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Abstract

In this paper we study the use of TCP Vegas as a trans-
port protocol for streaming media. We also consider TCP
NewReno as a transport protocol for streaming media. We
find that: 1) TCP is able to transport streaming media with
good performance in a wide variety of scenarios; 2) TCP
Vegas performs better than TCP NewReno in many cases;
and 3) for viable media streams, both TCP variants need
to achieve mean throughputs that are at least 1.5 times the
encoding rate of the media objects being carried.

1. Introduction

With the increase in “last-mile” and core capacity in the
Internet, the use of streaming media has increased dramat-
ically in recent years. The wide availability of software,
including RealNetworks’ RealPlayer, Microsoft’s Media
Player, Apple’s QuickTime Player, and Flash has also con-
tributed to the increase.

Streaming media places unique demands on the Internet.
Encoded media files consist of a series of temporally-related
data fragments, which must be received in-order within the
bounds of the temporal relationship. If portions of the me-
dia object are not received by the client before the preced-
ing portion is decoded, then the decoding of the media ob-
ject will be interrupted. While streaming media is time-
sensitive, it is loss-tolerant to some extent, depending on the
nature of the encoding protocol used. The client decoder
can recover lost data through interpolation, within reason,
without a noticeable loss in quality.

Streaming media can be delivered across the Internet us-
ing either the User Datagram Protocol (UDP) or the Trans-
mission Control Protocol (TCP). UDP has been generally
regarded as the transport protocol of choice for stream-
ing media due to its simplicity. The flow control, con-
gestion control, and retransmission mechanisms in TCP
have been regarded as detrimental to media flows as they
can introduce extra delay and rate fluctuation in the deliv-

ery of media data. The control mechanisms in TCP, how-
ever, are considered necessary for the stability of the Inter-
net [9]. These contrasting demands have resulted in much
research into developing application-layer control proto-
cols over UDP [10, 13, 26, 30]. Many application-layer
rate control protocols are, in fact, similar in behaviour to
TCP [13, 26, 30]. This poses the question: why not simply
use TCP for streaming media?

Several different variants of TCP exist. These variants
are typically distinguished by the particular congestion con-
trol and packet loss recovery mechanisms incorporated into
the protocol. Some of the important variants are TCP Tahoe
[15], Reno [15], NewReno [11], SACK [7], and Vegas [5].
The most widely deployed of these is TCP NewReno [22].

TCP NewReno has a characteristic “sawtooth” pattern of
throughput caused by its congestion avoidance and control
mechanisms. This throughput pattern is often cited as one
of the problems TCP has for streaming media. The sawtooth
is a byproduct of TCP’s linear increase in throughput during
periods of no packet loss followed by a multiplicative de-
crease in throughput upon packet loss. This causes unstable
throughput for the stream, which is considered undesirable.
TCP Vegas, being delay-based, rather than loss-based, does
not create this sawtooth pattern.

With TCP being used for streaming on a large scale [17,
28], it is important to investigate whether or not TCP Vegas
is a more suitable alternative. Intuitively, this would seem
to be the case because Vegas touts steadier throughput.

In this paper we carry out a comprehensive simulation-
based study of TCP Vegas with respect to the unique needs
of streaming media. Through progressively more complex
simulations, we describe the behaviour of TCP Vegas under
varying network, application, and load parameters. We also
run TCP NewReno through the same simulations to provide
an opportunity to compare the performance of both variants
when delivering streaming media.

Our results demonstrate that TCP Vegas is indeed a suit-
able transport-layer protocol for streaming media in many
cases. Furthermore, we demonstrate that TCP NewReno
also performs well in this role. Both variants perform sim-
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ilarly in many cases. Vegas shows advantages when the
media stream is subjected to high random loss, and when
there is much competing background traffic. We find that to
achieve a viable media stream, both variants need to achieve
a mean throughput of approximately 1.5 times the media en-
coding rate in the majority of cases examined. These results
show that media streaming via TCP is viable, and, in some
cases, using TCP Vegas would be preferable to NewReno.

The rest of this paper is organized as follows: Sec-
tion 2 presents relevant background information for this
work. Section 3 discusses some related work. Section 4
discusses the methodology, parameters, and performance
metrics used in the simulations. Section 5 presents and dis-
cusses some key results from this study. Conclusions and
future research directions are presented in Section 6.

2. Background

2.1. TCP Congestion Control

Congestion control in TCP is achieved using four inter-
twined, yet distinct, congestion control algorithms. Each al-
gorithm plays an important role in the overall system, while
being influenced by the other three at the same time. The
first of these is an operating mode called Slow Start (SS)
which, as the name suggests, starts TCP off slowly to avoid
introducing congestion. The second is known as Conges-
tion Avoidance (CA) mode which, once reaching a certain
predefined threshold (ssthresh) takes over from SS mode.
CA attempts to maintain the highest possible throughput for
TCP without causing undue congestion. The final two algo-
rithms are closely linked and often grouped together: Fast
Retransmit and Fast Recovery. These algorithms were im-
plemented in TCP as a solution to the long delays some-
times created by TCP timeouts. Fast Retransmit and Fast
Recovery allow losses to be detected and dealt with quickly.

2.2. TCP Vegas

Proposed by Brakmo et al. [5], TCP Vegas is a radical
departure from the congestion control and avoidance mech-
anisms found in TCP Reno and its descendants NewReno
and SACK. The first of the changes allows Vegas to detect
losses more quickly than Reno’s fast retransmit or coarse-
grained timeout, the second allows Vegas to detect con-
gestion without inducing loss, and the third allows Vegas
to probe for available network capacity without creating
losses. A summary of some of the differences between
NewReno and Vegas is given in Figure 1.

The changes in Vegas were motivated by the observation
that Reno creates congestion as a means to detect the capac-
ity available in the network path. This seems paradoxical,
but the mechanisms that increase the congestion window do

Figure 1. Features of NewReno and Vegas

so until a loss is induced; loss is used as an indicator of both
congestion and available capacity. TCP Vegas attempts to
avoid creating congestion by relying on network observa-
tions in addition to losses.

TCP Vegas samples the round-trip time (RTT) for ev-
ery transmitted segment. This estimate is then compared
against a baseline RTT (baseRTT), which is set to the lowest
RTT observed so far during the data transfer. Vegas uses this
comparison to infer whether there is increasing or decreas-
ing network congestion based on the notion that most fluc-
tuations in RTT are caused by queuing delays at the routers
in the network path.

TCP Vegas modifies Reno’s Fast Retransmit/Fast Recov-
ery algorithm by using a fine-grained clock to record a RTT
for every segment sent. Vegas also sets a fine-grained timer
based on RTT measurements. When a duplicate acknowl-
edgement (DUPACK) is received, the timer is checked to
see if it has expired. If so, Vegas retransmits the segment.
This method is faster than waiting for three DUPACKs as
in Reno’s fast retransmit, and can detect losses that would
be missed by Reno fast retransmit (e.g., large burst losses)
because one DUPACK can trigger a retransmission.

After the retransmission, the first and second non-
DUPACKs have their timers checked. If the timer has ex-
pired, then Vegas will retransmit these segments as well.
This allows Vegas to catch losses that may have occurred
before the retransmission. Vegas only allows one conges-
tion window reduction per RTT, not multiple reductions as
TCP Reno does in some situations. Vegas decreases its con-
gestion window on retransmission to three-quarters the pre-
vious congestion window, while Reno reduces to one-half
the previous congestion window.

Vegas, once per RTT, measures the actual throughput by
recording the time between a segment transmission and the
receipt of its acknowledgement, and the number of bytes
transmitted between those two events. It compares the dif-
ference between these two values against the expected value
given the current congestion window and baseRTT mea-
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surement (Expected = cwnd

baseRTT
). The difference between

the actual throughput and the expected throughput is calcu-
lated, and the difference is divided by the TCP segment size,
providing a number representing the difference in terms of
segments (Diff ). Two static parameters are involved at this
stage: α and β. These specify the lower and upper bounds
on the number of unacknowledged segments Vegas wishes
to have in the network, and hence, the number of buffers it
is willing to occupy in the core routers.

Vegas adjusts its congestion window according to the
following logic:

cwnd =







cwnd++ if Diff < α

cwnd if α < Diff < β

cwnd-- if Diff > β

As the actual measured throughput drops below the ex-
pected throughput, it implies there is increasing congestion.
As a result, Vegas will linearly decrease its congestion win-
dow in an effort to ease the pressure on the network. Simi-
larly, as the RTT decreases, Vegas perceives less congestion
and linearly increases the congestion window. It is known
that Vegas can treat competing Reno (thus NewReno) flows
unfairly in some situations; setting α equal to β helps alle-
viate this [14].

The slow-start mechanism of NewReno introduces data
into the network slowly to avoid creating congestion. The
ssthresh threshold is set to avoid overshooting this goal, but
without a priori knowledge of what a suitable congestion
window size is, this state variable may be inappropriate.
The Vegas variant of TCP attempts to correct this short-
coming by incorporating a dynamic switch between SS and
CA mode. In Vegas SS, the initial congestion window is
set to two segments, and the congestion window is only in-
creased every other RTT in the same exponential fashion as
Reno. The same congestion avoidance mechanisms found
in CA mode are also present in SS mode, however, they are
slightly modified from those used in CA mode. When the
actual throughput falls below the expected throughput by
one segment size, it switches Vegas from SS to CA. This
mechanism is intended to reduce the likelihood of creating
losses in slow start mode by increasing the congestion win-
dow too quickly.

3. Related Work

Recent empirical studies indicate streaming using TCP
is as prevalent on today’s Internet as streaming using UDP
[17, 28]. Streaming using TCP has several advantages.
First, TCP is, by definition, TCP friendly. Second, TCP
can pass through firewalls and Network Address Transla-
tion (NAT) with ease. Third, TCP is congestion-aware, and
there do exist solutions to smooth out some of the effects of

the more undesirable characteristics of TCP on streaming
media. In essence, short-term fluctuations can be addressed
using rate-switching techniques, many of which are essen-
tially the same as the rate control protocols developed for
streaming over UDP. There are pros and cons to using ei-
ther transport protocol, and there are proponents for both
techniques. While there exists a substantial volume of work
on using UDP to transmit streaming media, there exists very
little work regarding the use of TCP for streaming. The re-
mainder of this section presents an overview of some previ-
ous work on using TCP for media streams.

In [29], Wang et al. develop discrete-time Markov mod-
els for both live and stored video streaming using TCP, and
validated these models using ns-2 and Internet experiments.
Using these models they explore the parameter space in-
cluding loss rate, RTT, and timeout values in TCP, and the
impact of video playback rate for both constrained (i.e.,
rate-limited streams) and unconstrained (i.e., TCP is free
to send as fast as it can). They found that TCP is suit-
able for streaming when the achievable throughput of TCP
is roughly twice the bitrate of the stream. For large RTTs,
high loss rates, and high timeout values this requirement in-
creases to more than double the encoding rate. They also in-
vestigated the ratio of late packets to total packets for differ-
ent stream types. They found that the fraction of late pack-
ets in constrained media streams increased with increasing
length of the media. For unconstrained streams they found
that the fraction of late packets decreased with increasing
length of media. This suggests that unconstrained stream-
ing over TCP is a better choice than constrained streaming.
In this work, unconstrained streaming is used in the major-
ity of simulations based on this finding.

In [2] Bohacek develops a model of TCP using stochas-
tic differential equations and validates the model using ns-
2. Bohacek also applies this model to derive the probability
distribution of TCP’s congestion window size and uses it to
create a TCP-friendly rate for non-TCP video flows using
the MPEG-1 video codec. The author only examines con-
strained streaming, but mentions unconstrained streaming
as a possible direction for future work.

4. Simulation Methodology

4.1. Network Model

The network model used in this work is the dumbbell
network. A dumbbell is characterized by two core routers
connected by a single bottleneck link. All edge nodes are
connected to one of these two routers.

In this work, both the media source and background traf-
fic sources are connected to one of the core routers with
a 100 Mbps full-duplex connection with negligible latency.
The receivers for each type of traffic are similarly connected
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to the other router. The properties of the central link be-
tween the two routers are manipulated to create varying
network conditions. For example, we can simulate differ-
ent end-to-end latencies by altering the propagation delay
of the bottleneck. Each of the two routers is simulated with
a 50 kilobyte Drop-Tail queue. The packet size used is 1
kilobyte, but it is possible to have smaller packets due to
transfer sizes that are not integer multiples of 1 kilobyte.

4.2. Application Agent

The network was simulated with the ns-2 network sim-
ulator utilizing a set of application agents created for this
work. These agents are built at the application layer in ns-2,
allowing them to interface with the transport layer, much as
applications in the real world would be built.

The application agents are meant to be paired; one asso-
ciated with a TCP source in ns-2, and the other a TCP sink
(receiver). The sender calculates how much data should be
given to the transport layer at a time and how often it should
be given to the transport layer. This information is provided
via parameters supplied to the simulator by the simulation
script, or by command-line arguments.

Although the agents contain some more advanced func-
tionality, the mode of operation used in this work is that of
a simple streaming model. This model simulates the inter-
actions of a sender and receiver as if they were streaming
via a Web-based model: the client downloads, via HTTP,
a meta-file that is then opened, resulting in the launch of
a media player. The media player then contacts the media
server using the information in the meta-file and the content
is then delivered to the media player. This model is the pri-
mary mode of operation of many Web-based streaming me-
dia sites. It is suitable for studying the basic properties of a
transport protocol in relation to its suitability for streaming.

The basic operation of the agent pair is as follows [4]:

1. Initialization: Upon simulation start, the initialization
routines in the sending agent calculate the amount of
data that is to be fed to the transport layer via a simple
calculation: chunk = xfactor*mediarate*heartbeat.
xfactor multiplies the rate at which the application
agent gives data to the transport layer.

2. Buffering Phase: The sender commences sending
data in chunk sizes as often as heartbeat specifies. The
receiver receives this data and stores it in the buffer
until a certain predefined buffer size is filled.

3. Streaming Phase: Once the receiver buffer is filled,
the receiver begins to drain the buffer at the specified
media encoding rate (mediarate) to simulate the de-
coding of streaming media. While this is happening,
the receiver continues to receive data and buffer it. The

buffer usage shrinks and grows based on the rate of
the stream. If the stream throughput is less than the
media encoding rate, then the buffer usage shrinks. If
the throughput is greater, the buffer usage grows. The
agent has the ability to use a finite buffer, but in this
work large buffers are used such that the receiver does
not lose data if data arrives faster than it is consumed.

4.3. Simulation Factors

This study considers 9 factors for the simulations.
These can be broadly classified as network-oriented and
application-oriented. The network-oriented factors are
round-trip propagation delay, bottleneck capacity, proto-
col parameters, router queue discipline, bottleneck loss per-
centage, and background traffic. Application-oriented fac-
tors that affect streaming media are application buffer size,
xfactor, and media encoding rate. The default values of the
factors used in the simulations (unless otherwise indicated)
are shown in Figure 2.

Figure 2. Default Levels for Simulations

In this paper, we present results from the variation of
round-trip propagation delay, induced random uniform loss,
and background traffic scaling. For experiments with other
factors, the reader is referred to [4].

The round-trip propagation delay is a factor in the simu-
lations. Controlling the round-trip propagation delay affects
the RTT experienced by the media flows. Although it is not
the only determinant of RTT, in these simulations the de-
lay introduced by router queues is much smaller than that
of the propagation delay. The throughput of TCP NewReno
is inversely proportional to RTT. This relationship exists for
TCP Vegas as well in some cases [27].

Another factor examined is random packet loss. In
most of the simulations, any loss experienced by the media
streams or background traffic is caused by congestion at the
routers. This random loss is introduced to study the effects
when a high degree of statistical multiplexing of flows oc-
curs at the routers. The random loss levels are varied from
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0.125% to 8%.
The HTTP background flows are set up with a source

node attached at one side of the bottleneck and the sink on
the other. The HTTP flows use TCP NewReno as a transport
protocol. The request inter-arrival times are exponential
with mean 0.5 seconds. The transfer size is drawn from a
Pareto distribution with a mean of 50 kB and a shape param-
eter of 1.2. The median transfer size is 50 kB (50 packets).
These values are consistent with the heavy-tailed distribu-
tion of HTTP responses that have been observed in mea-
surement studies [1, 19]. This distribution creates a wide
variety of transfer sizes, from small to large. Similar models
for HTTP traffic have been considered in recent simulation
studies [18, 27].

The FTP background flows merely transfer data as fast
as possible for the duration of the simulation. They also
utilize TCP NewReno as the transport protocol and have a
source and sink on opposite sides of the bottleneck.

4.4. Performance Metrics

Five performance metrics are used in this work. They
can be classified into application-level metrics and network-
level metrics. The application-level metrics include
achieved throughput, application buffer fill time, and late
packets. The network-level metrics are concerned with the
router queues. The first of these is the mean queue length,
and the next is a measure of jitter, namely the standard de-
viation of the queue length calculated using ns-2’s queue
monitoring capabilities. This method of indirect jitter mea-
surement was selected for its simplicity.

The mean throughput metric is an important measure.
We have found, generally, that if the media stream can
achieve a mean throughput approximately 1.5 times the en-
coded rate, then in most cases, the media stream can be con-
sidered viable. The achieved throughput of any particular
stream in simulation depends on many simulation factors.

The application buffer fill time is the next metric. The
buffer fill time is directly related to the achieved throughput
at the beginning of the simulation. This gives insight into
the operation of both TCP variants in the initial slow start
mode. If either variant experiences a loss in the initial slow
start, this can greatly increase buffering time.

The percentage of late packets is another important met-
ric. Because late data is unusable, this is an indirect mea-
sure of the client perceived playback quality. Generally,
the lower the percentage is, the better. What the tolerable
level of late packets is depends on the method by which the
client and media encoding algorithm can reconstruct, con-
ceal, or otherwise cope with missing data [8,24]. For exam-
ple, Boyce et al. [3] show that packet loss rates of as little
as 3% can affect up to 30% of the frames in MPEG-1 video.
This is without any advanced interpolation, concealment, or

other methods of dealing with loss. In this work, we con-
sider a late percentage of 10% and above to be unacceptable
for media playback.

5. Selected Results

This section presents selected simulation results. Specif-
ically, we examine the performance of TCP Vegas and
NewReno in a simple case with no cross-traffic, when
round-trip propagation delay is varied, when different router
queue disciplines are used, when uniform random loss is in-
duced on the bottleneck link, and when background traffic
is scaled.

5.1. Basic Streaming

In Figure 3 we see throughput traces for media streams
in a simple simulation scenario. In these cases, the media
encoding rate is increased from 1 Mbps to 16 Mbps over
a 10 Mbps bottleneck. The streams are unconstrained and
there is no cross traffic present. We see that both NewReno
and Vegas perform similarly in these simple cases.

5.2. Latency

We now investigate the impact of the round-trip prop-
agation delay from the sender to the client on the media
streaming session. We expect that a higher RTT will be
detrimental to media flows.

Stochastic models of congestion window evolution of
popular TCP implementations established that the through-
put of TCP Reno [6, 16, 20, 21] and its variants such as
NewReno [23] is inversely proportional to the product of
RTT and square root of packet loss rate. Recently, Samios
et al. [27] developed a model for TCP Vegas from which
throughput can be estimated. Their work shows that Vegas’
throughput is not related to RTT when there is no packet
loss, but the dependence on RTT increases as loss increases.

In our experiments Vegas does experience some loss, so
there is some relation, but unfortunately there is no simply
stated rule regarding the relationship. In the simulations that
follow, we vary the round-trip propagation delay amongst
some common values found to destinations over the Inter-
net: 10, 50, 100, 150, and 200 ms. Recall RTT is the sum of
both the round-trip propagation delay and queuing delays in
the network path.

Figure 4 shows the results of the simulation varying
round-trip propagation delay for a 1 Mbps media stream.
Figure 4(a) displays the mean achieved throughput for both
variants. Figure 4(b) shows the buffer fill times for both
variants. Figure 4(c) displays the percentage of late pack-
ets, and Figure 4(d) shows the mean queue length and jit-
ter measurements. The error bars (in this and subsequent
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Figure 4. Results of Latency Adjustment for Media Rate 1 Mbps

graphs) represent the 95% confidence interval for 10 simu-
lation runs.

We can see that there is a relationship between Vegas
throughput and the propagation delay. It is not strictly
inversely-proportional, but is of that nature. Examining
the late packet percentage confirms that although the mean
throughput is generally greater than the encoding rate of the
media stream there is still a significant percentage of late
packets, suggesting some loss for TCP Vegas. This sup-
ports the notion that there is some relation between RTT

and throughput due to packet loss for TCP Vegas.
NewReno also sees a relationship, although it is also not

inversely proportional. Doubling the round-trip propagation
delay does not reduce NewReno’s throughput by a factor of
two. This is probably because the loss rates experienced by
the NewReno flow with a round-trip propagation delay of
50 ms and 100 ms are different.

With the decrease in mean throughput, the expected in-
crease in buffer fill times is seen for both variants. Late
packets also increase for both, from 0% and 4% at a prop-
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Figure 5. Results of Queue Disciplines for Media Rate 1 Mbps

agation delay of 10 ms to 40% and 26% at 200 ms for Ve-
gas and NewReno, respectively. There is little significant
change in mean queue size or jitter for both variants in this
series of simulations.

5.3. Router Queue Discipline

The queuing disciplines examined are Drop-Tail and
Random Early Detection (RED) [12]. With Drop-Tail
queues a network router simply buffers as many packets as
it can and any new packets arriving when the buffer is full
are simply dropped. RED routers constantly monitor the
incoming queue size and drop packets based on statistical
probabilities.

Generally RED is considered to be more fair than Drop-
Tail in allocating available resources to competing flows be-
cause the more traffic any particular flow contributes to the
queue, the more drops that flow will experience. (The de-
gree of fairness is often defined as the extent to which each
connection on the network path receives an equal share of
the available bandwidth.) Previous work with Vegas [25]
suggests that RED is a better choice when Vegas flows are
present on a network. Their results in simulated single-
bottleneck network scenarios show that both the degree and
stability of fairness of TCP Vegas using RED routers are
significantly higher than using Drop-Tail routers for multi-
ple bulk transfers.

The results for the simulation runs with a 1 Mbps media
stream are shown in Figure 5. The throughput plot shows
that both protocols achieve a higher mean throughput when
the routers use Drop-Tail rather than RED queue manage-
ment. Vegas achieves a mean throughput of approximately
2.5 Mbps with Drop-Tail and 1.75 Mbps with RED, while
NewReno achieves a mean throughput of approximately 2.5
Mbps with Drop-Tail and 1.25 Mbps with RED. Both vari-
ants see a marked decrease in throughput with RED queue
management. With this decreased throughput both variants
see increased buffer fill times. Vegas takes about twice as
long and NewReno about 2.5 times as long with RED than
with Drop-Tail.

In these simulations, RED eliminates late packets for
both variants. Both variants experienced approximately 8%

late packets with Drop-Tail. Although RED reduces the av-
erage mean throughput and late percentage for both TCP
variants in the 1 Mbps case, simulation results in [4] in-
dicate that the gain for NewReno does not continue as the
stream encoding rate is increased; for Vegas it does.

5.4. Random Loss

Most streaming media clients incorporate an application
buffer. One of the network effects that can create a need for
these buffers is packet loss. Packet loss occurs primarily at
the routers when they are congested. Other causes of packet
loss include faulty network equipment (e.g., damaged ca-
bles), and transmission medium (e.g., wireless networks).
Regardless of the cause, both TCP variants tolerate and re-
cover from packet loss. However, the detection and reaction
to loss differs between variants and it is this behaviour and
its impact on media streams that is interesting.

Packet loss is simulated by randomly dropping packets
at the bottleneck link; these simulated packet losses are in
addition to any packet losses that occur because of conges-
tion at the bottleneck router. This packet loss thus impacts
both the foreground media stream and the background traf-
fic load. The random loss is uniformly distributed and the
loss rate is varied from 0.125% to 8% by factors of two.

In Figure 6 the results for the 1 Mbps case are pre-
sented. The main observation from the throughput plot is
that NewReno is affected much more by random packet loss
than Vegas. In fact, NewReno’s mean throughput decreases
from approximately 2.5 Mbps at a loss rate equal to 0.125%

to under 0.5 Mbps at loss rate 8%. In the same interval, Ve-
gas’s throughput decreases from approximately 2.1 Mbps
to under 0.5 Mbps at loss rate 8%, however, the rate of de-
crease is significantly less than that of NewReno.

Both NewReno and Vegas have buffer fill times increase
as the packet loss rate increases due to decreased through-
put. NewReno has slightly higher fill times at each level,
but within confidence intervals this is not significant. Tied
to the decreased throughput is the result for late packets.
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Figure 6. Results of Random Loss Adjustment for Media Rate 1 Mbps

There is a low (approximately 8%) mean late packets at
0.125% loss for both variants that continues to increase for
NewReno to approximately 95% at 8% packet loss. Given
the throughput results for NewReno this is not unexpected.
Vegas, however, experiences decreases in its late packet rate
in the three subsequent levels of packet loss.

At 0.25%, 0.5% and 1% packet loss, Vegas is able to per-
form well enough not to experience any late packets. At 2%
and above, however, it does experience lates, but until 8%
packet loss the rate is significantly lower than NewReno,
even if they are too high to produce viable media streams.

With regard to queuing metrics, Vegas and NewReno see
a small decrease in mean queue length, as well as jitter as
the packet loss rate increases [4].

5.5. Scaling Background Traffic

In this section, we present results from simulations
where the background traffic load is varied. Specifically,
we systematically vary the number of FTP flows from 1 to
8, and the number of HTTP flows from 3 to 20.

Examining Figure 7 for 1 Mbps streams there is a steep
decrease in achieved mean throughput for both TCP vari-
ants until the case with 4 FTP and 10 HTTP background
flows (4:10). Throughput is reduced by approximately 50%

for both Vegas and NewReno from 1 FTP flow and 3 HTTP
flows to 4 FTP flows and 10 HTTP flows. From the 4
FTP and 10 HTTP background flows case to the 8 FTP and
20 HTTP background flows case throughput for both vari-
ants is further reduced, though not significantly for Vegas
(<10%), but a further 33% for NewReno.

Looking at the late packets metric, we see that both
variants have no lates until the 3 FTP and 8 HTTP back-
ground flow case. Vegas’s proportion of mean lates does
not increase past the level (approximately 8%) seen with
3 FTP and 8 HTTP background flows; in some cases the
proportion of Vegas lates is lower. NewReno does experi-
ence increasing lates from approximately 6% with 3 FTP
and 8 HTTP background flows to 15% with 8 FTP and
20 HTTP background flows. Queue sizes for both vari-

ants increase significantly from operating with 1 FTP and
3 HTTP background flows to 4 FTP and 10 HTTP back-
ground flows, almost doubling, but leveling off after that
point. The jitter measure experiences the same trend, in-
creasing as background traffic increases to 4 FTP and 10
HTTP flows and leveling off. The initial increase in jitter is
faster for NewReno than Vegas.

The leveling-off effect observed after the case with 4
FTP and 10 HTTP background flows is caused by the level
of background traffic. Although the background traffic is in-
creased by 100% between the case with 4 FTP and 10 HTTP
background flows and the case with 8 FTP and 20 HTTP
background flows, the available bandwidth on the bottle-
neck is not increased. At the level with 4 FTP and 10 HTTP
flows, if one ignores the HTTP traffic, each long-term TCP
flow (i.e., the media streams and FTP flows) should receive
approximately 2 Mbps of the bottleneck capacity.

Because the RTTs of the background traffic are random-
ized between [20,440] ms (plus queuing delays), and some
of the background TCP flows have higher RTTs than the
foreground media streams (50 ms + queuing delays), we see
the media flows receiving approximately 2.75 Mbps and de-
creasing slowly from that point on. Attempting to introduce
additional background flows into the already congested net-
work with 4 FTP and 10 HTTP background flows primarily
punishes the background flows due to the higher RTTs, al-
though the small decrease in mean throughput with Vegas
suggests that it is slightly more resilient to this increased
congestion at α=β=8 than NewReno.

6. Summary, Conclusions, and Future Work

This work examined and compared the characteristics
and performance of TCP Vegas against those of TCP
NewReno. In this paper, we examined selected results
including those for performance under varying round-trip
propagation delays, varying random loss, and varying back-
ground traffic loads. Our work provides the following high-
level observations:
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Figure 7. Results of Background Traffic Scaling for Media Rate 1 Mbps

• In many scenarios, TCP NewReno and TCP Vegas per-
form similarly. Both protocols perform well in “easy”
cases; both perform poorly in “difficult” cases; and
both perform better if RTT is low.

• In some scenarios, TCP Vegas shows advantages. TCP
Vegas is particularly beneficial under conditions of
high background load and under conditions of high
packet loss.

In the above summary, “easy” cases refer to simulation sce-
narios where available bandwidth is plentiful, where RTT
is relatively low, and there is little loss. “Difficult” cases
include those where the media encoding rate exceeds the
capacity of the bottleneck link, or the level of background
traffic is very high and the effective capacity of the bottle-
neck link is low.

From the results presented, we can draw the following
high-level conclusions:

• Both TCP NewReno and Vegas are suitable for media
streaming under a wide variety of conditions.

• In many scenarios, TCP Vegas is a better choice for
media streaming than TCP NewReno.

• To achieve ≤ 10% late packets, TCP Vegas must
achieve a throughput of approximately 1.5 times the
media encoding rate.

This work demonstrates that using TCP for streaming
media is feasible under many varying conditions. Empir-
ical studies have shown that this is already the case, so un-
derstanding the specific behaviors of TCP variants is valu-
able. As Vegas and NewReno perform similarly in many
cases, choosing to use one or the other may be answered
pragmatically: many good implementations of NewReno
are available, while those for Vegas are generally experi-
mental. However, having seen that TCP Vegas performs
better in some scenarios, and generally performs as well
as NewReno, one could conclude that it might be a bet-
ter choice for streaming media. Because TCP Vegas is
a sender-only modification to TCP, it could be easily de-
ployed by a purveyor of streaming media without requiring
any action from the user. This has some pragmatic obsta-
cles, such as a lack of a Vegas stack for any operating sys-
tem other than Linux 2.6, and some known problems with
the protocol, including fairness and rerouting issues.

One interesting future work direction would be to aug-
ment results presented here and in [4] using experiments
over the Internet. Another future direction could involve
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comparing the performance of other TCP variants, such as
SACK, against Vegas, or a Vegas-based protocol. Develop-
ing and testing dynamic α and β scheme for media streams
could also be valuable. We have examined long-term Vegas
flows primarily in this work; the examination of short-term
TCP flows, such as HTTP requests and replies is also im-
portant when considering the deployment of TCP Vegas.
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