Available online at www.sciencedirect.com

-zl . : PERFORMANCE
*s“ ScienceDirect EVALUATION

An International
Journal

oo X2 2
ELSEVIER Performance Evaluation 64 (2007) 1194—1213

www.elsevier.com/locate/peva

Offline/realtime traffic classification using semi-supervised learning

Jeffrey Erman?, Anirban Mahanti®*, Martin Arlitt®<, Ira Cohen®, Carey Williamson®

a Department of Computer Science, University of Calgary, Canada
b Department of Computer Science and Engineering, Indian Institute of Technology, Delhi, India
€ Enterprise Systems and Software Lab, HP Labs, Palo Alto, USA

Available online 27 June 2007

Abstract

Identifying and categorizing network traffic by application type is challenging because of the continued evolution of
applications, especially of those with a desire to be undetectable. The diminished effectiveness of port-based identification and
the overheads of deep packet inspection approaches motivate us to classify traffic by exploiting distinctive flow characteristics of
applications when they communicate on a network. In this paper, we explore this latter approach and propose a semi-supervised
classification method that can accommodate both known and unknown applications. To the best of our knowledge, this is the
first work to use semi-supervised learning techniques for the traffic classification problem. Our approach allows classifiers to be
designed from training data that consists of only a few labeled and many unlabeled flows. We consider pragmatic classification
issues such as longevity of classifiers and the need for retraining of classifiers. Our performance evaluation using empirical Internet
traffic traces that span a 6-month period shows that: (1) high flow and byte classification accuracy (i.e., greater than 90%) can be
achieved using training data that consists of a small number of labeled and a large number of unlabeled flows; (2) presence of
“mice” and “elephant” flows in the Internet complicates the design of classifiers, especially of those with high byte accuracy, and
necessitates the use of weighted sampling techniques to obtain training flows; and (3) retraining of classifiers is necessary only
when there are non-transient changes in the network usage characteristics. As a proof of concept, we implement prototype offline
and realtime classification systems to demonstrate the feasibility of our approach.
© 2007 Published by Elsevier B.V.

Keywords: Internet traffic classification; Realtime classification; Machine learning; Semi-supervised learning

1. Introduction

The demand for bandwidth management tools that optimize network performance and provide quality-of-service
guarantees has increased substantially in recent years, in part, due to the phenomenal growth of bandwidth-hungry
Peer-to-Peer (P2P) applications. Going by recent measurement studies in the literature and estimates by industry
pundits, P2P now accounts for 50%—70% of the Internet traffic [3,29]. It is, therefore, not surprising that many network
operators are interested in tools to manage traffic such that traffic critical to business or traffic with realtime constraints
is given higher priority service on their network. Critical for the success of any such tool is its ability to accurately,
and in realtime, identify and categorize each network flow by the application responsible for the flow.

* Corresponding author. Tel.: +91 11 2659 7256.
E-mail address: mahanti @csc.iitd.ac.in (A. Mahanti).

0166-5316/$ - see front matter © 2007 Published by Elsevier B.V.
doi:10.1016/j.peva.2007.06.014

http://www.elsevier.com/locate/peva
mailto:mahanti@csc.iitd.ac.in
http://dx.doi.org/10.1016/j.peva.2007.06.014

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1195

Identifying network traffic using port numbers was the norm in the recent past. This approach was successful
because many traditional applications use port numbers assigned by or registered with the Internet Assigned Numbers
Authority. The accuracy of this approach, however, has been seriously dented because of the evolution of applications
that do not communicate on standardized ports [3,17,28]. Many current generation P2P applications use ephemeral
ports, and in some cases, use ports of well-known services such as Web and FTP to make them indistinguishable to
the port-based classifier.

Techniques that rely on inspection of packet contents [15,20,22,28] have been proposed to address the diminished
effectiveness of port-based classification. These approaches attempt to determine whether or not a flow contains a
characteristic signature of a known application. Studies show that these approaches work very well for today’s Internet
traffic, including P2P flows [15,28]. In fact, commercial bandwidth management tools use application signature
matching to enhance robustness of classification.

Nevertheless, packet inspection approaches pose several limitations. First, these techniques only identify traffic
for which signatures are available. Maintaining an up-to-date list of signatures is a daunting task. Recent work
on automatic detection of application signatures partially addresses this concern [15,20]. Second, these techniques
typically employ “deep” packet inspection because solutions such as capturing only a few payload bytes are
insufficient or easily defeated (See Section 4.5 for empirical evidence of this.). Deep packet inspection places
significant processing and/or memory constraints on the bandwidth management tool. On our network, for example,
we have observed that during peak hours, effective bandwidth is often limited by the ability of the deployed
commercial packet shaping tool to process network flows. Finally, packet inspection techniques fail if the application
uses encryption. Many BitTorrent clients such as Azureus, ptorrent, and BitComet already allow use of encryption.

In this paper, we propose a methodology that classifies (or equivalently, identifies) network flows by application
using only flow statistics. Our methodology, based on machine learning principles, consists of two components: a
learner and a classifier. The goal of the learner is to discern a mapping between flows and applications from a training
data set. Subsequently, this learned mapping is used to obtain a classifier. Traditionally, learning is accomplished
using a fully labeled training data set, as has been previously considered in the traffic classification context [23,27].
Obtaining a large, representative, training data set that is fully labeled is difficult, time consuming, and expensive. On
the contrary, obtaining unlabeled training flows is inexpensive.

In our work, we develop and evaluate a technique that enables us to build a traffic classifier using flow statistics from
both labeled and unlabeled flows. Specifically, we build the learner using both labeled and unlabeled flows and show
how unlabeled flows can be leveraged to make the traffic classification problem manageable. This semi-supervised
[1,6] approach to learning a network traffic classifier is one key contribution of this work. There are three main
advantages to our proposed semi-supervised approach. First, fast and accurate classifiers can be obtained by training
with a small number of labeled flows mixed with a large number of unlabeled flows. Second, our approach is robust
and can handle both previously unseen applications and changed behavior of existing applications. Furthermore,
our approach allows iterative development of the classifier by allowing network operators the flexibility of adding
unlabeled flows to enhance the classifier’s performance. Third, our approach can be integrated with solutions that
collect flow statistics such as Bro [25]. It may also be possible to integrate our approach with flow management
solutions such as Cisco’s NetFlow [5].

Our work is guided by prototype implementations of offline and realtime classification systems. Several practical
considerations are pertinent in the design of our classification system including size and composition of the training
data set, labeling of flows in the training data set, choice of flow statistics, expected longevity of the classifiers, and
ability to detect when the system needs to relearn the flow characteristics to application mapping. Our paper provides
insights into each of the above-mentioned design considerations. The remainder of this section presents a summary of
our key results.

Using our prototype classification systems, we find that flow statistics can indeed be leveraged to identify, with
high accuracy, a variety of different applications, including Web, P2P file sharing, email, and FTP. We obtained flow
accuracies as high as 98% and byte accuracies as high as 93%. In addition, our results show that the presence of “mice”
and “elephant” flows in the Internet complicates the design of classifiers, especially of those with high byte accuracy,
and necessitates the use of weighted sampling techniques to obtain training flows. We find that larger training data sets
consistently achieve higher classification accuracies. While larger training data sets may appear to make the task of
labeling the training data set time expensive and difficult, in practice, a priori labeling of only a fraction of the training
flows is sufficient.

1196 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

Another distinguishing aspect of our work is the implementation of a realtime classifier in the Bro [25] Intrusion
Detection System (IDS). Note that determining the application type while a flow is in progress is harder than offline
identification because only partial information is available. We address this problem by designing a layered classifier
that classifies flows at specific packet milestones using flow statistics that are available at that time.

We also consider the longevity of classifiers (i.e., how long they remain accurate in an operational network). Our
experiments with long-term Internet packet traces suggest that classifiers are generally applicable over reasonably long
periods of time (e.g., in the order of weeks) with retraining necessary when there are significant changes in the network
usage patterns including introduction of new applications. To facilitate retraining, we present a technique for detecting
retraining points. We expect this retraining point detection technique to be used with the realtime classifier such that
once retraining is deemed necessary, collection of additional flows for use as training data can be automatically
initiated.

The remainder of this paper is structured as follows. Related work is presented in Section 2. Section 3 presents our
proposed semi-supervised classification method. To evaluate our proposal, we needed Internet packet traces for which
base truth (i.e., the actual flow to application mapping) was available. Since such traces were not publicly available, we
collected about a terabyte of full packet traces that span a 6-month period and established their base truth ourselves;
Section 4 describes these data sets. Section 5 evaluates the design alternatives for offline classification. Section 6
introduces and evaluates our realtime classifier. Section 7 discusses the history of the traffic classification problem,
longevity, and retraining point detection. Section 8§ presents conclusions and future work directions.

2. Related work

This paper complements our recent work on traffic classification at the network core [10]. In the network core,
typically only unidirectional traces are available. We developed a method to estimate the flow statistics of the
unseen packets and used these estimates in conjunction with statistics from the direction seen to classify traffic.
The classification framework in [10] assumed availability of a fully labeled training data set. In the current paper, we
enhance the classification framework by leveraging unlabeled training data to improve the precision of our classifier,
and by allowing classifiers to be incrementally built over time. In addition, we consider pragmatic issues such as
selecting training data sets to obtain high byte accuracy, realtime classification, classifier longevity, and retraining of
classifiers.

The works of Bernaille et al. [2] and Crotti et al. [7] use a classification framework that is similar to our previous
work [10]. In [2], Bernaille et al. explored the potential of classifying traffic by using the sizes of the first P packets
of a TCP session. Conceptually, their approach is similar to payload-based approaches that look for characteristic
signatures during protocol handshakes to identify the application and is unsuccessful classifying application types
with variable-length packets in their protocol handshakes such as Gnutella. Neither of these studies assesses the byte
accuracy of their approaches which makes direct comparisons to our work difficult. Our evaluation suggests that
achieving a high flow accuracy is relatively easy. The more difficult problem is obtaining a high byte accuracy as well.
Our work concentrates on achieving both high flow and byte accuracy [12].

Prior studies focused on traces with limited number of applications: 10 in [2] and only 3 in [7]. In this paper, we
use traces that span several months, and furthermore, we try to classify all traffic in our traces because we find that
some applications with only a few flows can still contribute substantially to the amount of bytes transferred in the
network (See Section 5.5).

Traffic identification approaches that rely on heuristics derived from analysis of communication patterns of hosts
have also been proposed [17,18,31]. For example, Karagiannis et al. developed a method that leverages the social,
functional, and application behaviors of hosts to identify traffic classes [18]. Concurrent with [18], Xu et al. [31]
developed a methodology, based on data mining and information-theoretic techniques, to discover functional and
application behavioral patterns of hosts and the services used by the hosts. They subsequently use these patterns
to build general traffic profiles, for example, “servers or services”, “heavy hitter hosts”, and “scans or exploits”. In
contrast, our approach uses only the characteristics of a single flow to classify network traffic, and achieves comparable
or better accuracies when classifying traffic, including traffic originating from P2P applications.

3. Classification method

Network monitoring solutions operate on the notion of network flows. A flow is defined here to be as a series

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1197

of packet exchanges between two hosts, identifiable by the 5-tuple (source address, source port, destination address,
destination port, transport protocol), with flow termination determined by an assumed timeout or by distinct flow
termination semantics. For each flow, network monitors can record statistics such as duration, bytes transferred, mean
packet interarrival time, and mean packet size. This section outlines our classification method that can map flows
(characterized by a vector of flow statistics) to applications (or traffic classes), with high accuracy and in realtime.

We now introduce notations and terminology to describe the problem formally. Let X = {Xi,..., Xy} be a set
of flows. A flow instance X; is characterized by a vector of attribute values, X; = {X;;|1 < j < m}, where m is
the number of attributes, and X;; is the value of the jth attribute of the ith flow. In the traffic classification context,
examples of attributes include flow statistics such as duration, bytes transferred, and total number of packets. The
terms attributes and features are used interchangeably in the machine learning literature, and often X is referred to as
a feature vector. Also, let Y = {Y1, ..., ¥, } be the set of traffic classes, where ¢ is the number of classes of interest.
The Y;’s can be classes such as “HTTP”, “Streaming”, and “Peer-to-Peer”. Our goal, therefore, is to learn a mapping
from a m-dimensional variable X to Y. This mapping forms the basis for classification models, also referred to as
classifiers in the machine learning literature.

Traditional learning methods of classifiers use a training data set that consists of N tuples (Xj, Y;j) and learn a
mapping f(X) — Y. The goal is to find a mapping that (correctly) generalizes to previously unseen examples. Such
learning methods are referred to as supervised learning methods [8]. Supervised machine learning techniques have
previously been applied for classifying network flows. Roughan et al. [27] classified flows into four predetermined
traffic classes (interactive, bulk data transfer, streaming, and transactional) using the Nearest Neighbor and the Linear
Discriminate Analysis classification techniques. Moore and Papagiannaki [22] evaluated the suitability of a Naive
Bayes classifier for the Internet traffic classification problem. Recently, Williams et al. [30] presented a preliminary
comparison of five supervised learning algorithms.

In designing our classification method, we are interested in overcoming two main challenges faced by supervised
techniques:

(i) Labeled examples are scarce and difficult to obtain. With few labeled examples, traditional supervised learning
methods often produce classifiers that do not generalize well to previously unseen flows.

(i1) Not all types of applications generating flows are known a priori, and new ones may appear over time. Traditional
supervised methods force a mapping of each flow into one of g known classes, without the ability to detect new
types of flows.

To address these challenges, we designed a method that combines unsupervised and supervised methods. Our
classification method consists of two steps. We first employ a machine learning approach called clustering [8] to
partition a training data set that consists of scarce labeled flows combined with abundant unlabeled flows. Clustering
partitions the training data set into disjoint groups (“clusters”) such that flows within a group are similar to each other
whereas flows in different groups are as different as possible. Second, we use the available labeled flows to obtain a
mapping from the clusters to the different known g classes. This step also allows some clusters to remain unmapped,
accounting for possible flows that have no known labels. The result of the learning is a set of clusters, some mapped
to the different flow types. This method, referred to as semi-supervised learning [1,4,6], has received considerable
attention, recently, from the machine learning community.

We note that our application of semi-supervised learning is novel in that we leave some of the clusters unlabeled.
This is different from the traditional application of semi-supervised learning; in the traditional application of this
approach, all classes are known a priori, and unlabeled flows are used to improve precision of the classifier. In the
traffic classification problem, however, not all classes are known a priori, and thus, we use the unlabeled clusters to
represent new or unknown applications. In effect, unlabeled flows are used to improve precision and handle unknown
applications. The remainder of this section discusses the details of the classification method.

3.1. Step 1: Clustering

The first step in training our classifier is to leverage all available training flows and group them into clusters.
In the machine learning paradigm, clustering is an example of an unsupervised learning algorithm [8] because the
partitioning of the flows in the training data is guided only by the similarity between the flows and not by any
predetermined labeling of the flows. A key benefit of the unsupervised learning approach is the ability to identify

1198 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

hidden patterns. For example, new applications as well as changed behavior of existing applications can be identified
by examining flows that form a new cluster.

Clustering algorithms use a measure d(X;, Xj) of similarity between feature vectors x; and x;j, and find a partition
that attempts to place similar examples in the same clusters, and dissimilar examples in different clusters. There are
various similarity metrics that can be used. Without loss of generality, in this paper we use the Euclidean distance as
the similarity measure:

m 172
d(xi, Xj) = |:Z(xik - xjk)z] . (D

k=1

Clustering of Internet traffic using flow statistics has received some attention in the literature. As such, the focus
of prior work [21,32] and our own work [11] has been on demonstrating the ability of clustering algorithms to group
together flows according to application type using only flow statistics and not on classifying new traffic.

There are many different clustering algorithms in the machine learning literature. We emphasize that our approach
is not specific to any particular clustering algorithm. In our earlier work, we investigated three different clusterings
algorithms K-Means, DBSCAN, and EM Clustering [11]. Although we have successfully developed classifiers based
on each of these algorithms, in this paper we focus on the K-Means algorithm [8]. Several factors prompted us to
select the K-Means algorithm over the other more sophisticated clustering algorithms. First, it is simple and easy to
implement. This allows the classifier to have the least amount of computational overhead because the data structures
representing the clusters allow fast computations of d(x;, Xj). Second, our prior work suggests that K-Means can
generate clusters that largely consist of a single application type [11]. The other clustering algorithms investigated
in some cases provided more pure clusters, however, once converted into classifiers the difference in classification
accuracy obtained was negligible. Third, the more complex clustering algorithms required significantly longer learning
time than K-Means (e.g., hours versus minutes). Finally, the K-Means algorithm converges to a well-understood
probabilistic model: the Gauss Mixture Model [8].

The K-Means algorithm partitions the feature vectors in the training data set into a fixed number of spherical-
shaped clusters by minimizing the total mean square error between feature vectors and the cluster centroids. Starting
with an initial partition (random or other), the algorithm iteratively assigns each vector to the cluster whose centroid
is nearest, and recalculates the centroids based on the new assignments. This process continues until membership
within clusters stabilizes. The complexity of the algorithm is O (I Kn) where [is the number of iterations and n is the
number of vectors in the training data set [8]. For the data sets tested in this paper, the algorithm converges within a
few iterations.

3.2. Step 2: Mapping clusters to applications

The output of the K-Means clustering algorithm is a set of clusters, represented by their centroids, y,. Given a flow
feature vector X, we assign it to one of the clusters by finding the nearest centroid to X, using:

Cy =arg Ir}(in d(x, yi),)

where d(-, -) is the distance metric chosen in the clustering step. For K-Means with Euclidean distance, this step
amounts to the maximum likelihood cluster assignment solution.

However, knowing to which cluster a flow feature vector most likely belongs does not provide the actual
classification to one of the application types. Therefore, we need a mechanism to map the clusters found by the
clustering algorithm to the different application types.

We use a probabilistic assignment to find the mapping from clusters to labels: P(Y = y;|Cy), where j =1,...,¢
(g being number of application types) and k = 1,..., K (K being the number of clusters). To estimate these
probabilities, we use the set of flows in our training data that are labeled to different applications (xi, y;),i =1, ..., L,

where L is the total number of different labeled applications. P(Y = y;|Cy) is then estimated by the maximum
likelihood estimate, %, where 7 j; is the number of flows that were assigned to cluster k with label j, and ny is the
total number of (labeled) flows that were assigned to cluster k. To complete the mapping, clusters that do not have any
labeled examples assigned to them are defined as “Unknown” application types, thus allowing the representation of
previously unidentified application types.

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1199

Finally, the decision function for classifying a flow feature vector x is the maximum a posterior decision function:
y = arg max (P(y;|Ch)), 3
Y1 Vg

where Cy is the nearest cluster to X, as obtained from Eq. (2). Our approach uses hard clustering. However, labeling
using soft clusters can easily be accommodated into our framework. For instance, the confidence of a flow’s label
could be based on P (y;|Cy) and labels below a certain threshold could be considered “Unknown”. Exploration of soft
clustering and its potential benefits are left for future work.

4. Data sets

This section describes the data sets used in this work. Section 4.1 outlines our trace collection methodology.
Section 4.2 presents high-level summary statistics of our traces. Section 4.3 describes the method used to establish
the base truth of the flow to application mappings for collected traces. An overview of the data sets is provided in
Section 4.4. Section 4.5 presents some empirical observations as additional motivation for our work.

4.1. Traces and collection methodology

To facilitate our work, we collected traces from the Internet link of a large university. Depending on the specific
subnets traced, the collected traces are categorized as Campus, Residential, and Wireless LAN (WLAN).

Although our classification approach uses only flow statistics, application-layer information is helpful for training
the classifiers and required for validating the results. Thus, we decided to collect full packet traces. An additional goal
of our work is to examine traffic over an extended period of time, to assess the longevity of the classifiers.

The limited disk space available at the network monitor used for trace collection precludes the possibility of
continuous full packet tracing. Thus, we collected forty-eight 1 h traces, over a span of six months, of traffic to
and from all academic units and laboratories on the campus. Specifically, we collected eight 1 h traces each week,
for five consecutive weeks in the spring of 2006 (April 6-May 7) and also an additional week in the fall of 2006
(September 28). The traces were collected on Thursdays, Fridays, Saturdays, and Sundays from 9-10 am and 9-10 pm
on each of these days. Our reasoning for this collection scheme is as follows. First, we expected there to be noticeable
differences in usage between the morning and evening hours. Second, we expected there to be noticeable differences
in usage between work days and non-work days. Third, the collection period spanned several important transitions in
the academic year: the busy final week of the semester (April 6-9), a break before final examinations (April 11-16),
the final examination period (April 17-28), the start of summer break for students (April 29-May 7), and a week in
the fall semester (September 28—October 1).

Based on the above observations, we expected that our traces would capture any substantial changes that occurred
in the traffic during the collection period, while substantially reducing the volume of data we needed to collect. We
call this set of forty-eight traces the Campus traces; these contain Internet traffic from faculty, staff, and students. The
network infrastructure uses a signature-based bandwidth management tool to actively limit all identifiable P2P traffic.
In addition, user accounts are actively policed for the presence of non-academic content.

The Residential trace was collected on October 20, 2006 from midnight to 10 am from a specific set of subnets
corresponding to the student residence network of the university. The student residence network is of interest because
it is not actively policed. Instead, there is a “soft” limit on the bandwidth available to each user, and in addition, the
total bandwidth usage of this network is limited during work hours.

The WLAN trace is a 1 h trace, collected from the campus WLAN from 9 am to 10 am on September 28, 2006.
The WLAN covers many of the buildings on campus, and is open to faculty, staff, and students.

4.2. High-level statistics of the traces

In total, 1.39 billion IP packets containing 909.2 GB of data were collected. Of this, 89.0% of the packets and
95.1% of the bytes were transferred using TCP and 10.2% of the packets and 4.7% of the bytes were transferred using
UDP. The 10 h Residential trace contains 97.5 million IP packets and 58.3 GB of data. Of this, 85.1% of the packets
and 83.2% of the bytes are TCP and 14.5% of the packets and 16.6% of the bytes are UDP. The WLAN trace contains
18.4 million IP packets and 11.6 GB of data. Of this, 95.7% of the packets and 98.3% of the bytes are TCP and 1.8%
of the packets and 3.6% of the bytes are UDP.

1200 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

Table 1

Application breakdown (Campus traces)

Class Flows Flows (%) Bytes (GB) Bytes (%)
HTTP 9,213,424 39.5 3344 38.7
P2pP 620,692 2.7 310.9 36.0
EMAIL 1,123,987 4.8 42.5 4.9
FTP 23,571 0.1 20.3 23
P2P Encrypted 35,620 0.2 12.3 1.4
STREAMING 3,396 0.0 7.4 0.9
DATABASE 3,057,362 13.1 3.0 0.3
CHAT 26,869 0.1 1.0 0.1
OTHER 51,298 0.2 32.1 3.7
UNKNOWN 990,492 4.2 70.1 8.1
UNKNOWN (443) 1,409,707 6.0 29.7 34
UNKNOWN (NP) 6,765,214 29.0 1.0 0.1
Total 23,321,632 100.0 864.6 100.0

This paper focuses exclusively on classifying TCP traffic. As discussed above, our traces also had non-TCP traffic
(e.g., UDP and ICMP). There are two main reasons for our focus on TCP flows. First, TCP traffic accounts for a
significant fraction of the overall traffic. Classifying this traffic accurately allows evaluation of the robustness of our
approach. Second, if flow characteristics from other protocols were collected, it would likely be advantageous to have
a separate classifier for the non-TCP traffic. We leave this as a useful direction for future work.

4.3. Methodology for establishing base truth

We established base truth for the traces using an automated process that consists of payload-based signature
matching, heuristics, and HTTPS identification. We used hand classification as a validation method.

The payload-based classification step uses Bro [25], which has a signature matching engine that generates a match
event when the packet payload matches a regular expression specified for a particular rule. We used many of the same
methods and signatures described by Sen et al. [28] and Karagiannis et al. [17], but augmented some of their P2P
signatures to account for protocol changes and some new P2P applications.

Some P2P applications are now using encryption. For example, BitTorrent is using a technique called Message
Stream Encryption and Protocol Encryption. To identify some of this encrypted P2P traffic, we used the following
heuristic. Specifically, we maintain a lookup table of (IP address, port number) tuples from flows that have recently
(i.e., within 1 h) been identified to be using P2P. If a flow is unlabeled and there is a match in our P2P lookup table,
we label it as possible P2P. This mechanism works on the basis that some P2P clients use both encryption and plain
text.

We also analyzed unlabeled traffic on port 443 to establish whether or not this traffic is indeed HTTPS. This
verification was done using an experimental version of Bro that has this detection capability. In addition, automated
random checks were performed to determine whether or not flows labeled as HTTPS involved at least one host that
was a Web server.

4.4. Overview of the data sets

Table 1 summarizes the applications found in the forty-eight 1 h Campus traces. Application breakdowns for the
10 h Residential trace and the 1 h WLAN trace are shown in Tables 2 and 3, respectively.

Over 29 different applications' were identified. To simplify the presentation, we group the applications by category.
For example, the P2P category includes all identified P2P traffic from protocols including BitTorrent, Gnutella, and
KaZaA. P2P flows identified using heuristics are labeled P2P Possible. The OTHER category constitutes various
applications that were identified but did not belong to a larger group and did not account for a significant proportion

1These applications include: BB, BitTorrent, DirectConnect, eDonkey, FTP, Gnutella-based P2P programs (e.g., LimeWire, BearShare,
Gnucleus, Morpheus, FreeWire), GoToMyPC, HTTP, ICQ, IDENT, IMAP, IMAP SSL, JetDirect, KaZaA, MySQL, MSSQL, MSN Messenger,
MSN Web Cam, NNTP, POP3, POP3 SSL, RTSP, Samba, SIP, SMTP, SOAP, SpamAssassin, SSH, SSL, VNC, and Z3950 Client.

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1201

Table 2

Application breakdown (Residential trace)

Class Flows Flows (%) Bytes (GB) Bytes (%)
P2P 297,781 17.6 38.52 79.3
HTTP 118,485 7.0 3.37 6.9
P2P Encrypted 39,943 2.4 0.34 0.7
EMAIL 1,159 0.1 0.12 0.2
STREAMING 29 0.0 0.07 0.1
CHAT 1,207 0.1 0.05 0.1
OTHER 190 0.0 0.03 0.1
UNKNOWN 91,275 5.4 5.88 12.1
UNKNOWN (NP) 1,135,242 67.2 0.13 0.3
UNKNOWN (443) 4,833 0.3 0.06 0.1
Total 1,690,144 100.0 48.56 100.0
Table 3

Application Breakdown (WLAN trace)

Class Flows Flows (%) Bytes (GB) Bytes (%)
P2P 61,603 15.9 6.90 60.3
HTTP 145,177 37.5 2.94 25.7
P2P Encrypted 7,842 2.0 0.13 1.2
CHAT 2,928 0.8 0.05 0.5
EMAIL 695 0.2 0.02 0.1
FTP 157 0.0 0.00 0.0
STREAMING 13 0.0 0.00 0.0
OTHER 374 0.1 0.01 0.1
UNKNOWN 16,100 42 1.16 10.1
UNKNOWN (443) 8,581 2.2 0.22 2.0
UNKNOWN (NP) 143,631 37.1 0.02 0.1
Total 387,101 100.0 11.40 100.0

of flows. The tables also list three categories of UNKNOWN flows. There are UNKNOWN (NP) flows that have no
payloads. Most of these are failed TCP connections, while some are port scans. The UNKNOWNS (443) are flows on
port 443; these are likely to be HTTPS traffic. The third category is simply labeled as UNKNOWN to reflect the fact
that we have not identified the applications that generated this traffic. The unknown flows are not used in our analysis.
General observations from these data sets follow.

On the campus network (Table 1), HTTP, DATABASE, and EMAIL traffic contribute a significant portion of the
total flows. On this network, P2P contributes only 2.7% of the flows. However, P2P still accounts for a considerable
portion, approximately 36%, of the bytes. In contrast, the traffic from the residential network (Table 2) exhibits
comparatively less diversity in the usage of applications, with HTTP and P2P being the dominant applications. In
the 10 h Residential trace, P2P has a significant presence, both in terms of number of flows and number of bytes. We
attribute this difference, somewhat speculatively, to the network use policies in place and the profile of the network
users. As mentioned earlier, the campus network is used by faculty, staff, and students, and is actively regulated for
non-academic content. Furthermore, the network infrastructure uses signature-based identification to severely throttle
P2P traffic. In contrast, the residential network is used exclusively by students, is not actively policed, and only applies
a soft limit on the bandwidth available to each user.

Table 4 shows that BitTorrent and Gnutella-based P2P applications such as BearShare, LimeWire, Morpheus, and
Gnucleus are prevalent on the residential network. KaZaA was hardly seen in the traces.

4.5. Empirical motivation for our work

We supplement our trace data analysis with three empirical observations that further motivate our traffic

1202 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

Table 4

P2P breakdown (Residential trace)

Application Flows Flows (%) Bytes (GB) Bytes (%)
BitTorrent 286,794 96.3 22.00 57.1
Gnutella-based 10,066 3.4 16.47 427
eDonkey 921 0.3 0.05 1.4
Other 161 0.1 0.01 0.4
Total 297,942 100.0 38.50 100.0
Table 5

P2P port usage (Residential trace)

Application Non-standard port (Flows (%)) Non-standard port (Bytes (%))
BitTorrent 91.7 84.0

Gnutella-based 82.1 99.1

eDonkey/eMule 89.1 99.0

classification work. These observations concern port numbers, pad bytes, and encryption.

Table 5 shows that use of non-standard ports is prevalent.”> Approximately 92% of the BitTorrent flows used non-
standard ports. This contrasts starkly with the study by Sen et al. [28] in 2004 where they found that only 1% of
the BitTorrent flows used non-standard ports. This provides further evidence on the declining effectiveness of port-
based classification. Fig. 1 shows the empirical distribution of variable-length padding observed in Gnutella before
the characteristic payload signature was found. We found that collecting only the initial 64 bytes of the payload bytes
will allow approximately only 25% of the Gnutella flows to be identified using payload signatures. Over 400 payload
bytes of each packet would need to be captured to increase the number identified to 90%. Furthermore, an application
could easily make the length greater than 400 bytes if it helped avoid detection.

Finally, our base truth establishment process indicates the presence of encrypted traffic, most of which is likely to
be from P2P applications. We have labeled these as P2P Encrypted in Tables 1-3. We believe that as P2P applications
evolve, encryption will become the norm, and in that case, packet inspection techniques are likely to fail.

5. Offline classification
5.1. Design considerations

We implemented a prototype offline classification system, incorporating both steps of the classification
methodology, in approximately 3000 lines of C++ code. In this section, we discuss the design considerations that
affect the performance of the classifier. The design considerations are:

(i) Composition of the training data set: There are two related considerations, the fraction of the training flows that
are labeled, and the methodology used to select flows for the training which are discussed in Sections 5.2 and
5.3, respectively. Unless stated otherwise, we assume that all training flows are labeled.
(i) The features used to characterize the flows: Feature selection is discussed in Section 5.4.
(iii) The number of clusters K generated in the clustering step of the classification method: This parameter can be used
to tune our classifier to achieve better accuracy, however, at the cost of additional computation for the classifier.
Unless stated otherwise, we assume K = 400. We explore this factor in Section 5.5.

Our primary performance metrics are flow and byte accuracy. Flow accuracy is the number of correctly classified
flows to the total number of flows in a trace. Byte accuracy is the number of correctly classified bytes to the total
number of bytes in the trace. In our results, we report for a given test data set the average results and the 95%
confidence interval from 10 runs each with a different training set of feature vectors. Unless stated otherwise, the
training data set is selected from the test data set used for evaluation. In all our experiments the test data set is a factor
of 10-100 larger than the training data set.

2 Default port numbers used were BitTorrent (6881-6889,32459), Gnutella-based (6346), eDonkey/eMule (4661,4662,4711,4712).

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1203

1

=2 e o9
S >

Empirical Distribution

el
(M)

0 200 400 600 800 1000 1200 1400
Byte Number

Fig. 1. Variable-length padding in Gnutella.

1

400 Clusters =
200 Clusters
0.98 100 Clusters ——
>
8
5 0.96
8
<
= 094
o
w
0.92
0.9

0 2 4 6 8 10 12 14 16 18 20
Number of Labels Per Cluster

Fig. 2. Impact of selective labeling of flows after clustering.

5.2. Semi-supervised learning

Labeling of training feature vectors is one of the most time-consuming steps of any machine-learned classification
process, especially because many Internet applications purposefully try to circumvent detection. We expect a vendor
to achieve labeling of flows using a variety of orthogonal approaches, including payload analysis, port-based analysis,
experimentation, expert knowledge, or a combination thereof. Clearly, it is an advantage if high classification accuracy
is achieved by labeling only a small number of flows. Recall that our approach allows clustering to use both labeled and
unlabeled training flows, and then relies on only the labeled flows to map clusters to applications. This semi-supervised
approach to training the classifier leverages the fact that clustering attempts to form disjoint groups, wherein each
group consists of objects that bear a strong similarity to each other. Thus, the hypothesis is that if a few flows are
labeled in each cluster, we have a reasonable basis for creating the cluster to application type mapping.

To test the aforementioned hypothesis, we conducted a number of experiments. The first set of experiments
considers the possibility of the entire training data set being unlabeled. In this case, we can selectively label a few
flows from each cluster and use these labeled flows as the basis for mapping clusters to applications. The hypothesis
here is that the clustering step produces “pure” (in the sense of application types) clusters; in our earlier work [11],
we provided empirical evidence of this hypothesis. Fig. 2 presents results from this experiment. We assume that we
are provided with 64,000 unlabeled flows. Once these flows are clustered we randomly label a fixed number of flows
in each cluster. Interestingly, the results show that with as few as two labeled flows per cluster and K = 400, we can
attain 94% flow accuracy. The increase in classification accuracy is marginal once five or more flows are labeled per
cluster.

For the second set of experiments, results of which are shown in Fig. 3, we utilized 80, 800, and 8000 labeled flows,
and mixed these labeled flows with varying numbers of unlabeled flows to generate the training data set. Both labeled
and unlabeled flows were randomly chosen from the April 6, 9 am Campus trace. These training flows were used to
learn the flow to application mapping, with K = 400 in the clustering step, and we tested the resulting classifier on
the same Campus trace. Note that there are 966,000 flows in this trace.

Fig. 3 reports the precision of the classifier. Precision is defined as the number of correctly labeled flows to the
total number of labeled flows, with those labeled “unknown” excluded from the calculation. We observe that for a
fixed number of labeled training flows, increasing the number of unlabeled training flows increases our precision.

1204 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

1 1
—
0.99 r-—-
) c 08 80 Labels ——
5 800 Labels
- 0.98 - 8000 Labels —=—
=] c 0.6 A
w
2 0.97 l l =
e I 5| = 04
o —W * 3 & =
0.96 I 1 a
@
80 Labels —— O 0.2 {
G55 800 Labels
0.94 8000 Labels —— 0 . .
LI L - A S L 14 2t 22 2d 2 b B o
Number of Unlabeled samples (x1000) Number of Unlabeled samples (x1000)
(a) Precision. (b) Fraction labeled as unknown.

Fig. 3. Impact of training with a mix of labeled and unlabeled flows.

This is an important empirical result because unlabeled flows are relatively inexpensive to obtain and the penalty for
incorrect labeling of a flow might be high (e.g., assigning lower priority to business critical traffic). Thus, by simply
using a large sample of unlabeled flows, the precision rate can be substantially increased. This experiment further
demonstrates the potential of the semi-supervised learning method.

The semi-supervised classifier makes it possible to start with a few labeled flows, and over time incrementally
label more training flows so as to improve the classification performance. The results in Fig. 3 show that even when
a very small fraction of flows are labeled the precision of the classifier remains high. As additional labels are added,
the precision remains high, albeit decreasing slightly, but has the accompanying effect of significantly reducing the
amount classified as unknown. Further reductions in “unknown” classifications can be hastened by “cherry picking”
which flows to label; specifically, obtaining a few labels corresponding to highly used clusters can substantially reduce
the number of unknowns.

5.3. The dichotomy of elephant and mice flows

The presence of elephant and mice flows in Internet traffic is well documented (see [24] and the references therein).
According to this phenomena, a majority of the Internet flows are small-size “mice” flows and only a small fraction
are large-sized “elephant” flows; however, the mice flows account for only a small percentage of the total number
of packets and bytes transmitted on the Internet. Without proper representation of both types of flows in the training
data set, we run the risk of producing a classifier that may, for example, have a high flow accuracy but a low byte
accuracy [12]. In the machine learning literature, this problem is referred to as the class imbalance problem. In
this section, we investigate how sampling methodology influences the selection of both elephant and mice flows in
the training data set and helps address the class imbalance problem. Other potential techniques for addressing this
problem are discussed elsewhere [12].

We considered both sequential and random sampling techniques. All experiments in this section are with training
data set of 8000 labeled flows. For sequential sampling, we generated each of the ten training data sets needed for the
experiments by randomly picking a point to begin sequential selection of flows. Along with simple random sampling,
we also considered weighted random sampling techniques that bias selection of samples according to the transfer size
of a flow or according to the duration of a flow. Our weighted sampling policy takes 50% of the flows from below and
50% of the flows from above the 95th percentile of the flow transfer sizes or of the flow durations for the weighted
bytes and duration policies, respectively. We believe this weighted scheme allows additional clusters to be formed to
better represent elephant flows.

Fig. 4 shows classification results from a single Campus trace (April 6, 9 am Campus trace), the Residential trace,
and the WLAN trace. We observe very high flow accuracies, in excess of 95% with the Campus traces and around
90% with the Residential and WLAN traces, irrespective of the sampling technique. However, the corresponding
byte accuracies are lower and they vary across the traces and with the sampling strategy. Depending on the sampling
strategy, byte accuracies between 50% and 85% are attained with the Campus traces, whereas byte accuracies between
80% and 93% and between 60% and 85% are obtained for the Residential and WLAN traces, respectively.

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1205

Flow = Flow = Flow =
1 B 1 3 Byte_mg :
0.9 0.9 1 0.9 I
0.8 0.8 i 0.8 z]
0.7 3 i 0.7 0.7
3l Il o 0s
0.4 0.4 04
0.3 0.3 0.3
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0

Accuracy
Accuracy
Accuracy

Sequential Random Weighted Weighted Sequential Random Weighted Weighted Sequential Random Weighted Weighted
Duration Bytes Duration Bytes Duration Bytes
(a) April 6, 9 am campus trace. (b) Residential trace. (c) WLAN trace.

Fig. 4. Impact of sampling methodology on classification accuracy.

1 1 1

5 - Fluw i lgo\g 0‘9: Flow
08 08 0.8
07 07 0.7 1
06 06 0.6 |
05 05 0.5
04 0.4 04 1
03 03 03 1
02 02 02 1
0.1 0.1 0.1 1
0 0 0!

Database Email HTTP Email HTTP Chat
(a) Campus trace. (b) Residential trace. (c) WLAN trace.

Accuracy
Accuracy
Accuracy

Fig. 5. Classification accuracy by application.

Our experiments and the results in Fig. 4 also show that sequential sampling for selecting training flows performs
poorly in comparison to the random and weighted random sampling techniques. For example, in the WLAN trace, on
average, byte accuracy of 61% is achieved with sequential sampling whereas byte accuracy of 86% is achieved with
weighted byte sampling. The weighted byte sampling technique results in a 41% improvement of the byte accuracy
compared to that with sequential sampling. Similar improvements in byte accuracies are observed in experiments
with the remaining forty-seven Campus traces. The byte accuracies with the Residential trace are generally higher;
yet, a modest improvement of 13% can be achieved by switching from sequential to weighted byte sampling. In
general, the weighted bytes sampling technique achieves the best byte accuracies when classifying traffic. We attribute
this improved classification performance to the increased probability of forming more representative clusters for
infrequently occurring elephant flows. Finally, it is worth noting that the large improvement in byte accuracy is
possible with only a marginal reduction in flow accuracy.

We conclude this section with a discussion of classification accuracy by application type. Fig. 5 shows the
classification accuracies for applications that contribute at least 0.5% of the flows or bytes in the traces. The results
are from the weighted byte sampling experiments shown in Fig. 4. Overall, our approach is able to classify any
type of traffic, including P2P traffic, provided there are enough samples in the training data set from which the
mapping between flows and applications may be learned. For the Campus trace considered (Fig. 5(a)), we find that the
classification accuracy for P2P traffic is lower than that for other traffic because P2P flows account for only a small
percentage, typically less than 3% of the total flows, and therefore, our sampling techniques are unable to capture
enough of the P2P dynamics to learn the flow to application mapping. It is the misclassification of P2P flows that
results in the overall lower byte accuracy seen in Fig. 4(a). As can be seen in Table 1, P2P accounts for a small
fraction of the flows but a large fraction of the total bytes. When P2P is prominent (Fig. 5(b) and (¢)), as in the WLAN
and the Residential traces, we achieve flow and byte accuracies near 90% for this type of traffic.

5.4. Feature selection

Another important design choice in training our classifiers is the set of features used in the classifier. Many flow
statistics (or features) can be calculated from a flow; however, not all features provide good discrimination between

1206 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

: ar 32,000 Samples —=— 03 32,000 Samples —=—
8,000 Samples —=— o 025 8,000 Samples -=-
0.98 2,000 Samples @ 2,000 Samples
> > 085 500 Samples —=— g 500 Samples —=—
] - @ g 0.2
S o09s } ~ < /\ g
E o 131
g o 2 ""‘J 3 041
w 32,000 Samples —— D 455 [
0.92 8,000 Samples —=- g 3 oos
2,000 Samples :
500 Samples —w—
0.9 — T 0.5 0 - ¥ v r
0 200 400 600 800 1000 200 400 600 800 1000 200 400 600 800 1000
Number of Clusters Number of Clusters Number of Clusters
(a) Flow accuracy. (b) Byte accuracy. (c) Cluster compactness.

Fig. 6. Parameterizing the classification system (April 6, 9 am campus trace).

the classes. Using such features can decrease the accuracy of the classifier. We started with 25 candidate features. To
find a subset of discriminating features we employ a feature selection method. In general, the feature selection task is
exponentially hard; however, efficient methods for feature selection are widely used [14].

In our work, we employ the backward greedy feature selection method [14]. The method works as follows. Given n
features, we train a classifier with all features and compute its accuracy. We then find the single feature to remove such
that the classifier with n — 1 features has the highest accuracy. This process is continued until we find the maximum
number of features to remove such that the resultant classifier has the best accuracy.

To choose a subset of features to use in all of our experiments, we perform the backward greedy search with
the various data sets. We then find which subset of the features was chosen most often in the different experiments.
The eleven flow features that were chosen are: total number of packets, average packet size, total bytes, total header
(transport plus network layer) bytes, number of caller to callee packets, total caller to callee bytes, total caller to callee
payload bytes, total caller to callee header bytes, number of callee to caller packets, total callee to caller payload bytes,
and total callee to caller header bytes. In the rest of the paper we use this set of features as a basis for our classifiers.?

Interestingly, we found that flow features that have time components such as duration, interarrival time, and flow
throughput were found not to be useful by the feature selection algorithm. In general, selection of time-oriented
features should be avoided as these features are less likely to be invariant across different networks.

Internet flow features, in general, exhibit a high degree of skewness [26]. We found it necessary to transform the
flow features to obtain higher classification accuracies. Experimentation with several commonly used transforms
indicated that logarithmic transformations yield the best results. In general, transformation of features is often
necessary in most machine learning applications.

5.5. Tuning the classifier

The number of clusters (K) impacts the quality of clustering (and thus the quality of classification), the time
complexity of building the classifier, and the runtime performance of the classifier. To determine a suitable K, we
varied both the number of clusters and the number of labeled training flows. Fig. 6 shows the results from experiments
where we varied K from 50 to 1000, and varied the number of vectors in the training data sets from 500 to 32,000
flows. The training flows were selected using a simple random sampling (See Section 5.4.). Several observations
can be made from the flow accuracy results in Fig. 6(a). First, flow accuracies in excess of 95% are achieved when
using training data sets with 2000 or more labeled flows. Second, although having more flows in the training data set
improves flow accuracy, the percentage improvement shows diminishing returns. Third, as K increases, we observe
that the flow accuracy also increases. For example, for training data sets with 8000 or more flows, a large K (>4000)
can facilitate flow accuracies around 97.5%. However, having such large values of K is not practical as this increases
the time complexity of the classification step. Fig. 6(b) shows the byte accuracy results. The byte accuracies, on
an average, ranged from 52% to 62%. We did not find any clear relationship between the number of flows in the
training data set and the corresponding byte accuracy. Byte accuracy is very sensitive to a few large “elephant” flows

3 Caller is the host that initiates a flow (e.g., the host that sends the SYN packet during TCP connection establishment); callee is the host that
reacts to the initiation request (e.g., the host that responds with a SYNACK packet during TCP connection establishment).

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1207

in network traffic. In general, a simple random selection of training flows from the traces is unlikely to capture enough
elephant flows in the training data sets, especially because the training data sets consist only of a few thousand flows.
For example, there are 58 FTP data transfers that account for 6.5% of the bytes in the April 6, 9 am Campus trace,
and these are rarely captured in the (randomly chosen) training data set. Thus, these large FTP flows are typically
misclassified. Increasing the number of clusters K typically improves byte accuracy, albeit marginally, because the
likelihood of forming clusters for the elephant flows when they are selected in the training data set increases. The use
of more sophisticated sampling techniques such as weighted bytes policy (discussed in Section 5.3) can substantially
improve the byte accuracies. Another solution we found for classifying “rare” applications of interest is to specifically
add flows of this type to the training data set. This makes it possible for the classifier to have clusters representing this
application as well.

Fig. 6(c) shows cluster compactness [16]. Cluster compactness measures the degree of homogeneity within the
clusters formed; a low compactness measure indicates more homogeneity among flows in the clusters. Clearly, if each
flow in the training set is assigned its own independent cluster, then cluster compactness will reach zero. We see this
trend in the graph wherein the larger K becomes, the lower compactness becomes. However, we also see a plateau
effect for K > 400, wherein compactness decreases slowly with increase in K.

Choosing parameter values for the clustering step presents a tradeoff between accuracy and classification overhead.
Our results show that a larger training data set improves the flow accuracy, and a larger K improves flow accuracy,
byte accuracy, and cluster compactness. A large value of K, however, increases the classification overhead and some
caution must be emphasized when choosing K. Since our semi-supervised learning does not require all flows to be
labeled, we advocate using a large training data set with as many labeled flows as possible, and a K value that achieves
the desired tradeoff between accuracy and computation overhead. Essentially, the size of the training data set and the
value of K are tuning parameters that can be adjusted depending upon the application.

6. Realtime classification

In this section we discuss the design, implementation, and performance of a prototype realtime classification system
we developed using our proposed classification framework.

6.1. Design considerations

A fundamental challenge in the design of the realtime classification system is to classify a flow as soon as possible.
Unlike offline classification where all discriminating flow statistics are available a priori, in the realtime context we
only have partial information on the flow statistics.

We address this challenge by designing a layered classification system. Our layers are based upon the idea of packet
milestones. A packet milestone is reached when the count of the total number of packets a flow has sent or received
reaches a specific value. We include the SYN/SYNACK packets in the count. Each layer is an independent model that
classifies ongoing flows into one of the many class types using the flow statistics available at the chosen milestone.
Each milestone’s classification model is trained using flows that have reached each specific packet milestone.

To classify flows in realtime we track the flow statistics of each ongoing flow. When a flow reaches the first packet
milestone, it is classified using the first layer’s classification model. When the flow reaches further packet milestones
it is then reclassified using the appropriate layer’s model. When a flow is reclassified, any previously assigned labels
are disregarded.

This layered approach allows us to revise and potentially improve the classification of flows. The memory overhead
of our approach is linear with respect to the number of flows because we use the same feature set at all layers.

An alternative approach would be to classify at points that are significant in the transport-layer protocol. For
example, the first layer could be classified with just the transport protocol and port number when the very first packet
is seen. For TCP connections, the next layer could be classified when the first data packet is seen (i.e., following the
connection establishment phase). We defer this approach for future work.

Our prototype system was built using an existing IDS system called Bro [25]. Bro is an ideal candidate for our
prototyping effort because by design it performs the realtime analysis of network traffic. We added two scripts to Bro
0.9a (unmodified) to enable our realtime classifier. The first script tracks the flow feature set. When a flow reaches a
specific packet milestone, the script calls for a classification function in our second Bro script. The second Bro script

1208 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

80 1
—_ Base Truth —
“E’ Classifier
2 0.8
; 4
@ 5 06
o 0.4
e £
@ i)
= 0.2
0
=
0 0 x .
9:00 9:20 9:40 10:00 9:00 9:20 9:40 10:00
Time Time
(a) Bytes classified. (b) Byte accuracy.

Fig. 7. Performance of realtime classifier.

contains a classification function for each specific milestone at which we reclassify our flows. This second Bro script
was generated by a C++ program that reads in the training flows and generates the mapping from flows to applications.
We use the same features as in Section 5 with one obvious exception; we do not use fotal number of packets.

6.2. Classification results

For these experiments, we trained the classifier using flows from the April 6, 9 am trace with 966,000 flows. For
each of N layers we created models using 8000 training flows, using K = 400. In our implementation, we use
thirteen layers and separate our packet milestones exponentially (8, 16, 32, ...). For layers eleven and higher (packet
milestones greater than 4096), fewer than 5% of flows in the trace reached these milestones. Therefore, for these layers
we trained with all available flows in the trace (always more than 500). We do not test our model on the same trace
from which we generated the training data to avoid biasing our results.

We calculated realtime byte accuracy as follows. When a packet arrives for a given flow we use the current label
assigned by our classifier to determine if the bytes for this packet have been correctly classified. Byte accuracy in
a given time interval is simply the fraction of bytes that were assigned the correct labels. Note that the system may
reclassify a flow several times and could therefore assign multiple labels to the flow during its lifetime. Thus, we
report only byte accuracy in a moving time window.

Fig. 7 presents example results by using the April 13, 9 am trace (our largest 1 h Campus trace). We see that
the classifier performs well with byte accuracies typically in the 70%—90% range. Quantitatively similar results were
obtained when tested on the other traces.

Another aspect we considered was the effect of adding additional layers to our classification system. For the April
13, 9 am trace shown in Table 6, 78% of the flows had correct labels after classification at the first layer (8 packets).
If this was the only layer used in our system, this would result in 40% of the bytes being correctly classified. This low
value occurs because many of the elephant flows are incorrectly classified at the early stage. Using five layers improves
the byte accuracy to 50%. Finally, with thirteen layers, byte accuracy reaches 78% as we are correctly classifying the
elephant flows. We also note that the last label given to a flow is correct 82% of the time.

Some of the intermediate layers appear to provide little or no improvement in byte accuracy. These additional layers
can be removed and our classification system can be still allowed to achieve similar byte accuracies while reducing
overhead.

7. Discussion

In this section we discuss three topics: the arms race occurring between network operators and users/application
developers (Section 7.1), the longevity of our classifier (Section 7.2), and the ability of our methodology to determine
when retraining is required (Section 7.3).

7.1. The classification arms race

To fully comprehend the traffic classification problem, one needs to understand its history. For many years,
traffic classification was trivial, as applications tended to abide by well-known port numbers. Application developers

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1209

Table 6
Realtime byte accuracy with number of layers varied
Layer Packet milestone Byte accuracy (%)
1 8 40.0
2 16 45.8
3 32 48.9
5 128 49.5
10 4096 49.7
13 16384 71.5

had little motivation to deviate from this. Over time though, things changed; network bandwidths increased, new
applications emerged, and the Internet became available to a much larger audience. In the late 1990’s, the exchange
of high fidelity music (and later video) became feasible and accessible to a large audience. The increased bandwidth
consumption contributed to the creation of the traffic classification problem.

What ensued can best be described as an arms race involving at least four parties — content owners, ISPs, users, and
application developers. The race started slowly. Initially ISPs could identify these file sharing applications using well-
known ports. The ISPs could then control or block the offending applications. In September 2002 KaZaA escalated
the race by introducing dynamic ports, effectively bypassing blocked ports. Since that time, the two sides have gone
back and forth numerous times.

One important observation is that file sharing users have little loyalty to the applications. If an application is
blocked or impeded by an ISP, users will quickly migrate to an application that can provide them access to the content
they want. It is, therefore, important for a traffic classifier to overcome current countermeasures, and also be able to
function with the countermeasures that may come in the future. For example, encryption is currently not widely used
by file sharing applications, even though some of these applications already support it. If required, users could easily
start encrypting their traffic. This would immediately prevent content-based classifiers from properly identifying file
sharing traffic.

We believe that our classifier based on flow statistics will be difficult to circumvent. This is because it is very hard
for applications to disguise their behavior without adding large amounts of overhead. Consider the average packet
size feature. To disguise this feature, an application would need to modify flows so the average packet size across all
its flows appears random. This would involve adding significant overhead because sometimes either padding would
need to be added to packets to increase the packet size or full packets broken up into several smaller packets when
sent. Similarly, changing the ratio of data sent between hosts could also require substantial amounts of extra data
transfer. Ultimately, to defeat the classifier the overhead required would be crippling. Nevertheless, if new applications
originate or old applications change behavior, we would like the classification system to adapt accordingly. In light of
the above discussion, we can identify (at least, to the first order) two important considerations. One, a classification
system should be robust and be able to maintain high classification accuracy in the presence of transient changes in
network/application usage patterns; our hope would be that classifiers have a reasonably long shelf life. Two, when
there are substantial changes, for example, owing to introduction of new applications, or owing to behavioral changes
of existing applications, the classifier should automatically detect the need for retraining; our intent in this case is to
keep up with the arms race. These two issues are further discussed in Sections 7.2 and 7.3, respectively.

7.2. Longevity

To experimentally evaluate the long-term predictive value of classifiers, we tested the classifiers that were built by
sampling from the April 6, 9 am Campus trace (see Section 5.3) across the forty-eight Campus traces. Fig. 8 presents
sample results from our experiments.

Fig. 8(a) shows the classification accuracy as a function of time. The results shown are for classifiers trained using
labeled flows sampled by the weighted bytes technique. Qualitatively similar results were obtained for other sampling
techniques (we do not show them on the graph to avoid line “crowding”). Our results show that the classifier retained
a high flow accuracy throughout the 6-month period. Flow accuracies close to 95% are consistently achieved in the
traces we tested, including major transitions such as end of winter semester, summer break, and beginning of fall

1210 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

1 1
St o s AR “"-k_("""-.,..; |
0.9 1 - N 09]
08] 08 J
4\)\
0.7 4 0.7 4 ? I v
— sl % N]
n L A N
5 5
g os] 2 05
g o
T 041 & 04]
Baster Bregk $ummer Breal Fall Haster Bregk ummer Breal Fall
0.3 7 0.3
Winter Winter
0.2 0.2]
Mornings (9 am) == Weighted Byte =f=
01] Evenings (9 am) 0.1] Weighted Duration
d 2 Seqential
Random ==
0 B B e e e e B e e L B e m s s e e e e S 0 T
6 7 8 9131415162021222327282930 4 5 6 7 282930 1 6 7 8 91314151620212223272829304 5 6 7 282930 1
April May Sep Oct April May Sep Oct
(a) Flow accuracy for all Campus traces. (b) Byte accuracy for 9 am Campus traces.

Fig. 8. Longevity of classifier.

semester. For example, the student population substantially dwindles during the summer months. Also, during the
summer months, the number of Database flows (MSSQL) substantially increased from the 5% originally seen in the
training data sets to over 25% during this period. However, our classifier is still able to classify the new database traffic
correctly. There is no substantial loss in classification accuracy.

In Fig. 8(b), we present the byte classification accuracies for the 9 am Campus traces. The results for the 9 pm
Campus traces are qualitatively similar. The byte accuracy trend is similar to the flow accuracy trend but shows more
variability. We also find that the weighted bytes approach for selecting training flows consistently achieves higher
accuracies than the random and sequential selection techniques because more P2P traffic is successfully classified by
the former. We further investigated why the byte accuracy drops significantly on April 15 and April 23. The drop in
byte accuracy was due to misclassification of FTP flows as either P2P or HTTP. In general, FTP is not captured well
by any of the sampling techniques because it accounts for only a small fraction (<0.01%) of the flows, and thus, is
unlikely to be captured in a small-sized training data set. Typically, FTP accounts for less than 5% of the bytes but on
those days it accounted for 21.6% and 26.6% of the bytes, respectively.

7.3. Retraining

The results above show that our classifiers remained fairly robust over time and for different traces. While this is
encouraging, a mechanism for updating the classifiers is still required. An update of the classifier can be in the form
of re-clustering, re-labeling of clusters, or both. The ideal way to determine if an update is required is to track and
measure the classification accuracy as new flows are classified. However, measuring the accuracy is not possible, as
the flow labels are not known. There are, however, two indirect measures for measuring reliability of the classifiers.
The first is to build classifiers using a mix of labeled and unlabeled flows, as discussed in Section 5.2. Then, we can
track the number of flows that is not assigned any label. If this number increases, it indicates the need for labeling
some of those unknown flows so that their corresponding clusters are also labeled. The semi-supervised approach
makes it possible over time that this type of an update would capture under-represented flow types and allow the
accuracy of the classifier to improve.

Alternatively, a statistical measure could be used to detect changes in the quality of the clustering model. We
propose using the average distance of new flows to their nearest cluster mean; a significant increase in the average
distance indicates the need for an update. Formally, this measure corresponds to the likelihood function of the
clustering model in representing the new flows. The measure is easy to compute and track, as it does not require
knowledge of the flow labels. While an indirect measure of accuracy, the clustering likelihood measure is correlated
to the accuracy of the classifier. Recall from Section 3 that new flows are mapped to clusters using the distance metric
as a measure of similarity. Thus, it is expected that average distance between flows and cluster centers is negatively
correlated to accuracy.

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1211

1.1 2

Average Distance

0.8

0.89 0.9 0.91 0.92 0.93 0.94 0.95 0.96 0.97
Flow Accuracy

Fig. 9. Correlation between average distance and flow accuracy.

Fig. 9 shows a scatter plot of flow accuracy and average distance for all forty-eight Campus traces for one of the
classifiers used in Fig. 8. These sample results show that when the average distance to the cluster centers is higher,
the flow accuracies are typically lower, and vice versa. We repeated the above test for the 9 remaining weighted
bytes classifiers we built by sampling from the April 6, 9 am Campus trace and found similar results. The correlation
between average distance and accuracy ranged from —0.57 to —0.75 in the models we tested; the average correlation
was —0.69.

In practice, the clustering likelihood can be easily used as an indicator of when our classification models need to
be retrained. As previously demonstrated, the classification model is fairly robust and would not need to be retrained
frequently. The average distance could be recorded for large intervals such as on an hourly or a daily basis. The average
distance obtained during the interval just after retraining could be used as a baseline as this is most likely when the
model is most accurate. If the hourly or daily average distance increases, and stays generally above a certain threshold
(e.g., 50% above the baseline), then this may be treated as an indicator for retraining. The detection threshold can be
adjusted to accommodate different amounts of variation in flow accuracy.

Once the need for retraining is detected there are various approaches to retraining that can be employed to update
the classification model besides the simple and extreme one of retraining the models completely from “scratch” using
new labeled and unlabeled flows. While we do not evaluate these approaches, we note some approaches to retraining
that do not require completely rebuilding the model. One approach is to create new clusters using new flows that were
far from their means. This would be followed by selectively querying the labels of flows from these uncertain clusters.
In the machine learning literature, this is known as active learning. Another approach is to sample new flows and
randomly replace only a fraction of the existing flows in the training data set and then rebuild the classifier.

8. Conclusions and future work

This paper proposed and evaluated a semi-supervised framework for classifying network traffic using only flow
statistics. A key advantage of the semi-supervised approach is the ability to accommodate both known and unknown
flows during development of the classifier. We show that our technique can achieve high classification accuracy
by using only a few labeled examples in combination with many unlabeled examples. Our results show that: (1)
both high flow and byte accuracy can be achieved; (2) a variety of applications, including P2P, HTTP, FTP, and
email can be successfully classified; and, (3) robust classifiers can be built that are immune to transient changes in
network conditions. Furthermore, to facilitate automatic detection of non-transient changes such as introduction of
new applications or behavioral changes to existing applications, we propose a retraining point detection mechanism.
A salient feature of our work is the development of working prototypes.

We believe that generic classifiers based on flow statistics can be developed. A vendor may train the classifier
using a mix of labeled and unlabeled flows, where labeled flows may be obtained from operational or test networks.
Our retraining point detection enables the possibility of discovery of network specific unknowns; these may be, at the
discretion of the operator, delivered to the vendor for labeling. As and when required, vendors may distribute new
classifiers along with a set of labeled flow feature vectors.

Several opportunities exist for future work. We outlined several retraining approaches. Evaluation of these can also
be considered in future work. Furthermore, our approach can leverage recent work on techniques for flow sampling

1212 J. Erman et al. / Performance Evaluation 64 (2007) 1194—-1213

and estimation (e.g., [9,13,19]). The evaluation of the effectiveness of sampling and estimation techniques can also
be interesting avenues for future work. Finally, we hope that our research will stimulate researchers to consider other
clustering and classification approaches.

Acknowledgements

Financial support for this research was provided by the Informatics Circle of Research Excellence (iCORE) in the
Province of Alberta, as well as by Canada’s Natural Sciences and Engineering Research Council (NSERC).

References

[1] S. Basu, M. Bilenko, R. Mooney, A probabilistic framework for semi-supervised clustering, in: Proc. KDD ’04, Seattle, USA, August 2004.
[2] L. Bernaille, R. Teixeira, K. Salamatian, Early application identification, in: CONEXT’06, Lisboa, Portugal, December 2006.
[3] Cache logic. Peer-to-Peer in 2005. http://www.cachelogic.com/home/pages/research/p2p2005.php 2005.
[4] O. Chapelle, B. Scholkopf, A. Zien (Eds.), Semi-Supervised Learning, MIT Press, Cambridge, USA, 2006.
[5] Cisco NetFlow, http://www.cisco.com/warp/public/732/tech/netflow.
[6] F. Cozman, I. Cohen, M. Cirelo, Semi-supervised learning of mixture models, in: ICML’03, Washington, USA, August 2003.
[7] M. Crotti, M. Dusi, F. Gringoli, L. Salgarelli, Traffic classification through simple statistical fingerprinting, Computer Communications
Review 37 (1) (2007) 7-16.
[8] R.O. Duda, PE. Hart, D.G. Stork, Pattern Classification, second ed., Wiley, 2001.
[9] N. Duffield, C. Lund, M. Thorup, Flow sampling under hard resource constraints, in: SIGMETRICS’04, New York, USA, June 2004.
[10] J. Erman, M. Arlitt, A. Mahanti, C. Williamson, Identifying and discriminating between web and peer-to-peer traffic in the network core,
in: WWW’07, Banff, Canada, May 2007.
[11] J. Erman, M. Arlitt, A. Mahanti, Traffic classification using clustering algorithms, in: SIGCOMM’06 MineNet Workshop, Pisa, Italy,
September 2006.
[12] J. Erman, A. Mahanti, M. Arlitt, Byte me: The case for byte accuracy in traffic classification, in: SIGMETRICS’07 MineNet Workshop, San
Diego, USA, June 2007.
[13] C. Estan, K. Keys, D. Moore, G. Varghese, Building a better NetFlow, in: SIGCOMM ’04, Portland, USA, August 2004.
[14] 1. Guyon, A. Elisseef, An introduction to variable and feature selection, Journal of Machine Learning Research (2003) 1157-1182.
[15] P. Haffner, S. Sen, O. Spatscheck, D. Wang, ACAS: Automated construction of application signatures, in: SIGCOMM’05 MineNet Workshop,
Philadelphia, USA, August 2005.
[16] J. He, A.-H. Tan, C.L. Tan, S.Y. Sung, Quantitative evaluation of clustering systems, in: Clustering and Information Retrieval, Kluwer, 2003,
pp. 105-134.
[17] T. Karagiannis, A. Broido, M. Faloutsos, K. claffy, Transport layer identification of P2P traffic, in: IMC’04, Taormina, Italy, October 2004.
[18] T. Karagiannis, K. Papagiannaki, M. Faloutsos, BLINC: Multilevel traffic classification in the dark, in: SIGCOMM’05, Philadelphia, USA,
August 2005.
[19] R. Kompella, C. Estan, The power of slicing in internet flow measurement, in: IMC’05, Berkeley, USA, October 2005.
[20] J. Ma, K. Levchenko, C. Krebich, S. Savage, G. Voelker, Unexpected means of protocol inference, in: IMC’06, Rio de Janeiro, Brasil, October
2006.
[21] A. McGregor, M. Hall, P. Lorier, J. Brunskill, Flow clustering using machine learning techniques, in: PAM’04, Antibes Juan-les-Pins, France,
April 2004.
[22] A. Moore, K. Papagiannaki, Toward the accurate identification of network applications, in: PAM’05, Boston, USA, March 2005.
[23] A.W. Moore, D. Zueyv, Internet traffic classification using bayesian analysis techniques, in: SIGMETRIC’05, Banff, Canada, June 2005.
[24] T. Mori, M. Uchida, R. Kawahara, J. Pan, S. Goto, Identifying elephant flows through periodically sampled packets, in: IMC ’04, Taormina,
Italy, October 2004.
[25] V. Paxson, Bro: A system for detecting network intruders in real-time, Computer Networks 31 (23-24) (1999) 2435-2463.
[26] V. Paxson, Empirically-derived analytic models of wide-area TCP connections, IEEE/ACM Transactions on Networking 2 (4) (1998) 316-336.
[27] M. Roughan, S. Sen, O. Spatscheck, N. Duffield, Class-of-service mapping for QoS: A statistical signature-based approach to IP traffic
classification, in: IMC’04, Taormina, Italy, October 2004.
[28] S. Sen, O. Spatscheck, D. Wang, Accurate, scalable in-network identification of P2P traffic using application signatures, in: WWW’04, New
York, USA, May 2004.
[29] S. Sen, J. Wang, Analyzing peer-to-peer traffic across large networks, IEEE/ACM Transactions on Networking 12 (2) (2004) 219-232.
[30] N. Williams, S. Zander, G. Armitrage, A preliminary performance comparison of five machine learning algorithms for practical IP traffic flow
classification, Computer Communication Review 30 (October) (2006) 5-16.
[31] K. Xu, Z.-L. Zhang, S. Bhattacharyya, Profiling internet backbone traffic: Behavior models and applications, in: SIGCOMM ’05, Philadelphia,
USA, August 2005.
[32] S. Zander, T. Nguyen, G. Armitage, Automated traffic classification and application identification using machine learning, in: LCN’05,
Sydney, Australia, November 2005.

http://www.cachelogic.com/home/pages/research/p2p2005.php
http://www.cisco.com/warp/public/732/tech/netflow

J. Erman et al. / Performance Evaluation 64 (2007) 1194-1213 1213

Jeffrey Erman is a Research Associate in the Department of Computer Science at the University of Calgary. He holds a
B.Sc. (Honours) in Computer Science from the University of Regina, and an M.Sc. in Computer Science from the University
of Calgary. His research interests include network traffic classification, machine learning, and performance evaluation.

| Anirban Mahanti is an Assistant Professor in the Department of Computer Science and Engineering at the Indian Institute
of Technology, Delhi. He holds a B.E. in Computer Science and Engineering from the Birla Institute of Technology (at
Mesra), India, and an M.Sc. and a Ph.D. in Computer Science from the University of Saskatchewan. His research interests
include Internet protocols, P2P applications, multicast, and scalable multimedia streaming.

Martin Arlitt is a Senior Research Associate in the Department of Computer Science at the University of Calgary and a
Senior Scientist at HP Labs. His research interests include measurement, characterization, and performance evaluation of
computer systems and networks.

Ira Cohen is a Senior Researcher at the Hewlett Packard research labs, where he works on applying machine
learning and pattern recognition techniques to system diagnosis, management and control. Ira joined HP Labs in
2003 after receiving his Ph.D. in Electrical and Computer Engineering from the University of Illinois at Urbana-
Champaign where he worked on semi-supervised learning and computer vision applications. Ira holds a B.Sc.
from Ben Gurion University, Israel. His research interests are in machine learning, probabilistic models, systems
management and control, computer vision and human—computer interaction. For more information on his research see
http://www.hpl.hp.com/personal/IraCohen/index.html.

Carey Williamson holds an iCORE Chair in the Department of Computer Science at the University of Calgary, specializing
in broadband wireless networks, protocols, applications, and performance. He holds a B.Sc. (Honours) in Computer Science
from the University of Saskatchewan, and a Ph.D. in Computer Science from the Stanford University. His research interests
include Internet protocols, wireless networks, network traffic measurement, network simulation, and Web performance.

http://www.hpl.hp.com/personal/Ira%5FCohen/index.html

	Offline/realtime traffic classification using semi-supervised learning
	Introduction
	Related work
	Classification method
	Step 1: Clustering
	Step 2: Mapping clusters to applications

	Data sets
	Traces and collection methodology
	High-level statistics of the traces
	Methodology for establishing base truth
	Overview of the data sets
	Empirical motivation for our work

	Offline classification
	Design considerations
	Semi-supervised learning
	The dichotomy of elephant and mice flows
	Feature selection
	Tuning the classifier

	Realtime classification
	Design considerations
	Classification results

	Discussion
	The classification arms race
	Longevity
	Retraining

	Conclusions and future work
	Acknowledgements
	References

