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ABSTRACT
In wireless networks, bandwidth is relatively scarce, espe-
cially for supporting on-demand media streaming. In wired
networks, multicast stream merging is a well-known tech-
nique for scalable on-demand streaming. Also, caching prox-
ies are widely used on the Internet to offload servers and re-
duce network traffic. This paper uses simulation to examine
a caching hierarchy for wireless streaming video distribution,
in combination with multicast stream merging. The main
purpose is to gain insight into the filtering effects caused by
caching and merging. Using request frequencies, entropy,
and inter-reference times as metrics, we illustrate how merg-
ing, caching, and traffic aggregation affect the traffic charac-
teristics at each level. The simulation results provide useful
insights into caching performance in a video streaming hier-
archy.

General Terms: Design, Performance

Keywords: IEEE 802.11 Wireless LANs, Media Streaming,
Network Simulation

1. INTRODUCTION
Scalability is an important issue in any client-server net-

work system. It is especially challenging to support video-
on-demand (VoD) applications in IEEE 802.11-based wire-
less local area networks (WLANs), because VoD has a rela-
tively high bandwidth requirement, and WLAN bandwidth
is limited. For example, experiments show that only 8 con-
current video streams of 500 kbps each can be successfully
delivered in an IEEE 802.11b WLAN [4]. In an 802.11a
WLAN, with a nominal capacity of 54 Mbps, it is estimated
that 32 such streams can be supported.

Hierarchical wireless video streaming has been proposed
as a solution to this problem, enabling stadium-scale wire-
less media content delivery [5]. Relying on the use of multi-
channel, power control, and caching technologies, the sim-
ulation results in [5] show that the proposed multi-level
system can support over 1000 concurrent clients using an
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802.11a WLAN. However, achieving this level of scalability
requires 64 carefully positioned cache-and-relay proxies.

In this paper, we examine the potential of applying multi-
cast stream merging in wireless video streaming hierarchies,
to improve the scalability of the system and to ease the task
of cache placement. As indicated in [5], in a hierarchical
media delivery system, the root is usually the bottleneck.
While stream merging is a promising solution, it alone can-
not fully offload the server bandwidth requirements in our
target system. However, adding a caching proxy can signifi-
cantly reduce the bandwidth cost (i.e., number of concurrent
streams) at the (root) media server [1, 15, 18, 19, 21].

We can further offload traffic from the server by applying
stream merging in a hierarchical wireless system with multi-
level cache proxies. Stream merging is an efficient technique
that allows later-arriving clients to receive a portion of a me-
dia stream transmitted by the server to an earlier requesting
client. The design issues focus on cache management in such
a system. Based on previous research, prefix caching is an
effective cache replacement policy for merging [1, 18, 19, 21].
However, it is not known if it is still effective in a hierarchical
wireless streaming system. Without a good understanding
of the workload characteristics within the hierarchy, it is
difficult to answer this question.

A good understanding of the reference locality in a work-
load helps network designers make effective cache manage-
ment decisions (e.g., cache size, cache replacement policy).
Reference locality has two aspects: the popularity profile
for requested objects, and temporal correlations among re-
quests. The popularity distribution influences how well cache
replacement policies such as LFU (Least Frequently Used)
perform. Similarly, temporal correlations affect the perfor-
mance of policies like LRU (Least Recently Used). We also
argue that traditional single-value metrics like entropy, mean
inter-arrival time (IAT), or the coefficient of variation (CoV)
of IAT do not adequately represent the traffic characteristics
in our system, due to the filtering effects of merging. There-
fore, we propose two new metrics in this paper – request
frequency vector, and inter-reference time (IRT) vector – to
reflect the merging and filtering effects.

In this work, we use simulation to illustrate how work-
load characteristics change within the cache hierarchy for
a stadium-scale wireless media streaming system with sev-
eral thousand clients. Our results show that stream merging
changes the workload into a highly skewed popularity distri-
bution for media data units. With prefix caching at the first
level cache, the request distribution becomes more evenly
distributed at subsequent levels of cache, for either sequen-



tial or non-sequential media workloads. Furthermore, IRTs
are usually large. These characteristics have implications
on the effectiveness of caching at subsequent levels of the
hierarchy.

The main contributions of this work are not limited to
presenting L2 proxy performance. Moreover, it provides:

A means for higher level (above L2) proxy cache
management design Previous work on multicast with cache
assistance focuses on finding analytical bounds [1, 19, 21].
Their results cannot be applied for L2 proxy design due to
the lack of knowledge on the ingress workload at a L2 proxy.
This work fills up this gap by studying reference locality at
each proxy level. The same method can be applied for any
deeper proxy level along the hierarchy.

Metrics that capture the special features caused
by merging Merging makes the workload highly related
to the time in a full media transmission. Some workload
properties cannot be captured by single value metrics, but
can be easily shown by a metric vector with a value for each
data unit. We find that the request frequency vector and
the IRT vector are particularly useful in our study.

The rest of the paper is organized as follows. Section 2
provides a brief summary of prior related work. Section 3
presents our system model. Section 4 presents our exper-
imental methodology, including descriptions of the simula-
tor, workloads, and performance metrics. Simulation results
appear in Section 5, along with a discussion of workload
sensitivities. Finally, Section 6 concludes the paper, and
highlights future research directions.

2. BACKGROUND AND RELATED WORK
Many multicast streaming schemes have been proposed

in the past decade. To provide immediate service for asyn-
chronous VoD clients, patching [12], tapping [6] and stream
merging [8, 9, 10] were proposed.

In patching and tapping, the server transmits the full me-
dia stream for the first requesting client. A client that arrives
slightly later listens to two streams: its own for the initial
part of the media object, and one of the on-going streams
for the rest of the required data, which is then pre-buffered
for later (future) playback.

Multicast stream merging is similar, except that clients
can listen to multiple on-going streams for more efficient pre-
buffering, as long as the client’s bandwidth allows. Merg-
ing has logarithmic scalability, which is close to the optimal
lower bound [10]. If clients can listen to multiple on-going
streams, the server bandwidth cost Bserver = ln(Ni + 1),
where Ni = λiTi is the average number of requests for the
media stream during time Ti with arrival rate of λi [10]. For
example, with 1000 client requests per media duration, the
average server bandwidth cost is about 7 streams.

Previous research on Web workloads shows that reference
locality can be exploited in Web cache design. Reference
locality has two aspects: the popularity of requested objects,
and temporal correlations in the workload [2, 7, 11, 13, 16].
As proposed in [11], we use entropy as one of the metrics
for popularity. However, most of the single-valued metrics
proposed for Web workloads are not suitable for merging
traffic. During our study of merging and filtering effects, we
found that the request frequencies and IRTs are unevenly
distributed among different media data units. Therefore,
we propose to use request frequency vector and IRT vector
to characterize popularity and temporal correlations.

Filter effects in Web caching hierarchies have been well
studied in [20], as a phenomenon that a cache changes the
structural characteristics of the workload presented to the
next level because only missed requests are included in the
egress workload. To gain insight into the filtering effects at a
proxy, Fonseca et al. [11] have suggested a framework for an-
alyzing Web request streams. They decompose the functions
at a proxy into aggregation, filtering, and de-aggregation.
We apply this idea to our system, and identify three opera-
tions – aggregation, merging, and caching – that specifically
fit our scenario. We study the reference locality changes in
the ingress and egress workloads due to these effects.

3. SYSTEM MODEL

3.1 Wireless Media Streaming System
We focus on a two-level proxy hierarchy for media stream-

ing, as shown in Figure 1. However, the methodology that
we are proposing can be applied to deeper proxy hierarchies.
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Figure 1: Wireless media streaming system

As shown in Figure 1, the topmost component is the origin
media server, which is the central repository for all media
objects. At the leaf level are the streaming clients. Clients
send requests for media objects up the hierarchy, while me-
dia streams are delivered down the hierarchy to the clients.

Using merging, a client can listen to other ambient trans-
missions over the same wireless channel, and pre-buffer later
data units, if any, for its future use. By the time of play-
back, if the current data unit is already in the buffer, no
transmission is needed from the proxy. The bandwidth can
be saved in this way.

To further increase the total number of streaming clients
supported, cache proxies are used between the media center
and the streaming clients. The proxies perform on-demand
caching for media objects, on a data unit basis, where a data
unit is a fixed-size or fixed-duration piece (e.g., one frame)
of a media object.

Two levels of proxies are shown in Figure 1, with L1 prox-
ies closer to the clients. Each client associates with a specific
L1 proxy during the media streaming (i.e., no mobility is as-
sumed). Media requests that cannot be satisfied by L1 prox-
ies are propagated to an L2 proxy. In a multi-level proxy
system, the request is propagated recursively to a higher
level proxy. In our two-level proxy hierarchy, L2 proxies
can communicate with the origin media server, where any
required media data units are guaranteed to be found.

With proxy merging capability, a proxy can also monitor
the wireless channel for transmissions to peer proxies. If
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Figure 2: Decomposed operations

a useful future media data unit is observed, the proxy will
forward it to its child proxies or clients right away, if there
is bandwidth, for potential future use.

3.2 System Operation
To gain insight into the effects of different system config-

urations on the workload at different proxy levels, we de-
compose the functionality at a proxy into three operations
– aggregation (A), merging (M), and caching (C), as shown
in Figure 2. Note that the root node represents the media
server where all of the media contents are stored. Hence, no
cache is implemented at the root node.

Each operation impacts on the traffic flow in a different
way. Hence, we analyze them separately.

Aggregation of requests happens at the ingress of each
proxy level. At an L1 proxy, requests from all associated
clients are aggregated. At an L2 proxy, aggregation hap-
pens for requests received from multiple L1 proxies. When
multiple request streams are mixed together, some workload
characteristics, such as popularity and inter-reference time,
might be changed. If so, traffic aggregation might affect the
cache performance and the system performance. This paper
addresses this issue by studying the changes of workload
characteristics due to changing the numbers of clients and
proxies.

Merging fundamentally benefits from pre-buffering. If a
future data unit to play has been stored in the buffer, no
transmission is required for this time slot (i.e., time to trans-
mit a data unit). The more data units can be pre-buffered
before playback, the more server bandwidth is saved. Pre-
buffering in merging is similar to pre-fetching. The main
difference is that in most pre-fetching schemes, data move-
ment is determined by a specific algorithm. With merging,
pre-buffering depends on system dynamics; a client or proxy
does not have control on what specific data and how many
data units can be pre-buffered in a time slot.

Several factors affect pre-buffering performance, such as
how many on-going transmissions occur, and how many streams
a client can receive at the same time. In wireless environ-
ments, a client can, ideally, listen to as many streams as
available. However, this is not true in wired or mixed envi-
ronments with heterogeneous client device capabilities. How
many on-going transmissions depends on the workload char-

acteristics, which is a main focus of this study.
Caching offloads requests from the root server, which tends

to be the bottleneck. Cache management (i.e., cache size
and cache replacement policy) plays an important role in
achieving good caching performance. In addition, previ-
ous studies have shown that cache replacement policies per-
form differently with respect to traffic characteristics. For
stream merging, prefix caching is highly effective [1, 18, 19,
21]. However, the interplay is bidirectional. That is, traf-
fic characteristics affect caching performance, while caching
and merging also have filtering effects on the traffic charac-
teristics. How does the filtered traffic impact the next level
of cache? This is a key question addressed in this study.

Aggregation, merging and caching all have impacts on
traffic characteristics. This paper studies the filtering ef-
fects from these operations, and how they affect cache re-
placement policy selection.

3.3 Assumptions
The following assumptions simplify our study. The proxy

hierarchy is pre-configured and static. Media streams are
CBR, with fixed-size data units. No admission control is
applied, which means all client requests are granted in or-
der to study the bandwidth cost. Although we focus on
cases that users do not move: a streaming session, once
started, stays with the same L1 proxy until it ends, the non-
sequential media workload studied in Section 5.6 can also
simulate the random request pattern at a proxy due to user
mobility. The client’s media player has sufficient buffer to
store all pre-buffered data units; we leave the limited client
playback buffer for future work. At each proxy, incoming
and outgoing streams use different wireless channels with-
out interference. Packet loss due to wireless channel con-
ditions can be recovered by the MAC-layer protocol. The
bandwidth consumption for sending user requests upstream
is ignored due to the small volume.

4. METHODOLOGY

4.1 Simulation Overview
We use simulation to answer the research questions posed

earlier. We developed our own event-driven simulator of the
system in Figure 1, a two-level proxy hierarchy. The system
can be configured using the parameters listed in Table 1. A
media streaming workload file is provided as input. For each
new user request in the workload, the user is associated with
a L1 proxy uniformly at random. The simulator operates at
the media stream level; the network protocol stack is not
simulated.

The simulator runs the algorithm described in Section 3.1.
More specifically, in each time unit, each client monitors the
wireless channel and saves all the data units delivered from
the proxy with which it is associated. At the same time, each
proxy downloads all the data units delivered from its parent
proxy. At the end of each time unit, each client checks its
playback buffer. If the next required data unit is not in the
buffer yet, a request is sent to its proxy. If the data unit
is not in the proxy cache, the request is propagated to its
parent proxy recursively up to the root, where the request
can be guaranteed to be served. In the next data units, all
the unique requests at each proxy and the root are served
accordingly. Proxy cache is updated as well. For analysis
purpose, at each proxy, the number of requests, requested



unique data units, cache hit ratio, and bandwidth cost (i.e.,
number of data units in each time unit) are recorded.

4.2 Client Workload
Our studies are based on the client workloads that feed

into the L1 proxy. All media-streaming workloads for our
simulator are generated using GISMO (Generator for Inter-
net Streaming Media Objects) [14].

In this study, we use two sets of workloads: sequential
media workloads and non-sequential media workloads. Se-
quential media workloads are as simple as possible, to better
understand system behaviour. These workloads have a sin-
gle read-only media object that is 4 minutes long, consisting
of 7200 data units (30 frames per second). Simulation time
is normalized to the transmission time of one frame (one
time unit). The session arrival process is Poisson, with an
average rate of λ = 10, 100, or 1000 session arrivals per
media duration to represent low, medium, or high load, re-
spectively. Each session starts playback at the beginning of
the media object, and plays the data units in sequence until
the end of the media.

Non-sequential media workloads are on top of the sequen-
tial workloads’ setup with additional features like early ter-
mination and some VCR-like operations such as rewind or
fast-forward. It can also simulate the random request pat-
tern at a proxy due to mobility. In the non-sequential me-
dia workload used in this paper, 5% clients terminate at the
beginning portion of the playback, having the length fol-
lowing a Pareto distribution with shape parameter α = 1.0
and scale parameter k = 0.001. Other configurations might
generate a workload that causes different results. However,
because the main purpose of this study is not to exhaust all
the possibilities but to provide a general research method-
ology, only one non-sequential media workload is used as a
representative.

4.3 Metrics for Traffic Characterization
For traffic characterization, we use request entropy and

frequency vector to study the reference popularity, and use
inter-reference time (IRT) vector to study the temporal lo-
cality in a traffic flow. These metrics are defined next.

To evaluate at how well these metrics can capture traffic
characterization and determine on caching policies, we use
bandwidth cost (defined as concurrent number of streams)
to evaluate the overall system performance, and use hit ratio
for the cache performance.

4.3.1 Entropy
Entropy H(X) was proposed in [7, 11] as a way to measure

the uniformity or non-uniformity of the popularity distribu-
tion in a workload. More specifically, entropy captures the
skew of requests to a set of objects. H(X) is defined as:

H(X) = −

n
X

i=1

pi log2 (pi) (1)

where pi is the probability of the ith object among n ob-
jects. Low values of H(X) represent highly skewed popu-
larity, while larger values imply more uniformly distributed
popularity.

For the same reasons indicated in [11], H(X) is normalized
to be able to compare workloads with different numbers of

requests. The normalized entropy Hn is calculated as:

Hn = H(X)/H0(N) (2)

where N is the total number of references (i.e., requests) in
a workload, and H0(N) = log2(N) is the largest possible
value of H(X).

Furthermore, to highlight differences of Hn values, we use
the scaled normalized entropy, Hs, as in [11]:

Hs = −log10(1 − Hn). (3)

Similar to H(X), a larger Hs value represents more uni-
formly distributed popularity. A cache replacement policy
like LFU, which uses frequency as the main input, may per-
form poorly for such a workload.

4.3.2 Request frequency vector
The request frequency vector keeps track of how often each

media data unit is requested during a specified time inter-
val (e.g., typically a full media playback time). The request
frequencies for each media data unit vary depending upon
the location of the data unit in the stream. In fact, merging
generates a repeating pattern of references in every full me-
dia play. No single-valued metric can successfully capture
the popularity characteristics among data units caused by
merging. As an example, Hs values can provide an indica-
tion of whether LFU is suitable or not, but it cannot show
where the popular units are located within the media object.
With frequency vector, one can easily tell if most of the pop-
ular units are near the beginning of the media object; if so,
simple prefix caching can be applied. For this reason, we
use the full vector of reference frequencies together with Hs

to represent popularity.

4.3.3 IRT vector
Temporal correlations in a workload can affect the per-

formance of a cache replacement policy such as LRU, which
uses time as its decision variable. In our study, we found
that the inter-reference time (IRT) captures important fea-
tures of the temporal locality for a specific data unit. The
IRT at a node is the average number of time slots between
two consecutive requests to the same media data unit.

In this study, we use the IRT vector to illustrate IRT
values across the whole data set. For the same reason stated
previously, no single metric, such as average IRT or CoV,
can successfully capture the temporal correlations among
all data units. The IRT vector shows the mean IRT for each
data unit in the media object.

5. SIMULATION RESULTS
This section presents our simulation configuration and the

simulation results. Sections 5.2 to 5.5 present results for se-
quential media streaming workloads. We start by studying
simple “caching only” and “merging only” cases, then con-
sider them in combination. Results for non-sequential work-
loads are presented in Section 5.6. Implications of the results
are discussed following each experiment.

5.1 System Configuration
The default system configuration in our experiments has

two levels of proxies, with 30 L1 proxies and a single L2
proxy. Each of the L1 proxies handles 100 clients, so the to-
tal number of clients in the system is 3000. With no caching
or stream merging, naive unicast streaming to each client



Table 1: System Parameters for Each Operation
Operation Parameters Value Range

Aggregation
Average arrival rate (client sessions per media duration) [10, 100, 1000]
Number of proxies at each level [1, 10,...60]

Merging
Merging capability [on, off]
Number of simultaneous streams (1 means unicast;
received by a client or a proxy ∞ means unlimited streams)

Caching

Caching capability [on, off]
Cache replacement policy at each proxy level [LRU, LFU, Prefix]
Cache size at each proxy level 0-10% of the media length

would have a server bandwidth cost of 3000, which provides
a baseline comparison point for the simulation results.

When caching is used, the default cache replacement pol-
icy is prefix caching (Prefix) at the L1 proxy. The default
cache size is 10% of the complete media object size, unless
specified otherwise. If Prefix is used at the L2 proxy, it
caches the next portion of the media stream following the
L1 prefix. For clarity, we refer to this approach as Prefix2.

5.2 Caching Effects
The first simulation experiment considers the use of caching

in the wireless streaming hierarchy, with no multicast stream
merging. The results are shown in Table 2. The workload
has relatively high Hs values at each level, indicating that all
data units have similar popularity. Therefore, prefix caching
at L1 and LFU at L2, as in the configuration of this test,
may not perform well.

The average bandwidth usage confirms that this unicast-
based system does not scale well. There is no bandwidth
saving at the bottom level, since each L1 proxy delivers
about 100 streams to its clients. There is about 26% sav-
ings at the L2 proxy, where requests from the 30 L1 proxies
are aggregated. This saving is from both L1 cache and the
aggregation (i.e., requests for the same data unit are trans-
mitted only once). At the root, we see another small band-
width savings of about 11%, which comes from the L2 cache.
However, these savings are insufficient to make the system
scalable: the media server requires a median bandwidth of
almost 2000 streams, which is not practical.

Table 2: Performance of a Cache Only System (Pre-
fix/LFU, 30 L1 proxies, medium load: λ = 100)

Level Hs Avg BW*

Root 5.93 1952.21
L2 Proxy 5.66 2197.50
L1 Proxy 3.64 99.25
*: BW is de↓ned as the number of concurrent streams.

These results indicate that if a system does not have mul-
ticast capability, the higher levels will be the bottleneck.
Hence, only light load can be supported. LFU is not suitable
at an L2 proxy, since all media units have similar popular-
ities. Our results also show that IRTs decrease after traffic
aggregation, and are fairly evenly distributed across all me-
dia data units. Therefore, the LRU scheme could perform
better due to the lower IRTs.

5.3 Merging Effects

5.3.1 Level 1 Merging Effects
The next experiment considers multicast stream merging.

It is known that merging can achieve high scalability [8, 9,
10]. For example, with 1000 sessions, the server bandwidth
cost is about 7 streams.

In our simulation, we found a periodic phenomenon during
each full media playback: bandwidth cost is lower at the
beginning of the media, and gradually rises and peaks at the
end of the media, then drops back to low at the beginning
of next full media time. Due to this repeating pattern, all
our results are based on one full media time, namely the
second such playback time in the system. We use the first
full media duration as a warm-up period.

Our simulation also shows that the bandwidth cost varies
with time, based on the dynamics of session arrivals and
the merging achieved. When λ = 1000, the highest band-
width cost observed is 16, which is approximately double
the steady-state average. While the scalability of merging
is excellent, the average bandwidth cost can still be highly
variable. Nonetheless, we use mean values as a simple indi-
cator of the system performance.
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Figure 3: Requested data units with time

Stream merging (and its pre-buffering strategy) changes
the distribution of client requests observed in the system.



Figure 3 plots the requested data units versus time when
merging is enabled. The graphs on the left show the ingress
requests before the L1 proxy, while the graphs on the right
show the egress requests after the L1 proxy. From top to
bottom, the graphs represent light, medium, and high load
scenarios. The general trend expected in these graphs is an
upward sloping line, representing successive media units (on
the vertical axis) requested as a function of time (on the
horizontal axis).

Figure 3 shows that the transmitted streams are some-
what discontinuous. That is, the streams are rather short-
lived pieces at low traffic load, but longer at higher loads.
This makes sense based on the arrival rate for client ses-
sions. With few clients active, they are likely to be at dif-
ferent points in the media stream, and few opportunities for
merging exist. With many active clients, there are many
opportunities for merging, and a given target stream may
be long-lived.

Figure 3 also shows that the slope of the lines tends to
decrease at higher loads. This phenomenon is explained by
the pre-buffering: media units required in the near future
have already been buffered, and need not be requested from
the proxy. It also shows that the prefix of the media stream
is requested more frequently, especially at higher loads.

These request patterns mostly remain after filtering by the
L1 cache, as shown in Figure 3(b). The primary difference is
the reduced demand for low-numbered media units, because
of the prefix caching used at the L1 proxies.
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Figure 4: Request frequencies

Merging changes the popularity distribution dramatically,
from its fairly evenly distributed popularity in Section 5.2 to
a skewed popularity in Figure 4. This is why prefix caching
is the best to use with stream merging, as claimed in earlier
studies [1, 18, 19, 21]. After the L1 cache (Figure 4(b)), the
popularity skew is still present, but less pronounced. As a
result, the effectiveness of prefix caching (or LFU) at an L2
proxy is reduced compared to an L1 proxy.
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Figure 5: IRT vector

Figure 5 shows the IRT for each media data unit. In gen-
eral, there is a monotonically increasing trend with respect
to media data unit number: low-numbered items are re-
quested frequently, at short intervals, while high-numbered
items are requested less often, at large intervals. In Fig-
ure 5(a), we see that IRT increases quickly from the begin-
ning of the media towards the end. The later portion of
the media stream receives few references, since many clients
may merge to a few target streams. At high load scenario
(Figure 5(a) bottom), requests to some data units might
have shorter IRTs. Therefore, the plot shows more than one
line other than a single smooth line in the moderate load
scenario (Figure 5(a) middle).

5.3.2 Level 2 Merging Effects
Stream merging can also be applied at proxies. With

proxy merging, a proxy listens to all transmissions on the
(broadcast) wireless channel, and forwards all relevant data
units to its children (clients or proxies). These data units
include those requested within its own subtree, and those
being transmitted to peer proxies. This scheme is meant to
pre-buffer as many data units as possible, as early as possi-
ble. Therefore, there is a potential increase in the bandwidth
cost at the lower level from“pushing”unrequested data units
down the hierarchy, but we expect to see overall improved
bandwidth savings in the long run.

The Hs values in Table 3 show that using proxy merging,
the popularities are more skewed. This phenomenon would
be good for L2 caching policies such as LFU.

The bandwidth costs in Table 3 show the gains from proxy
merging. Without proxy merging, the bandwidth require-
ments are as high as 140 at L2 proxy and the root due to the
aggregation of 30 L1 proxies. However, using proxy merg-
ing, there is a 20-fold bandwidth savings at higher levels. It
is especially important to the root, which tends to be the
bottleneck. In the remaining experiments, proxy merging is



Table 3: Performance with and without Merging at
Proxy (30 L1 proxies, medium load: λ = 100)

Proxy Merging Level Hs
Avg BW

Without
L2 Proxy 1.04 140.21
L1 Proxy 1.19 5.04

With
L2 Proxy 0.66 7.24
L1 Proxy 0.94 7.24

used to enable better overall system performance.

5.4 Merging and Caching
In this section, we study the combination of caching and

multicast stream merging. In Section 5.4.1, we study the
combined filtering effects of merging with prefix caching,
and discuss the potential impacts on L2 cache design. In
Section 5.4.2, we compare three cache replacement schemes
(LFU, LRU, and Prefix) at the L2 proxy.

5.4.1 L1 Prefix Caching and Merging Effects
As illustrated in the last section, merging changes the

workload to be highly skewed toward the beginning of a
media stream (see Figure 4(a)). After filtering by the L1
proxy cache, requests for the most popular media units are
removed from the workload, as shown in Figure 4(b). How-
ever, some skew still exists in the workload, favouring the
earlier portions of the media.

We expect to see LFU or Prefix2 perform well in this con-
text, with comparable performance in terms of bandwidth
saving and hit ratio. However, with increased cache size
at the L1 proxy, the skew disappears from the workload
entering the L2 proxy. Also, if clients are allowed to do
fast-forward or other VCR-like operations, the popularity
distribution might not be as skewed. In these cases, prefix
caching might not perform as well as LFU.

Figure 5(b) shows that after the L1 proxy filtering effect,
all IRTs are larger than 720 time units (the effective size of
the L1 cache). Therefore, we can conclude that LRU is a
poor choice for the L2 proxy; in fact, its hit ratio will be 0.

5.4.2 L2 Cache Management Policies
We conducted a simulation experiment with LFU, LRU,

and Prefix2 cache replacement policies at the L2 proxy. From
the previous section discussing the workload characteristics
after merging and caching at L1 proxy, we expect to see LFU
and Prefix2 perform equally well at L2, with both outper-
forming LRU.

Table 4 presents results of a scenario with 30 L1 proxies.
The results confirm our prediction: LFU and Prefix2 both
have about 30% bandwidth savings, with a hit ratio of 30%.
LRU performs the worst, with no bandwidth savings at all.

Table 4: Performance of Different Cache Replace-
ment Policies (30 L1 proxies, medium load: λ = 100)

Level Hs Avg BW Hit Ratio

LFU
Root 1.81 1.57

0.30
L2 Proxy 1.52 2.26

LRU
Root 1.57 2.26

0.0
L2 Proxy 1.52 2.26

Prefix2
Root 1.81 1.57

0.32
L2 Proxy 1.52 2.26

By examining different L2 proxy cache sizes, we can see
how cache sizes affect the egress workload characteristics
of L2. In Figure 6(a), we see that the entropy Hs increases
gradually with cache size. It illustrates that the L2 cache has
a filtering effect on the egress workload: a larger cache size
makes the request distribution in the egress workload more
uniform. At the same time, a larger cache size, with a proper
cache replacement policy (such as Prefix2), achieves a higher
hit ratio and correspondingly better bandwidth savings (see
Figure 6(b)),
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Figure 6: Effect of different cache sizes at L2 proxies
(Prefix2) on entropy of egress workload and network
performance

5.5 Aggregation Effects
Figure 4 and Figure 5 illustrated the skewed popularity

of media units after merging and caching at a L1 proxy. In
that test scenario, the Hs in the egress workload is 1.03.

The L2 proxy aggregates the egress workloads from mul-
tiple L1 proxies. The distribution of media units requested
becomes more evenly distributed. Our results show that
with 10 to 60 L1 proxies, the aggregated Hs is about 1.55.
Therefore, aggregation generates a more uniform distribu-
tion of requests to the individual blocks of the media object.

Figure 7(a) presents the request frequency results for the
egress workload from a L1 proxy. For the same client request
rate (100) at each L1 proxy, the aggregated workload from
30 L1 proxies, which is the ingress workload of L2 proxy,
has a “flatter” request frequency distribution, as shown in
Figure 7(b). In the aggregated traffic flow, there are more
requests for the later units in a media stream.
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Figure 7: Aggregation effects of 30 proxies on re-
quest frequency

We can also see the effect of aggregation on the IRTs. The
IRT vector of the egress workload from a L1 proxy is shown
in Figure 8(a), and the aggregated result is shown in Fig-
ure 8(b). The egress workload from a single L1 proxy gener-
ally has monotonically increasing IRTs, which are strongly
correlated with relative data unit positions. When multi-
ple streams are aggregated at L2, the IRTs become more
diverse, especially across earlier units.
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Figure 8: Aggregation effects of 30 proxies on IRT

Additional simulation experiments (not included here) show
that the diversity of IRTs increases with the number of L1
proxies. The IRTs always exceed that associated with the
L1 cache size, because of L1 cache filtering.

5.6 Non-sequential Media Workloads
We close our experiments with a discussion of sensitivities

to client workload characteristics, particularly with respect
to sequential stream viewing versus VCR-like functionality
(i.e., pause, rewind, fast forward, random jump, early termi-
nation). The latter functionality alters the sequential nature
of the requests for media data units, adding greater random-
ness into the request workload.

Figure 9 illustrates the differences in requested data units
for non-sequential media workloads (compared to sequential
workloads in Figure 3). As shown in Figure 9 (a), there are
more short continuous lines, with parallel rather than de-
creasing slopes. These two phenomena are related: due to
the VCR-like operations, playbacks are in many short sec-
tions, therefore, clients cannot benefit from merging as much
as in sequential playback. Without pre-buffering, requests
are sequential, which causes the lines to be approximately
parallel. At moderate traffic load (λ = 100), the traffic flow
is highly skewed (Hs = 0.91), partially due to early ter-
minations which cause the first 5-10% of data units to be
frequently requested, and also due to random jump opera-
tions.
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Figure 9: Requested data units with time

Figure 9 (b) shows the aggregated requests by 30 L1 prox-
ies. It shows the request are more evenly distributed across
all data units (Hs = 2.81), except that the first 10% are
removed by L1 proxy’s Prefix cache.

Figure 10 and Figure 11 depict the frequency vector and
IRT vector before and after the L1 proxy. As shown, the
most frequently requested prefix units are removed by L1
proxy. Although 30 aggregated traffic flows are fairly evenly
distributed (Figure 10(b)), there is a slight decreasing trend
which can favour prefix caching. However, due to the overall
even distribution, we should not expect a significant benefit
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Figure 10: Request frequencies: before (a) and after
(b) L1 proxy
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from Prefix2 and LFU. This conclusion is confirmed by the
average bandwidth cost and cache hit ratios in Table 5. With
a 10% cache, the bandwidth saving is only about 13.50%.

Figure 11 also shows that LRU would be ineffective, since
most IRTs exceed 4000. Unless a very large cache size is
used, LRU cannot save any bandwidth. This is confirmed
by the average bandwidth cost in Table 5: for an LRU cache
at L2, there is bandwidth saving of only about 0.6%.

Table 5: Performance at Each Level (30 L1 proxies,
medium load: λ = 100)

Level Hs Avg BW Hit Ratio

LFU
Root 2.73 15.51

0.1351
L2 Proxy 2.63 17.93

LRU
Root 2.83 17.80

0.0063
L2 Proxy 2.63 17.93

Prefix2
Root 2.73 15.50

0.1355
L2 Proxy 2.63 17.93

Although the non-sequential media workloads in this sec-
tion show that there is no benefit in using any of LRU,
LFU or Prefix2, this conclusion may not be true for all
non-sequential media workloads. A different workload might
have different characteristics that might benefit LRU if the
IRTs are small, or LFU if there are some“hot spots” in a me-
dia object. Our study shows how our three metrics can be
used to characterize workloads, and assist with the selection
of proper caching policies.

6. CONCLUSION
In this paper, we study filtering effects caused by aggre-

gation, caching, and merging in a wireless video streaming
hierarchy. Reference locality in the workload at different
proxy levels is analyzed using extensive simulations. Pop-
ularity and temporal locality are captured using entropy,
request frequency vector, and IRT vector as metrics. The
simulation results provide useful insights on L2 cache per-



formance. Our key findings include:

• For sequential media workloads, merging generates highly
skewed requests, which are smoothed by prefix caching.
With aggregation, although traffic becomes slightly
more uniform, it is still skewed towards the prefix.
Therefore, LFU and Prefix2 are useful at L2 proxies.

• For non-sequential media workloads, the request fre-
quencies are more evenly distributed across all data
units after the L1 proxy filters out the popular prefix.
LFU and Prefix2 have little benefit in the workloads
tested. At the same time, LRU performs even worse
due to the high IRTs.

• Using request frequency vector and IRT vector can
effectively depict the traffic characteristics and con-
tribute to proper decision making in L2 caching poli-
cies in a merging/caching wireless streaming hierarchy.

• Separating the operations merging, caching and ag-
gregation can identify the impacts from different op-
erations in a caching hierarchy. Among these three,
merging has the main effect in skewing the popularity
towards the prefix of a media object.

Although our study focuses on a 2-level wireless proxy
hierarchy, the methodology proposed can be applied to a
hierarchy with any levels and/or with a wired or mixed con-
nections .

Future work will focus on considering limited client play-
back buffer and comparing merging with other multicast
schemes and on studying scenarios with multiple media ob-
jects.
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