Benchmarking Modern Web Browsers

Jordan Nielson Carey Williamson Martin Arlitt
Department of Computer Science
University of Calgary

Abstract— Many different Web browsers are available on the Explorer, Opera, and Safari), and testing them with a small
Internet, free of charge. A browser performs several taskssuch set of realistic micro-benchmarks.
as rendering Web pages on the screen and executing clientside The resylts show that no single Web browser is universally
code often embedded in Web pages. Users typically choose &he best; in fact, there are noticable differences amondpilre
browser that gives them a satisfying browsing experience, which ’ ’ .
is partly determined by the speed of the browser. This paper Prowsers across the range of tests considered. For example,
presents benchmark performance test results for four popular the rendering speeds for Web pages can differ by a factor of
browsers (Firefox, IE, Opera, and Safari) currently available on 2-3 across browsers, JavaScript string operator perfarenan
e o i o e ot ey G2 e by an order of magnituce, and some prosers show
rendering speed and Jave?Script string operation ,pgrformanc)(/e. _asymmetrlc performance for GET requests and POST requests

in AJAX. These results are of value to users for browser
selection, as well as to developers for browser performance

|. INTRODUCTION improvements, and to Web service providers, for offering
satisfying user experiences.

The first graphical Web browser, Mosaic [4], was released There are two main contributions in this paper. The first
in 1993, making the World Wide Web accessible to everyonggpntribution is a direct performance comparison of modern
and helping to launch an information explosion that core®u\web browsers, with sufficient drill-down to the component
to this day. About a year later, Marc Andreesen foundagvel. This work represents a snapshot of current Web bnowse
Netscape, which released Navigator as its flagship produsérformance, providing an academic reference point to com-
In the following year, Microsoft joined the race by releasinplement the ad hoc collection of anecdotal reports about
its Web browser: Internet Explorer. browser performance available on the Web [3], [5], [6], [16]

These events were the catalyst for what is commonly rg23], [26]. A second (and perhaps more lasting) contributio
ferred to as the “browser wars”. Ever since, several congsanis our experimental methodology, which can easily be applie
have vied for the dominant share of the browser market. Evena broader set of browsers, or longitudinally to an evavin
though the browsers themselves are not a great revenumstreset of browsers over time.
the browser is the “window to the Internet” for many users, The rest of the paper is organized as follows. Section Il sum-
and can be an influential factor in the choice of computingarizes prior related work. Section Ill describes the $tmec
device, operating system, software, and services purdiase of modern Web browsers. Section IV outlines our experimenta
end users. methodology, and Section V presents experimental results.

Given that most browsers are free, and (usually) functlgnalFinally, Section VI concludes the paper.
equivalent for displaying Web pages, how does a user select
which Web browser to use? We argue that performance (i.e., Il. RELATED WORK
responsiveness) is one of the factors influencing this aecis Performance-related research on Web user experience typi-

Browser performance has garnered relatively little aitent cally focuses on reducing the latency of page retrievala- Tr
in the research literature to date, since the primary btttk ditionally, retrieval of pages from remote Web servers ves t
has usually been elsewhere (e.g., server load, networkesengprimary performance bottleneck (either the remote setter,
tion, TCP effects, round-trip latency). However, many afgé core network, or the user's access network). Two techniques
performance problems have been effectively addressed (eage typically used to reduce retrieval latencieaching and
server clusters, proxy caching, persistent connecticasllel prefetching. Caches store copies of recently used pages, in
connections). More importantly, the advent of “Web 2.0” andase they are visited again in the near future. Much research
the “services computing” paradigm have made the Web thas focussed on improving the management of such caches;
preferred platform for numerous novel applications, antynafor example, Jin and Bestavros proposed the GreedyDual*
of these rely heavily on client-side processing to fadiita algorithm, and demonstrated its superiority to existinghea
interactivity for users and scalable deployments for servireplacement policies [11]. Today, caches are deployed in
providers. Thus the ultimate success of “Web services” en throwsers, proxies, and servers. Content Distribution Neta
Internet will hinge on the user-perceived browsing experge (e.g., Akamai) utilize caching at the “edges” of the Intdrne

The purpose of this paper is to present an apples-to-applesncrease the scalability of Web sites, as well as to reduce
comparison of modern Web browsers, with respect to theiccess latency for users.
browsing performance. We carry out this work experimeptall Web prefetching algorithms (e.g., [9]) attempt to antitégpa
using four commonly-used Web browsers (Firefox, Internétiture Web page requests. Prefetching works in conjunction

with caching to try and hide retrieval latency from usersA. Rendering Engines

In the past, this topic garnered less _attention than caching p rendering engine, also known as a layout engine [24], has
However, with asynchronous requests in AJAX pages, the akga important task of displaying a Web page. Over time this
may become more popular. _ task has become more complicated, with the ongoing evelutio
Research papers on benchmarking have focused on VWghhe HTML standard, the continual addition of featuresd an
servers (e.g., [1]) and Web proxies (e.g., [18]). Resulsnfr ¢ |arge-scale usage of Cascading Style Sheets (CSS).
Web browser studies _tend t_o appear on developer sites, vendorpe layout engine can be considered a separable compo-
product pages, and in white papers [3], [26]. Few of thesgnt from the browser itself. For example, Mozilla Firefox’
articles are updated regularly, and none of them mef‘t'?é‘ndering engine, Gecko [14], and Internet Explorer's pegi
AJAX or AJAX-related performance (other than JavaScriptiyigent, are both used in a variety of other browsers andiappl
Research papers on Web browsers have focused more on gewsns. Although there have been a number of layout engines
functionality (e.g., [15]) or new client devices (e.g., JThan geyeloped, only four of them are usually used by current Web
on performance. .) browsers. These include Gecko and Trident mentioned above,
More comprehensive browser benchmarks will be necessaly el as Presto (used by Opera) and WebCore, which is

in the future, as browser performance becomes more IMPQYa rendering component of WebKit [22], the engine curgentl
tant. A first step in that direction is characterization chebes | ,qoq by Safari.

in Web workloads. An example is the work of Schneiger
al. [19], which characterizes Web 2.0 traffic. o)
B. Scripting Engines
lll. M ODERNWEB BROWSERS Similar to a rendering engine, a scripting engine is also
Modern Web browsers are composed of several parts. Eaeh important component of a Web browser. This engine’s
browser must have @endering engine to create the layout and responsibility is to interpret JavaScript (or similar) eothat
appearance of a Web pagesaipting engine to interpret and is embedded in a Web page. Though a separable component,
execute JavaScript (or similar) scripting code on a Web padke scripting engine is often tied to its corresponding layo
and auser interface that includes page navigation controls, agngine, since the scripts often influence the appearance of a
well as many other features (e.g., history, preferencesgjips) Web page. Like layout engines, these scripting components
created by the browser designer. have their own identities [25]. Firefox uses SpiderMonkey,
When a typical user selects a preferred browser, they masternet Explorer uses JScript, Safari uses JavaScript(Part
likely base their decision on the interface, since it is thef WebKit [22]), and Opera currently uses lindar but is
most visible distinguishing feature. However, the othgregss, switching tof ut har k in their upcoming version.
which are more technical in nature, should not be ignored.
Both the rendering engine and scripting engine could be IV. BENCHMARK TESTS
graded on multiple aspects. In this paper, we focus solely ong
per(;ormance, leaving issues such as correctness andtyeCLérriM
aside.

ur experiments were conducted in a typical desktop PC

ronment, using the commonly-used Web browsers listed

Todav's browser market consists of dozens of diﬁ‘erem Table 1. We usm_'-:d the latest stable_version _available foh_ea
y rk.ﬁtrowser, along with the known bug fixes available at the time.

ch0|c_e_s. To limit the scope (.)f the study, we con_3|der fO'ﬂll of the experiments were performed on an Intel Core2 CPU
specific browsers. In alphabetical order, these are Firgf8k 6600 (dual core, 2.40 GHz), with 3 GB of RAM and running
Internet Explorer (IE) [12], Opera [17], and Safari [2]. Bee Windows XP Pr;)fessional §P2

four browsers are currently the most popular ones on the
. T mpare th rforman f W rowsers, w
Internet [20]. In April 2008, IE had the largest market segtne 0 compare the performance of Web browsers, we use a

: : et of benchmark tests. The tests are selected and designed
(54.8%), followed by Firefox (39.1%), Safari (2.2%), anc? : :
Opera (1.4%). While the exact usage numbers may v in such a way as to exercise the typical tasks handled by a

A . . wser.
depending on the source of the data, it is generally believe

that these are currently the four most prevalent browsers here are many factors that affect the performance of
X . . ' rowser rations. Therefore th | w ign
Details on these browsers are provided in Table I. The tatil??ese browser operations erefore the goal was o desig

. . : ; . e tests to focus on the performance of the browser itself,
shows the rendering engine and JavaScript engine usedhin eac. s : . i
While eliminating or isolating external factors (e.g., ogéng

of these four browsers. It also shows the current versiohef t . .
. system, TCP implementation, network latency, server load)
browser used in our tests. o . . ; o
In addition, each test is meant to exercise a single specific

TABLE | element of the browser. However, a few exceptions had to be
SUMMARY OF WEB BROWSERSTESTED made. For example, to perform the timing and control of the

Web Rendering | JavaScript Tesied rendering test, a snlppetiqf Java'Scnpt was requwed..
Browser | Engine Engine Version The purpose and specific details of each test are given next.
IE Trident JScript 7.0.5730
Firefox Gecko SpiderMonkey | 2.0.0.13
Opera Presto linearb 9.26 A. Sart-up
Safari WebCore | JavaScriptCore] 3.0.4 The simplest test considers browser start-up time. Since a

Web browser is typically started only once per user sestien,

start-up could be considered irrelevant. However, we ihelu To perform the test a PHP script was created. This script
this test for completeness. determines the next page to be displayed based on the list
To automate the measurement, a script records the sysfetovided to it. Inserted on the bottom of each page is a form
time, and then launches the browser using a command-liwéh a placeholder for the load time of the current page.
argument to open a specific default page. This default pagéen the page is loaded, the placeholder is filled in with
invokes a PHP script on the local machine that records thee current time and the form is submitted back to the PHP
current system time (the time at which the page is accessestyipt. The script now sees the time for the current page, and
The output from the script displays the elapsed time sinee tHelivers the next page in the queue. When all pages have been
browser was launched. displayed sufficiently many times, the results are computed
and displayed. The median load time for each page is the
B. JavaScript metric reported.
There are several client-side scripting languages suggort
by modern Web browsers, but JavaScript is the most cofd- AJAX

monly used and most universally supp_orted. While JayaScriptA recent emerging trend on the Web is the use of Asyn-
is not as powerful as some programming languages, it is stifironous JavaScript and XML (AJAX). AJAX is not strictly
relatively complex. The browser is responsible for parsind 5 new technology, but rather a new method of using and
executing the JavaScript code, since it is a client-sidguage. combining existing Web technologies.

For Jf_;\vaScript benchmarking, we used Apple’s SunSpidertpe way AJAX typically works is that the client side
JavaScript Benchmark [21]. This benchmark performs a thfiggers the need for a refresh of some data on the Web page.
ough coverage of function calls, and is yvell recognized as\@nile this could be done by refreshing the entire page, AJAX
reliable measure of a browser’s JavaScript performance. accomplishes this in a more efficient way by asynchronously

The SunSpider test covers 9 aspects of JavaScript perf@fivieving data from the server, and updating the client's
mance: 3D manipulation, access, bit operations, contrel, flogocument accordingly. With AJAX, Web sites can deliver a
cryptography, date/time, mathematics, regular exprassend smoother experience to the user.

string operations. The test was run using a local serverd@av The typical AJAX processing steps are as follows. A

significant network latency. JavaScript function, often called by a timer or event, ratgie
an XML object from the browser using HTTP. Using this
C. Rendering object, the client sends a POST or GET request to the server (a

) _ PHP or other language script). The script on the servernstur
Rendering performance refers to the speed at which th&qq0nse back to the browser, and the response is received
rendering engine can layout and display all of the Wefy o heviously specified JavaScript function. This funetio
page objects within the browser window. For this experimen} oy ndates the document based on the received response.
we measure the t|m§ between requesting a page a_lnd _thE)urAJAX benchmark test measures each of these steps. The
completion Of the Ioadlng of the body of the page. The time Rst serially sends many (alternating) GET and POST reguest
measured u?|ng Javascript e\./ent handlers.oﬁmq event of to the server, and follows each of these responses by updatin
a document’s body element is invoked automatically when,{ﬁle Document Object Model (DOM). To avoid caching effects
page has finished loading (rendering). By attaching a fDnCtieach request changes either the URL or the parameters for t,he

)) OKETIPOST request. The test is performed on a local host, to
proceeding to the next Web page in the benchmark. Pmit the effect of network latencies

The home pages of popular Web sites were chosen for
this benchmark. We leveraged Dela Serna’s comparison of
traffic ratings services [8] to select the sites we used. To V. EXPERIMENTAL RESULTS
eliminate the impact of network latency to these sites, tlxa S
pages were copied and stored on a local server. Care was
taken to obtain the HTML and all of the linked files (e.g., The start-up test was run 6 times on each browser: 3 cold
images, CSS, and JavaScript), including background imaggarts, and 3 warm starts. A cold start is when the browser is
defined in CSS files. A custom program was created to fiffidst loaded after booting the computer, while a warm start is
and download these images automatically, and update thlen the browser is closed and then opened again soon. A
corresponding references, so that all benchmark testd cowlarm start is often quicker, if part of the application is kep
be executed locally. in memory.

One tricky issue was isolating the rendering portion of the The median start-up times are shown in Figure 1. The
loading time of the page. For example, most of these existitigies were suitably low for all browsers (under 1 second),
pages include a lot of JavaScript. To remove this impaapnfirming the notion that start-up time is a non-issue. &€her
the benchmark preparation step removed all scripts and eveias little difference between the cold start times and the
triggers such as ‘onload’. We also duplicated the contetit@f warm start times for each browser. Nonetheless, the wanin sta
body element 10 times to increase the rendering load relatiimes were slightly lower, likely due to caching done by the
to the page overhead. operating system.

art-up Test

600 T T i Cod st M behind Firefox was Internet Explorer, with an average time
7 °° Warm Start { of about 21 seconds. There were also some sites for which
2 % Internet Explorer was actually faster than Firefox. Opeiakt
E ™ over 38 seconds to load the pages: almost twice as long as
5 izz 1 l Firefox and Internet Explorer, and 6 times longer than Safar

Firefox 2 IE7 Opera 9.26 Safari 3
D. AJAX Test

Fig. 1. Browser Start-up Times

The AJAX experiments were performed with a local server
just like most of the other tests, to eliminate the effect
B. JavaScript Test of network latency. The overall result simply measures the

. . _ total time taken to complete the test, but we also provide a

Each browser was tested using the SunSpider JavaScript fyghkdown of the time taken for the individual components:
3 times, with similar results each time. The results fromséhe g1 requests, POST requests, and the DOM editing time.
experiments are s_hown i_n F_igurg 2(a). (Note the logarithmic The overall time is dominated by the GET and POST
scale on the vertical axis in this plot) The results of thgygyests. Overall there were two “fast” browsers (Safa8: 3
test were not too surprising, however a few anomalies Weggconds; and Internet Explorer: 4.1 seconds) and two “slow”
observed across the 9 categories of JavaScript tests. browsers (Firefox: 17.1 seconds; and Opera: 17.9 seconds).

The fastest browser for this test was Safari, which aver- .o GeT and POST categories show the same two-class
aged just under 8 secor_lds per run. Safari was the faSteSthaviour. While there was no considerable difference batwe
the categories of date/time, regular expressions, andgstry,e time for GET requests and the time for POST requests for
operations, with the latter category showing a substantiglss prowsers, Internet Explorer was approximately twise a
advantage. The next fastest overall was the Opera browsgk: on pOST requests as on GET requests. Knowledge of this
which averaged just under 9 seconds per run. It was alsQ mmetry could be useful to Web developers using AJAX,
the fastest in 5 of the 9 specific categories: 3D, accegg,an choosing between the two different methods.
bit operations, cryptography, and mathematics. Howesr, | A finer-grained look at the results for DOM editing shows

performance for string operations was much worse than tl? Lt Firefox is fastest, followed by Safari, Opera, and then

for Sa(;‘an.ltFlrefo;(h hid ?n ta_ve:ﬁge rurtl tl'n]jle of atbout 12b1 ternet Explorer. While the other browsers took between 180
secfon S.d W.?S € lasfesgg b.te con r? ow Cz Zg?gt’. :%d 320 milliseconds, Firefox averaged about 3 millisesond
performed quite poorly tor b, DIt operations, anc dateetimy,;q seemingly impressive, we are skeptical of this result.
functions. Internet Explorer was the slowest overall, agerg The abnormally low value may indicate that the work is

.30 seconds per run. ngever, It d.'d perform Compet't'vel.éfelegated to a separate thread and done asynchronously. In
in most of the categories. The primary difference was |

. . S Bther words, while the new thread is performing the actual
string operations, where Internet Explorer took about 8§

| than the oth Specifically. the JScrit Scrinénai work of editing the document, the original thread proceeds
ionger than the others. specinically, the JSCrp s‘crlpeng|’ne ith recording the time, believing the work is done. Thus the
in Internet Explorer performs poorly on the ‘base64’ an

M editi It shoul i fully.
‘validate-input’ tests in the string category [10]. OM editing result should be interpreted carefully

C. Rendering Test E. Additional Tests

The rendering test consisted of 5 iterations through the lis In addition to the four main Web browsers, we tested several
of popular Web pages, as configured on the local machirsher Trident-based or Gecko-based browsers. Their perfor
The browser’s cache was flushed before each test to contrzince was comparable to their counterparts, as expected.
the effects of caching. While caching should not have muchWe conducted some throughput-oriented tests with bulk
impact when all Web pages are local, some differehcesld downloads and found no significant differences across
still arise. The median load time was used, to minimize tHeowsers (e.g., 18 MB file download in about 160 seconds).
impact of any anomalous results. Since all browsers are using the same native operating sys-

Figure 2(b) shows the measurement results for 10 of tkem and TCP implementation, this result is not unsurprising
selected Web sites, in alphabetical order. The fastestdmowHowever, we suspected that some browsers would be using
in this test was Apple’s Safari, which was fastest not onigownload accelerators to gain a performance advantage; our
overall, but also for loading each individual page tested. Gexperiments show no evidence of this.
average Safari took about 6 seconds to load all the pages. ThEinally, we conducted some forward-looking tests. Firefox
second fastest browser in this experiment was Firefox with 8.01 and Opera 9.51 have recently been released, and linterne
average of about 19 seconds to load all of the pages. Cl&elorer 8 is in the beta-testing stage (beta 1). We conducte

a few tests with these browsers, to assess the robustness of o
_1In our experiments, the MSN Web page took 81 seconds to logdlipi re|ative performance claims, as well as the claims made dy th
in Internet Explorer, while it only took 1-2 seconds when #sacached. We N .
do not yet have an explanation for this anomaly, which occlior@y for this developers about significant performance improvements ove
browser. the current versions.

The experimental results for these next generation br@vsas well as by the Informatics Circle of Research Excellence
are shown in Figure 3. These graphs use the same verti@g@lORE) in the Province of Alberta.
axeg as in Figure 2, to facilitate direct visual comparisons.

In most (but not all) cases, the new versions do show im- REFERENCES
proved performgnce. All of the.new browsgrs show subsﬂantl] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety, R. GilMar-
improvements in the JavaScript test, which was previously guerite, K. Rajamani, and W. Zwaenepoel, “Bottleneck Charamtion
dominated by Safari and Opera. Firefox 3 now appears to CCJf E;ynamiczg\(/)ezb Site Benchmarks'Proceedings of 3rd IBM CAS

H H H onrerence, .
be the fastest JavaScript browser o_verall, since it was n | Apple Computers, “Apple — Safari"ht t p: / / www. appl e. conl
beaten in any category. Though still in early beta-testing ™ safari/
stages, Internet Explorer 8 appears to have corrected sor3k J-%twoog.“The Grea:; BbrlowslerJavr?Scrip/tShowdoer]f‘t nﬁ)illvwl-
P R ; codi nghorror. co og/ ar chi ves/ 001023. ht

performance prOblemS In Its JavaScrl_pt !mplementatlon. . [4] Boutell.com, “WWW FAQs: What was the first Web browserit.t p:

The rendering test also showed significant changes. Fire- ;/ww. bout el | . conf newf ag/ hi st ory/ f br owser . ht
fox improved its speed slightly, while Opera made a largédS] flonsumerSearch, “Wﬁb mBFOWS_erS RsviEWS”- http:
H : WWW. consuner sear ch. coml ww/ | nt er net
improvement tp c'a.tch up with thg others. Interngt Explprgr 8 web- br owser - 1 evi v/
was actually significantly slower in this beta version, lusi [g] CyberNet, “CyberNotes: Browser Performance Compar-
probably too early to make any judgement about the rendering iSOQS"-) http: //cyfber net news. conl 2008/ 03/ 26/

H . cypber not es- br owser - pertor mance- conpari sons

speed of the upcoming final relgas_e. L. [7] O. de Bruijn, R. Spence and M. Chong, “RSVP Browser: Webviging

The AJAX test showed qua“ta“VIy similar results to the on Small Screen DevicesPersonal and Ubiquitous Computing, Vol. 6,
rendering test. Although Firefox 3 no longer reports a neg[-] No. 4, ISeptembef 2002. | o o
P . : ; 8] A. Dela Serna, “Top 10 Most Popular Websites in the
ligible document edlfung tlme _(Wh|ch was probably due to Us" htp: // waw. al | eba. cond bl og/ 2007/ 09/ 30/
asynchronous behaviour), it still came out the fastestailer t op- 10- nost - popul ar - Websi t es- i n- t he- us/
slightly ahead of Safari. Opera also made some improvemen$] D. Duchamp, “Prefetching HyperlinkstSENIX Symposium on Internet

but is still the slowest among the browser versions tested. Technologies and Systems, October 1999.

[10] Jaiprakash, “Performance Issues with String
Concatenation in JScript”. http://bl ogs.
VI. CONCLUSION nsdn. cond j scri pt/archive/ 2007/ 10/ 17/

. . performance-issues-w th-string-concatenation-in-jscript.
This paper presented benchmark measurements evaluating aspx

the performance of modern Web browsers, primarily witf1] E fif_lt_ an(ihA-TBeSté’clVfos, “G;eidyDual*l \IiVeb I_?a*?hifc/\gl ?‘%U"qi
. . Xploiting e |Iwo Sources O empora ocality In e eques
respect to JavaScript, rendering, and AJAX performance. Streams” 5th Web Caching Workshop, May 2000.

The experimental results show that there can be significat] Microsoft, “Internet Explorer Browserht t p: / / waw. i cr osof t .
differences in performance between the different browsers —conf wi ndows/ product s/ wi nfami l'y/i e/

. . . Mozilla Foundation, “Firefox3/Firefox Requirements’http://
For JavaScript, the current versions of Opera and Safari wi Ki . mozi | 1 a. or g/ Fi ref ox3/ Fi ref ox_Requi r enent s

the fastest, with the next version of Firefox poised to takes) Mozilla Foundation, “Mozilla Layout Engine”. http://ww.
the lead. For AJAX applications, the current versions of mzilla.org/new ayout/

. 15] A. Nadamoto and K. Tanaka, “A Comparative Web Browser (CVitB)
Internet Explorer and Safari appear to be the fastest. Heov,ve\J Browsing and Comparing Web Pagesibrid-Wide Web Conference,

once again the next version of Firefox achieves even better May 2003.
performance. For rendering speed, the current versionfafiSal16] Nontroppo, “Performance ~Tests for Opera 9.5°http:

. . /I nontroppo.org/timer/kestrel _tests/
is the fastest, followed by Firefox, Internet Explorer, an 7] Opera, “Opera Browser'ht t p: / / ww. oper a. coni pr oduct s/

Opera, in that order. Assuming Internet Explorer 8's final = deskt op/
release does not suffer degraded performance like the bidfh A. Rousskov and D. Wessels, *High-Performance Benchmgrivith

version, the new browsers would all be slightly quicker, but \J'\;?]?l;g'é%g‘fh Spftware: Practice and Experience, Vol. 34, No. 2,

their relative ordering would remain the same. [19] F. Schneider, S. Agarwal, T. Alpean and A. Feldmann, “Thew
We believe that there are numerous avenues for future Web: Characterizing AJAX Traffic’Passive and Active Measurement

. . . Conference, April 2008.
work. The most obvious is evaluating browser performan W3Schools, “Browser Statisticsht t p: / / waww. wdschool s. con

for real examples of Web 2.0 applications, to see if there ™ prowsers/browsers_stats. asp
are quantifiable differences in user-perceived performaAs [21] WebKit, “SunSpider JavaScript Benchmarkt.t p: / / Vebki t . or g/
another example, the choice of operating system (and TG Pe'!/sunspi der- 0. 9/sunspi der . ht m

ple, P g Sy) ?5)] WebKit, “Open Source WebKit" http://devel oper. appl e.
stack) may affect the performance results. Understandiag conl opensour ce/ i nt er net / webki t . ht m

performance implications of improved correctness (orgggu [23] Web Performance Inc., “Safari 3 Windows Performance psiaf.
is another open tOpiC http:// ww. webper f or mancei nc. coni | i brary/

reports/ Saf ari ¥20Benchnmar ks/
[24] Wikipedia, “Layout Engine”, http://en.w ki pedi a. or g/

ACKNOWLEDGEMENTS wi ki / Layout _engi ne
Wikipedia, “List of ECMAScript Engines”, http://en.

. 25]

The authors thank the anonymous HotWeb reviewers tlor wi ki pedi a. org/wi ki / Li st_of ECMAScri pt _engi nes

their helpful comments on an earlier version of this papdgél M. Wilton-Jones, “Browser Speed Comparisonsit tp:// wwi.
. . . .) howt ocr eat e. co. uk/ br owser Speed. ht m

Financial support for this work was provided by Canada’s

Natural Sciences and Engineering Research Council (NSERC)

2Note that one data point goes off the scale in Figure 3(b). fEhdering
time for the Facebook page in IE8 was 16.1 seconds.

Time (s)

3D Access BitOps Control Date Math

(a) JavaScript

Crypto RegExp String

Amazon AOL Blogger CNN Craigslist eBay Facebook Flickr Google Live
(b) Rendering
9 T
Firefox 2
IE7
8 Opera 9.26
Safari 3
7
6
@ 5
[}
£
Foa
3
2
1
0
GET POST DOM
(c) AJAX

Fig. 2.

Benchmark Performance Results for Current Web Brawser

10 |-

Time (s)

3D Access

BitOps Control

Crypto Date Math

(a) JavaScript

RegExp S

tring

Amazon AOL Blogger CNN Craigslist eBay Facebook Flickr Google Live
(b) Rendering
9 T
Firefox 3
IE8
8 Opera 9.51]
Safari 3
7
6
@ 5
[}
£
F o4
3
2
1
0
GET POST DOM
(c) AJAX

Fig. 3. Benchmark Performance Results for Imminent Web BrowsédRes

