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Abstract
In wireless networks, the system capacity can vary unpre-
dictably with time, due to mobility of users and dynamic
channel assignment protocols. This variation in capacity with
time, known as ‘stochastic capacity’, can have a major impact
on the performance measures such as call blocking probabil-
ity and queueing delay, of the wireless networks. The depen-
dence of the stochastic capacity on the interaction between
the input traffic and the wireless networks makes performance
analysis for wireless networks a challenging task. In this pa-
per, we present an analytical framework for the performance
analysis of wireless networks with stochastic capacity varia-
tion. A capacity-traffic composite model is presented to re-
flect the interactions between the traffic process and the ca-
pacity variation process. With the assumption of general dis-
tributions for capacity variation process and exponential dis-
tributions for traffic process, the expressions for the perfor-
mance measures are derived by using semi-Markov process
and Markov regenerative theory. It is observed that high vari-
ance in the effective capacity of the underlying system de-
grades its performance. The analytical results are validated
by extensive simulations.
Keywords: Stochastic capacity, Cellular networks, Call
blocking probabilities, Markov regenerative process, semi-
Markov process.

1. INTRODUCTION
In many systems, the available system capacity can vary

unpredictably with time. Two simple examples are Web
server farms and high-performance computing centers, where
the failure of a computing node can result in the loss of
jobs from the system. In addition, the removal of computing
nodes from the system, even if scheduled in advance to avoid
job losses (i.e., planned maintenance), has an impact on the
blocking rate or queueing delay seen by other jobs.

Many other examples of stochastic capacity systems ap-
pear in the context of networks [5, 19, 24]. For example, in a
reservation-based network with multiple priority levels, high
priority calls such as emergency services may take prece-
dence over ordinary traffic. The network capacity available
for low priority traffic thus varies with time based on high
priority traffic demands. In wireless ad-hoc networks, sys-
tem capacity is strongly dependent on the number of hops

in the routing path [15]. As routes change in response to node
mobility, the effective system capacity also varies. In cellular
networks, capacity variation arises from the mobility of users,
dynamic channel assignment protocols, and the time-varying
characteristics of the wireless propagation environment [23].
This phenomenon also applies to wireless LANs and CDMA
systems.

Investigating performance in such systems requires a new
approach that considers not only the input traffic demands
but also the stochastic characteristics of the capacity variation
process. The stochastic capacity variation may even depend
on the interaction between the traffic and the system itself. For
example, in a CDMA system, there is a “soft capacity” limit
determined from intra-cell and inter-cell interference from the
active calls [3]. It is this “soft limit”, rather than the “hard
limit” (i.e., number of channel elements) that determines the
effective capacity of the system.

Evaluating the effective capacity measures (e.g., blocking
and outage performance) in stochastic capacity wireless net-
works requires the combination of telecommunications mod-
els for channel variability and user-level models for sub-
scriber traffic and mobility. This approach integrates the traf-
fic and queueing models to capture both capacity and traffic
characteristics. In such situation, the capacity of the system
is a random variable rather than a fixed value. The perfor-
mance analysis of such networks is of interest since it may
yield deeper insights into traffic control and network design
issues.

In this paper, we develop a capacity-traffic composite
model for the wireless networks to study the impacts of the
capacity variation on network performance. We factor the
stochastic parameters into the performance analysis to show
how they interact with stochastic characteristics of traffic.
We study the impacts using analytical modeling and sim-
ulation modeling, allowing (where possible) generally dis-
tributed traffic and capacity models. This model provides
greater flexibility to investigate impacts from stochastic sys-
tem characteristics than is possible with a continuous time
Markov chain model for the pure capacity model. Further-
more, the proposed model is carefully constructed for utiliz-
ing tractable solution techniques.

The rest of the paper is organized as follows. In Section
2, we present the analytical model for wireless networks
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with stochastic capacity, wherein we first give the system
overview, then the capacity and the traffic models are pre-
sented and finally the capacity-traffic composite model is con-
structed. Analytical solution of the proposed model is pro-
vided in Section 3. In Section 4, numerical and simulation
results are presented. Finally, the conclusions and pointers to
future research are given in Section 5.

2. ANALYTICAL MODEL
2.1. System Overview

The overview of methodology for evaluating the perfor-
mance of wireless networks with stochastic capacity is shown
in Figure 1. First, we formalize the underlying stochastic
characteristics of system capacity. Based on these character-
istics, we model the variation in the traffic and the capacity
through stochastic processes such as continuous time Markov
chains (CTMC), semi Markov process (SMP), and Markov
regenerative processes (MRGP). Finally, we combine the pro-
cesses for the traffic variation and the capacity variation and
obtain the composite model. Under the suitable assumptions,
this composite model can be viewed as a two-dimensional
stochastic process

���
C
�
t ��� N �

t ����� t � 0 � , where the first di-
mension C

�
t � corresponds to the stochastic capacity and the

second dimension N
�
t � represents the traffic occupancy of the

network at time t. The stochastic process
���

C
�
t ��� N �

t ����� t � 0 �
can be analyzed by applying analytical as well as simulation
modeling techniques. In this paper, we first present the an-
alytical solutions for the stochastic process of systems with
stochastic capacity and then validate the analytical model
through the simulations.

It is possible to adapt our analytical model for any wire-
less protocol. As stated in the introduction, effective capac-
ity of a network may vary randomly with time because of
stochastic traffic effects, the channel status, and the dynam-
ics of protocols used for channel assignment, bandwidth allo-
cation, rate control, and mobility management. The capacity

variation may happen in any network with different protocols.
In this section, we abstract our methodology by formalizing
the traffic and capacity variations without indicating any char-
acteristics from specific networks.

2.2. Traffic Model

In this section, we develop the traffic model corresponding
to the stochastic process

�
N
�
t ��� t � 0 � in the two-dimensional

stochastic process
���

C
�
t ��� N �

t �	��� t � 0 � . The network occu-
pancy by the traffic at any time t, denoted by N

�
t � , depends

on the traffic arrivals and service time of the ongoing calls.
In wireless networks, the traffic arriving at the network is
expected to exhibit different stochastic properties. These are
well-studied in the literature [21]. The service time of each
ongoing call is independent and can follow exponential or
general (non-exponential) distributions. Based on the char-
acteristics of the traffic arriving into the network, the traffic
arrivals can be modeled as Poisson process, Markov modu-
lated Poisson process, and Markov arrival process.

The assumption of Poisson arrivals and exponential service
times reduce the complexity involved in solving the traffic
model. Given that the network capacity is n � � 0 
 n 
 M � , we
present the traffic model with arrivals according to a Poisson
process with rate λ and exponential service times with rate µ.
Then, the stochastic process

�
N
�
t ��� t � 0 � is a homogeneous

continuous time Markov chain (CTMC) and can be analyzed
as an M � M � n � n queueing system. Figure 2 shows the state
transition diagram for the traffic model. Each state in Figure
2 represents the traffic occupancy at any time t. By solving
the system of homogeneous equations corresponding to this
Markov chain, the steady state probability of the system oc-
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cupancy is given as [4]:

lim
t � ∞

P
�
N
�
t ��� k ��� �

λ
µ � k �

k!

n

∑
i � 0

�
λ
µ � i �

i!

� k � 0 � 1 �	�
�
�	� n
For mathematical tractability, we assume that the interar-

rival time is follow an exponential distribution. However, our
methodology can be extended to non-exponential interarrival
times. On relaxing the assumptions of Poisson arrivals and
exponential service times in the traffic model, the complexity
in solving the underlying stochastic process increases. It is a
cumbersome task to obtain the steady state probabilities.

2.3. Capacity Model
After describing the traffic model

�
N
�
t ��� t � 0 � in the previ-

ous section, we next proceed to present the top level capacity
variation model represented by stochastic process

�
C
�
t ��� t �

0 � . The random variable C
�
t � represents the capacity of the

system at time t. The capacity of the network may vary ran-
domly with time because of the channel status, the dynamics
of protocols used for channel assignment, bandwidth alloca-
tion, rate control, and mobility management. Therefore, the
time between capacity changes is generally (non-exponential)
distributed with cumulative distribution function G

��� � and
density function g

��� � . Note that the change in the network
capacity is independent of the traffic variation. Hence, the
stochastic process

�
C
�
t ��� t � 0 � is modeled as a semi-Markov

process (SMP) with the state space E � �
C0 � C1 �
�
�	�	� CM � .

Figure 3 shows the state transition diagram for the capacity
model.

Let the transitions of the process
�
C
�
t ��� t � 0 � occur at

epochs (or instants of times) τ0 � τ1 �
�	�
� with τ0 
 τ1 
 �	�
� 

τn 
 τn � 1. Let Xn denote the state of the system at epoch τn

such that the Markov property is satisfied at each time epoch
τn. Then the pair

�
Xn � τn � constitutes a Markov renewal se-

quence on state space E. Note that
�
Xn � n � 0 � 1 �
�
�	� � consti-

tutes a discrete time Markov chain (DTMC) with state space
E. Thus, the stochastic process

�
C
�
t ��� t � 0 � is a SMP where,

C
�
t ��� Xn on τn 
 t 
 τn � 1 � n � 0 � 1 �
�	�
�	�

Here, the Markov chain
�
Xn � n � 0 � 1 �	�
�	� � is said to be an

embedded discrete time Markov chain (DTMC) of the SMP�
C
�
t ��� t � 0 � . To analyze a SMP, we need to deal with two

sets of parameters:

(i) mean sojourn time M
�
i � in state i � E and

(ii) the transition probabilities H
�
i � j � between different

states i � j � E.

The mean sojourn times are expressed as follows:

M
�
i ��� E � τn �Xn � i � �

M
�
i � j ��� E � τn �Xn � i � Xn � 1 � j ���

Let

H
�
i � j ��� lim

t � ∞
H
�
i � j � t ��� P

�
Xn � 1 � j �Xn � i � � (1)

where

H
�
i � j � t ��� P

�
Xn � 1 � j � τn � 1 � τn 
 t �Xn � i ���

Since the process is time homogeneous, the transition proba-
bilities H

�
i � j � t � are independent of n.

The steady state probability vector H ��H �
C0 ��� H

�
C1 ���	�
�
� � H �

CM ��� is obtained by solving the
matrix form of Kolmogorov forward equations for the
embedded DTMC:

H � HQc �
where Qc ���Qc

�
i � j ��� is the transition probability ma-

trix of this embedded DTMC such that Qc
�
i � j ���

λ
�
i ���H �

i � j � � I
�
i � j ��� with λ

�
i ��� 1

M
�
i � , and I

�
i � j ��� 1 if i � j,

and I
�
i � j ��� 0, otherwise.

The steady state probabilities
�
πi � � i � E of the process�

C
�
t ��� t � 0 � are expressed in terms of steady state proba-

bilities H
�
i ��� i � E and the mean sojourn times M

�
i � , i � E as

follows:

πi � H
�
i � M �

i �
∑

j
H
�
j � M �

j � � i � E � (2)

The above SMP model for the capacity variation system
can be extended to a Markov renewal modulated Poisson pro-
cess. In this case, the stochastic process

�
C
�
t ��� t � 0 � will be

defined on a Markov chain, say,
�
N
�
t � � where transitions in

C
�
t � occur according to a Poisson process with intensity α  r !j

whenever the Markov chain is in state j. Thus, every Markov
renewal interval includes a Poisson process. With this model,
the impacts from large-scale capacity variation (modeled as a
renewal process) and small-scale capacity variation (modeled
as a Poisson process) can be analyzed. This extended model
will be presented in Section 2.4. The distribution function of
the sojourn time of the renewal process given that it is in state
r is represented by M  r ! . This sojourn time does not repre-
sent the time period that the capacity stays at a state, but it
represents a renewal interval that may include many capac-
ity transitions. To distinguish the difference from the Poisson

process, we use α  r !j to represent the arrival rate of the system
at state j given that the renewal process is in state r. It can be
expressed as:

α  r !j � 1

M  r ! � j � 1 �#" 1 � �
ρ  r ! � j

j!
e $ ρ % r &(' � j � E � (3)
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Figure 3. State transition diagram for the capacity model

where ρ  r ! is the mean value of the subordinate capacity pro-
cess given that the renewal process is in state r. M  r ! � j � 1 � is
the mean sojourn time of the subordinate capacity process for
the state j � 1. Each current state of the renewal process gov-
erns the current arrival rate of the Poisson process. Therefore,
the correlated behavior is constructed by letting the states of
the modulator correspond to different levels of activity repre-
sented by the conditional arrival rate.

2.4. Capacity-Traffic Composite Model
In this section, we present the analytical model for ca-

pacity and traffic variation as a Markov regenerative process
(MRGP), where the renewal instants of the capacity process
are related to the regeneration points in the MRGP. Between
the regeneration points, the traffic occupancy in the system
changes. The steady-state solution of the system model can
be determined by calculating global and local kernel matri-
ces. The global kernel matrix denotes the conditional proba-
bility described by the Markov renewal sequence. The local
kernel matrix describes the behavior of the MRGP between
two transition epochs of the subordinate process.

We are analyzing a stochastic capacity network with de-
veloping traffic and capacity model without specifying net-
work protocols. We are also assuming that a general sys-
tem can be mapped to such a model. An example is a wire-

less network. The large-scale capacity variation arises from
large-scale channel fading, which could be factored into the
semi-Markov capacity process in our analysis with its fad-
ing following a lognormal distribution. The small-scale ca-
pacity variation is affected by small-scale channel fading,
which could be a Markov process with its fading following
a Rayleigh distribution.

2.4.1. MRGP Model
Consider the wireless network system with underlying

stochastic process denoted by
���

C
�
t ��� N �

t �	��� t � 0 � , where
C
�
t � denotes the capacity of the system and N

�
t � corresponds

to the traffic occupancy at any time t.
���

C
�
t ��� N �

t ����� t � 0 � is
a continuous time discrete state two-dimensional stochastic
process with state space Ω � ���

i � j � ;0 
 i 
 M � 0 
 j 
 i �
and the state transition diagram shown in Figure 4. This
stochastic process is not a CTMC since the sojourn time
in each state is not exponentially distributed. Furthermore,���

C
�
t ��� N �

t ����� t � 0 � is not a SMP since between any two
capacity changes, the state of the system can change due
to call arrivals or departures. We observe that the underly-
ing process satisfies the Markov property at time instants�

τn � of capacity changes only. Define τn � 1 as time epoch of�
n

�
1 � st � � n � 0 � capacity variation and let

���
C
�
τn � N

�
τn ��� ��

i � k � ��� i � Ω � � �
C1 � C2 �
�	�
� � CM � and 0 
 k 
 i. Here, the el-
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Figure 4. State transition diagram for the capacity-traffic model

ements of Ω � are called regeneration points. Consider the set
of epochs

�
τn � n � 0 � 1 �
�
�	� � at which the system is observed.

Note that the state of the system can change between τn and
τn � 1 because of call arrival or departures. We observe that the
sequence

���
C
�
τn ��� N

�
τn ����� τn � is a Markov renewal sequence

and
���

C
�
t ��� N �

t ����� t � 0 � is a MRGP.

3. ANALYTICAL SOLUTION
Following the solution approach for MRGP [1], [2], [13],

the expressions for global and local kernel matrices are ob-
tained. We first obtain the expressions for global kernel ma-
trix K

�
t � � �K ���

i � k ��� � j � l ��� t ��� . The interpretation for the ele-
ments of matrix K

�
t � is as follows: K

���
i � k ��� � j � l ��� t � denotes

the probability that the system will be in state
�
j � l ��� 0 
 l 
 j �

at the time of the next capacity change (i.e., regeneration in-
stant) which occurs on or before time t, given that the sys-
tem was in state

�
i � k ��� 0 
 k 
 i and

�
i � k ��� � j � l � � Ω � just

after the previous capacity change instant. Also, if we let���
Xn � Yn ��� n � 0 � 1 � 2 �
�	� � , where Xn is the capacity of the sys-

tem and Yn is the traffic occupancy at the time instant τn, then���
Xn � Yn ��� n � 0 � 1 � 2 �
�	� � will be an embedded DTMC with

transition probability matrix K
�
∞ � .

The matrix E
�
t � describes the dynamics of the process

during the time between two consecutive regeneration points
starting from a state of regeneration points. The explanation
for the elements of matrix E

�
t � is as follows: E

�	�
i � k ��� � j � l ��� t �

denotes the probability that the system will be in state�
j � l ��� j � �

0 � 1 �	�
�	��� M � � 0 
 l 
 j � at time t and the next

capacity variation occurs after t given that the system was in
state

�
i � k ��� i � �

1 � 2 �
�	�
�	� M � � 0 
 k 
 i �
To obtain the steady state probabilities for MRGP, we need

to know the expressions for K
�
t � and E

�
t � .

Closed form expressions for K
�
t �

Let Ωi
�
i � 1 � 2 �
�	�
�	� M � be the set of states reachable from

state i in which the subordinate CTMC can spend a non-
zero time before the next embedded DTMC transition, where
Ωi � ���

i � k ��� 0 
 k 
 i � . The evolution of the MRGP be-
tween two Markov regeneration epochs can be described by
a CTMC infinitesimal generator matrix Q, as the only state
transitions that take place during this time are due to expo-
nentially distributed events. The matrix Q of the correspond-
ing subordinate CTMC with initial state

�
i � k � is given as

Q �
�����
�
� λ λ
µ � �

λ �
µ � λ

2µ �
�	� λ� �
λ � �

i � 1 � µ � λ
iµ � iµ

������
�

(4)
where λ is the arrival rate and µ is the departure rate in the
traffic process. Following the solution approach for MRGP
[1, 2, 13], the kernel functions of the MRGP are obtained
first. Let p  i � k !��  j � l ! � t � be the probability that the subordinate
CTMC will be in state

�
j � l � at time t given that it was in state�

i � k � initially. Let p
�
t � be the corresponding probability row
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vector. Then

d
dt

p
�
t ��� p

�
t � Q

�
t ��� p  i � k !��  i � k ! � 0 ��� 1 � i � E (5)

From the definition of the kernel K
�
t � of an MRGP, we

write the set of elements of the global kernel K
�
t � as follows:

K  i � k !��  j � l ! � t ��� � t
0 p  i � k !��  j � l ! � t � dG

�
x ��� 1 
 l 
 M; 0 
 j 
 M �

(6)
where p  i � k ! �  j � l ! � t � are obtained by solving equation (5).

The local kernel matrix E
�
t � describes the behavior of the

process during the time between two consecutive Markov re-
generation epochs. Therefore, for i � 1 � 2 �
�	�
� � M � 0 
 k 

i; j � 0 � 2 �
�
�	��� M � 0 
 l 
 j � the elements of the local kernel
are given as:

E  i � k !��  j � l ! � t ��� p  i � k !��  j � l ! � t � � 1 � G
�
t ��� � (7)

To obtain the steady state solution, we define two new vari-
ables: (i) α  i � k !��  j � l ! , the mean time the MRGP spends in state�

j � l � between two successive regeneration instants, given that
it started in state

�
i � k � after the last regeneration:

α  i � k !��  j � l ! ��� ∞

0
E  i � k !��  j � l ! � t � dt � (8)

and (ii) the steady state probability vector ν � �
νk � of the

embedded DTMC:

ν � νP� ∑
k � Ω � νk � 1 � (9)

where P � K
�
∞ � is the one-step transition probability matrix

of the embedded DTMC. Following the methodology in [10],
the steady state solution for this MRGP is given as:

π  i � k ! � lim
t � ∞

P
�
C
�
t ��� i � N �

t ��� j �

� ∑ i � k !�� Ω � νkα  i � k !��  j � l !
∑ i � k !�� Ω � νkβ  i � k !

where β  i � k ! � ∑ m � r !�� Ω
α  i � k !��  m � r ! �

4. NUMERICAL AND SIMULATION RE-
SULTS

In this section, we give the analytical and simulation re-
sults. We illustrate the performance changes of the systems
with the different stochastic characteristics of capacity and
traffic.

Table 1. Factors in Simulations
Factor Distributions

Traffic Arrival process Poisson
Model Holding time Exponential
Capacity Time epochs Deterministic,
Model τ  n � s � Exponential

values of Xn Normal

Table 2. Workload Parameters in Simulations
Parameters Values

Traffic arrival rate 1.0
Mean holding time (sec) 30
Period of capacity changes (sec) 10, 15, 30, 60, 120
Capacity value Mean 30, 40, 50
(Erlang) Variance 2, 5, 10

4.1. Simulation Model
Our simulation work is carried out using call-level simu-

lation. The two inputs provided to the simulation are a call
workload file and a network capacity file. These correspond
to the traffic and capacity stochastic processes described in
Section 2.2. and Section 2.3. respectively.

The call workload file contains a time-ordered sequence of
call arrival events. Each call specifies its source node, desti-
nation node, arrival time, and duration. Each call requires one
unit of network capacity. We use workload files with 100,000
calls. We consider this trace length adequate to highlight dif-
ferences in performance for various stochastic characteris-
tics of the traffic model. The network capacity file contains
a time-ordered sequence of capacity change events. A capac-
ity file with 10,000 capacity change events is used. Both the
call workload file and the capacity file are generated accord-
ing to the corresponding distributions listed in Table 1. The
system parameters used for simulation are summarized in Ta-
ble 2. In our study, we consider the call blocking probability
as the primary performance metric for analyzing the stochas-
tic capacity wireless networks.

4.2. Results
The simulation results are shown for a single representative

simulation run with 100,000 calls. To obtain the results, we
set the mean call holding time to be 30 seconds. Further, the
network capacity varies stochastically, with a capacity change
every 120 seconds. The capacity (in calls) is drawn from a
normal distribution with a mean of 40, and a specified stan-
dard deviation of either 2 or 10. We use the notation DN

�
X � Y �

to denote that capacity changes on a deterministic (D) sched-
ule, with the capacity value drawn from a normal N

�
X � Y �

distribution with mean X and standard deviation Y .
Figure 5 shows the call blocking probability versus the of-

fered traffic load in Erlangs. It is observed that high load leads
to an increase in call blocking probability. Figure 6 shows the

ISBN # 1-56555-317-9 210 SPECTS 2007



0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 10 20 30 40 50 60

C
al

l B
lo

ck
in

g 
P

ro
ba

bi
lit

y

Offered Load in Erlangs

Simulation and Analytical Results for Call Blocking Performance

Simulation DN(40,10)
Analysis DN(40,10)

Simulation DN(40,2)
Analysis DN(40,2)

Figure 5. Blocking Probability versus Offered Load in Erlangs

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120

C
al

l B
lo

ck
in

g 
P

ro
ba

bi
lit

y

Time Between Capacity Changes (seconds)

Effect of Mean of Capacity Value Process on Call Blocking

Simulation DN(30,5)
Simulation DN(40,5)
Simulation DN(50,5)

Analysis DN(30,5)
Analysis DN(40,5)
Analysis DN(50,5)

Figure 6. Effect of Mean of Capacity Value Process

0

0.05

0.1

0.15

0.2

0 20 40 60 80 100 120

C
al

l B
lo

ck
in

g 
P

ro
ba

bi
lit

y

Time Between Capacity Changes (seconds)

Effect of Variance of Capacity Value Process on Call Blocking

Simulation DN(40,2)
Simulation DN(40,5)

Simulation DN(40,10)
Analysis DN(40,2)
Analysis DN(40,5)

Analysis DN(40,10)

Figure 7. Effect of Variance of Capacity Value Process

SPECTS 2007 211 ISBN # 1-56555-317-9



results for three different values of mean capacity (30, 40, and
50 calls), while Figure 7 shows the results for low, medium,
and high variance in the capacity value process. For these re-
sults, the network capacity values are drawn from a normal
distribution with the indicated mean and standard deviation.
It is inferred from the results of Figures 6 and 7 that while
call blocking probability is inversely related to the capacity
mean, it is directly related to the capacity variation. Further,
it is noticed that the frequency of capacity changes has a no-
ticeable impact on call blocking when the load is high (the
DN(30,5) case in Figure 6) or when there is high variance in
the capacity process (the DN(40,10) case in Figure 7).

To validate our analytical model, we carry out extensive
simulation. The results of Figure 5-7 show that the analyti-
cal results match with simulation results very well. These re-
sults show that the effective capacity of a stochastic capacity
system is lower than that in a fixed capacity system. The re-
duction in effective capacity is more acute when the capacity
is highly variable. Higher variability could arise from higher
variance in the capacity value process, higher frequency ca-
pacity changes, or both.

4.3. Remarks and Observations
Constructing the generator matrix Q of the subordinate

process is a critical part for solving the Markov regenera-
tive stochastic process. For Poisson traffic, the elements of
this matrix are constants. For a generally distributed traffic
process, however, this matrix is time-dependent, which com-
plicates the solution process. Therefore, the tractability of the
analytical solution depends on the complexity of the subordi-
nate processes in the MRGP. In the proposed capacity-traffic
composite model, the subordinate process is the traffic pro-
cess, where the inter-arrival times and call holding times are
exponentially distributed. However, the assumption of non-
exponential distributions on transitions in other than the traf-
fic process restricts its applicability. Therefore, it is worth-
while to study non-exponential cases [22].

In this section, based on our current knowledge of stochas-
tic analysis, we categorize the problems in analysis of
stochastic capacity wireless networks. Table 3 lists the solv-
able cases for various traffic and capacity models. The relative
complexity of the solution process is indicated in parenthe-
sis.

Various models for capacity processes are listed in col-
umn 1. Regeneration points in these capacity processes can
be mapped into the renewal process in MRGP. Note that
the Markov process case is a particular case of Markov re-
newal process. We first consider traffic processes with ex-
ponential inter-arrival times, generally distributed call hold-
ing times and infinite servers. Further, for the case of gen-
erally distributed inter-arrival times and call holding times
with infinite servers, we investigate the solvability of the

capacity-traffic composite model for continuous phase-type
arrival and Bernoulli-Poisson-Pascal (BPP) process. For the
capacity model, we consider the Markov process, Markov re-
newal process, and Markov modulated Poisson process. The
tractability of the composite capacity-traffic model depends
on the traffic processes listed in Table 3.

A few of the cases, such as M � M � n � n traffic process
and Markov process, Markov renewal process or Markov
modulated Poisson process for capacity, are solvable. Also,
M � G � n � n traffic process and Markov process for capacity
variation forms another MRGP and hence is solvable. While
these few cases can be solved through MRGP, the remaining
cases mentioned in the table can only be solved when traffic
stochastic characteristics (e.g., transient transition probabil-
ity, sojourn time distribution etc.) are available. Namely, they
can only be seen as equivalent MRGP when the generator ma-
trix of the subordinate process is available. The processing
complexity is induced by the general stochastic characteris-
tics of traffic. In general, if the stochastic traffic characteris-
tics are available, then the regenerative process is solvable.
The transient stochastic characteristics of most tractable traf-
fic types can be found in the literature [20].

For G � GI � n � n traffic processes, the capacity-traffic model
is solvable for some particular analytically tractable distribu-
tions. One example is the Markovian Arrival Process (MAP)
which is a broad and versatile subclass of Markov renewal
processes. In a MAP, the inter-arrival times of calls are phase
type distributed, which is a convolution of many exponential
distributions and hence is analytically tractable [18]. Phase
type distributions reflect more detailed information about the
traffic stochastic parameters. Therefore information like the
transient transition probability and sojourn time distribution
can be available. With this information, the regenerative pro-
cess can be solved. Column 4 of Table 3 lists the complex-
ity in solving the capacity-traffic model for the capacity pro-
cesses given in column 1.

Another example is the Bernoulli-Poisson-Pascal (BPP)
process [9, 11], (column 5 in Table 3). The BPP approxi-
mates G � GI � n � n traffic using a linear state-dependent arrival
process. The BPP is characterized by two parameters α and
β. When k channels are occupied, Poisson arrival intensity is
given as α �

k β. For β � 0, it reduces to a Poisson process.
For β 
 0, it represents a process with lower variability than
Poisson. For β � 0, it represents a process with higher vari-
ability than Poisson process.

Given the equivalent mean L and variance V of a general
traffic process [12, 21], the occupancy distribution can be ap-
proximated by a BPP with the same mean and variance. The
parameters α and β are chosen as:

β � �
1 � 1

Z
� µ α � �

µ � β � L (10)
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Table 3. Examples of Solvable Stochastic Capacity Systems
Capacity

�
Traffic M � M � n � n M � G � n � n G/GI/n � n (complexity)

(complexity) (complexity) Continuous phase BPP Approx.
type arrivals

Markov process Solvable Solvable Solvable Solvable
(low, precise) (low, precise) (medium, precise) (medium, limitation)

Markov renewal Solvable Solvable Solvable Solvable
process (low, precise) (medium, precise) (high, precise) (high, limitation)
Markov modulated Solvable Solvable Solvable Solvable
Poisson process (medium, precise) (high, precise) (high, precise) (high, limitation)

with arrival rate λ and mean holding time 1 � µ, where:

Z � 1 � λ
µ

�
2µ � ∞

0
W c

2
�
x � dU

�
x � (11)

represents peakedness and U
�
x � denotes the renewal func-

tion of the arrival process, which is defined as the expected
number of arrivals in a time interval starting just after an ar-
rival with size x. W c

2

�
x � denotes the autocorrelation function

of the complementary holding time distribution. The study of
these traffic models jointly with the capacity model can lead
to more general observations for the non-Markovian system.

5. CONCLUSION AND FUTURE WORK
In this work, we develop an analytical model for evaluating

the performance of wireless networks by considering stochas-
tic capacity characteristics. Appropriate capacity models are
constructed to represent stochastic characteristics in the wire-
less networks. By joining it with the traffic model, an inte-
grated system is formed and is solved using Markov regen-
erative process. Stochastic parameters that influence perfor-
mance in such networks are investigated in the study.

Future research will consist of developing stochastic ca-
pacity models for future generation wireless networks based
on CDMA technologies. Performance of these systems will
be investigated in terms of call blocking probabilities and
delay by considering factors such as power control and dy-
namic channel assignment protocols. In our paper, no mobil-
ity parameters were considered. Mobility can be factored into
the considerationa about the capacity variation. We have not
specified the impact from mobility.
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