TCP Cubic and 
auto-tuning are not recommended for connections 
traversing WiMAX links. While all TCP variants achieve 
similar throughput, they do so in different ways, from the 
very aggressive Cubic, to conservative and efficient Vegas. 
New Reno and Veno occupy the middle ground with robust 
performance and moderate loss. ARQ mechanism 
successfully shields TCP from random transmission losses. 
Adaptive modulation employed by WiMAX effectively 
utilizes available bandwidth depending on the channel 
conditions, and achieves very high user throughput across 
signal strength levels. 

Several performance issues identified can be attributed 
to causes other than WiMAX physical channel. Very high 
RTT is an artifact of inefficient routing involving 
transcontinental links. Unfairness during bidirectional 
transfers happens due to the known problem of ACK 
compression, but it could be reduced with better channel 
management that would eliminate congestion of TCP 
flows. The WiMAX link, however, is responsible for high 
variability in RTT during the connections, to which Vegas 
and Veno adapt most successfully.  

While the results we present are specific to this 
particular WiMAX-based network, they are useful as an 
initial report on TCP performance obtained in this type of 
environment, which reflects the state-of-the-art for a 
commercially deployed WiMAX service. Our future work 
will continue by measuring TCP performance for other 
Internet applications, including VoIP and multimedia 
streaming, as well as effects of TCP window auto-tuning 
on other network technologies, such as WiFi. 
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