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Abstract
In this paper, we consider a variant of an M/M/c/c loss sys-
tem with fluctuating server capacity. Given a set of primary
inputs, such as arrival rate, service rate, and capacity fluctua-
tion rate, we develop a detailed model using MRGP, such that
blocking and dropping metrics can be calculated explicitly.
To gain insight into performance implications of a stochastic
capacity queue, we conduct an analysis on a simple, approx-
imate model. We investigate the functional behaviour of the
system, using both the approximate and the detailed model.
The significance of results in the context of network perfor-
mance evaluation and capacity planning is highlighted.
Keywords: network capacity planning, stochastic capacity,
loss system, MRGP

1. INTRODUCTION
Server capacity is the primary determinant of system per-

formance. Network provisioning involves determining a suit-
able configuration of system capacity (service dimensioning)
in order to achieve desired performance targets for metrics
such as blocking or delay.

In most systems, the server capacity is a constant value.
An illustrative example is used in telephony: the Erlang B
formula expresses the call blocking probability in terms of
traffic intensity and the trunk capacity. The number of lines
required for a target blocking probability can be decided by
using such a formula.

For the design and QoS provisioning of next-generation
networks, capacity planning is an important issue. However,
there is no corresponding formula as robust as the Erlang for-
mula. This is mainly due to the complicated nature of com-
puter networks: heterogeneous traffic, service differentiation
policies, and the noisy environment for wireless networks.

Server capacity is the number of parallel service channels
plus the number of buffers. Consider a server with capacity
C, where C is a random variable. This system experiences
two types of losses: blocking when an arrival encounters a
full system, and dropping when the system capacity decreases
while it is full. Many complicated factors in networks, such
as server downtime, link failure, or competition among pri-
oritized applications, can be represented using stochastic ca-

pacity models. For example, in a priority service discipline,
higher-priority applications may have pre-emptive priority
over low-priority applications. We can use a stochastic ca-
pacity model to represent the resource availability for low-
priority applications.

There have been several prior studies for buffered and un-
buffered systems that involve the change of server capacity,
either implicitly or explicitly. Among them are the unreliable
server system, where servers have downtime and later recover
[12] [13] [14]. A recent development is performability mod-
elling [6] [11] [18], which accounts for both system perfor-
mance and system availability. For mobile users using cell
phones and mobile devices, mobility leads to many handoff
calls. To provide uninterrupted service, certain channels are
reserved for handoff only [1]. Hence the number of channels
available for new calls may vary. Mobile users access sys-
tems by wireless/cellular connections as in CDMA, where
interference from neighbouring cells can severely limit the
number of calls accepted by a base station. Hence whether
the environment is quiet or noisy contributes to capacity fluc-
tuations (see [9] and the references therein). The impact of
data calls on the capacity of a CDMA multi-service system
was evaluated in [19]. The concept of stochastic capacity has
been recently proposed for studying the impacts of capacity
fluctuation [17]. Due to the complicated nature of the issue,
performance was evaluated mainly through simulation.

In the infinite buffer case, there is no loss, hence we call it a
pure delay system. For a pure delay system, there have been a
couple of studies [2] [10] dedicated to the delay performance
in a so-called perturbed system, i.e., a small fraction of chan-
nels can be taken away to accommodate prioritized traffic.
If the system is unbuffered, we have a pure loss system. We
assume no buffer, hence a loss system.

Loss systems behave quite differently from delay systems.
In the stochastic capacity queue, dropping also has an impact
on the system performance. As far as we know, this has not
been studied in the literature. Some system input parameters,
such as the ratio of the load to the mean capacity, and the
fluctuation timescale of server capacity (i.e., how frequently
the capacity changes relative to the service rate), have major
influences on performance. The effects of these factors (e.g.,



higher blocking when the load increases), are mostly intu-
itive. Some other factors, such as the coefficient of variation
(CoV) of the service time distribution, and other details, also
have implications. The effects of the latter factors (also re-
ferred to as “fine characteristics”) are less obvious.

We are interested in studying the system’s functional be-
haviour in response to the primary inputs, e.g. traffic load, ca-
pacity fluctuation, service time distribution, and service dif-
ferentiation policies. In particular, we will focus on the effects
of the “fine characteristics” on the system performance.

Two models, an approximate model and a detailed model,
are developed in this paper. The detailed model, which uses
a Markov regenerative process (MRGP), applies widely to
different phase-type service time distributions and capacity
variations, to yield precise performance metrics. The detailed
model serves essentially as a computation tool for deriving
the performance metrics. On the other hand, the approximate
model yields insight into the behaviour of a stochastic capac-
ity loss system; the insight is difficult, if not impossible, to
obtain from the detailed model.

The rest of this paper is organized as follows. In Section 2,
we describe the loss model of a stochastic capacity queue. In
Section 3, we develop an approximate model to gain insight
about the behaviour of this system. In Section 4, we develop
a detailed formulation for the model using an MRGP. In Sec-
tion 5, we express the loss metrics precisely in terms of the
equilibrium state distribution. In Section 6, we present nu-
merical examples. Section 7 concludes the paper.

2. DESCRIPTION OF A LOSS MODEL OF
A STOCHASTIC CAPACITY QUEUE

In this section, we describe our model of a loss queueing
system with stochastic capacity. The system is denoted gener-
ically as A/B/∼C/∼C, where A represents the inter-arrival
time distribution, B represents the service time distribution,
and C is the number of parallel service channels (i.e., server
capacity). The notation ∼C indicates that the server capacity
fluctuates with time. We assume an unbuffered system. We
use the general terms “servers” and “customers” in this pa-
per. A “server” can mean a service station, a compute server,
or a processing node in an application scenario. In the context
of communication, a customer refers to a call or a connection
request to an access point or a network server.

2.1 Stochastic capacity variation
To describe the status of a stochastic-capacity queue, we

use state (n,c) where n is the number of customers in service,
and c is the current server capacity. Two processes can be
identified, namely, the capacity fluctuation process C(t) and
the queuing process N(t). It should be clear that the evolu-
tion of the underlying model is subject to N(t)≤C(t) for any
time t, since C(t) is the capacity limit. It is assumed that Tc,

the time elapsed between capacity changes, follows a general
distribution as:

Pr{Tc < t}= Fc(t). (1)

We assume that C(t) takes integer values in [0,cM]. Denote
Y (t) = cM −C(t), which can be regarded as an interference
process competing for the server capacity cM with the main
queue process N(t); the interference process has pre-emptive
priority over the main queue process. In a heterogeneous net-
work, the fluctuation of C(t) can be at different time scales,
depending on the application.

In the rest of this paper, we assume that C(t) is skip-
free, taking integer values in [0,cM]. Tc follows a known dis-
tribution Fc(t) that does not depend on system state. Pro-
vided that the capacity is c currently, at the next capacity
change, C(t) increases to c + 1 with probability f↑(c), and
decreases to c − 1 with probability f↓(c). We always have
f↑(c)+ f↓(c) = 1. Also, f↑(0) = 1 and f↓(cM) = 1. C(t) is a
simple quasi-birth-death process that is independent of N(t).

2.2 Phase type services and dropping policies
Service times follow a distribution Pr{Tb < t}= Fb(t). For

non-exponential distributions, the standard techniques date
back to Cox. One technique is to supplement system size n

µ1 µ2

β2

Figure 1. Example of two-phase Cox distribution model

with an ordered set of time variables tg,1 ≤ g ≤ n, denot-
ing the time of service already expended on each customer.
Alternatively, we may consider a k-phase Cox distribution
(see Figure 1, for k = 2), where the service time is approxi-
mated with (finite) k exponential phases. Service always starts
at phase 1; after finishing phase j − 1, a customer goes to
the next phase with probability β j, and skips the remaining
phases with probability 1−β j. The service rate at each phase
is µ j. The Cox distribution is known to form a dense subset
within the set of all distributions with real, non-negative sup-
port. Further, algorithms have been provided [16] to approx-
imate an arbitrary distribution with a Cox distribution, and
examples were given for both light-tailed and heavy-tailed
distributions.

Dropping is possible in a stochastic capacity system. Now
we discuss the dropping rules (i.e., which victim to choose
when the system is forced to drop). Let χi,1 ≤ i ≤ k denote
the probability that a customer is dropped from phase i. A
dropping policy is specified by setting χi:

1. Random dropping: Let n j,1 ≤ j ≤ k be the number of
customers in phase j of the Cox service model immedi-
ately prior to the dropping instant. In random dropping,



χi = ni
n for any i. That is, each client in the system is

victimized with equal probability.

2. Fixed-ratio dropping: The victim to be dropped is cho-
sen from different phases according to a pre-determined
ratio. A fixed ratio υi is given for each i where ∑i υi = 1.
We set χi = υi if ni > 0 for any i.
Sometimes there exists some phase i such that ni = 0.
When this is the case, we re-normalize as below:

χi =

[

0, if ni = 0
υi

∑{ j:n j>0} υ j
, if ni > 0

For fixed-ratio dropping to be imposed, it is necessary for the
system to know the current service phase of each customer.
However, knowing the current phase is not necessary for the
policy of random dropping.

2.3 Cox service: coefficient of variation
We consider a two-phase Cox distribution, for which we

calculate the coefficient of variation, which is a key charac-
teristic of the service time. (The result derived in this Section
is used in our approximate analysis in Section 3.). A random
variable T drawn from this distribution (shown in Figure 1)
can be expressed as T1 + X T2 , where T1 ∼ Exp(µ1),T2 ∼
Exp(µ2), and X takes a value from a 0-1 bivariate distribu-
tion: X = 1 with probability β2, and X = 0 otherwise.

Let E(.) and Var(.) denote the expectation and variance
respectively. Let µ̄ = 1/E[T ] be the average rate of service
completion. The following holds for the Cox distribution:

1/µ̄ = 1/µ1 +β2/µ2.

Multiplying both sides by µ̄, we have 1 = µ̄
µ1

+ µ̄β2
µ2

. We intro-
duce a variable v:

v =
µ̄β2
µ2

,1− v =
µ̄
µ1

. (2)

Here v is the expected proportion of time spent in phase 2 for
an average customer.

We calculate the variance:

Var(T ) = Var(T1)+Var(X T2)

= Var(T1)+E(X2 T 2
2 )−E2(X T2)

= Var(T1)+β2Var(T2)+(β2−β2
2)E

2(T2).

Let σb be the coefficient of variation. We have,

σ2
b = Var(T )/E2(T ) = µ̄2Var(T ).

Since both T1 and T2 are exponentially distributed, Var(T1) =
E2(T1) and Var(T2) = E2(T2). Substitution of these relations
into the earlier formula for Var(T ) yields

σ2
b = (µ̄/µ1)

2 +β2(µ̄/µ2)
2 +(β2−β2

2)(µ̄/µ2)
2

= (1− v)2 +((2/β2)−1)v2. (3)

We refer to (σb,v) as an alternative parameterization for
any two-phase Cox distribution.

3. APPROXIMATE MODEL
We conduct in this section an analysis based on some as-

sumed approximations. The emphasis is not on the precise-
ness of the model. Rather, we want to examine some key fac-
tors that have relatively simple characteristics, and by using
them, we gain insight for predicting performance trends as
those factors change.

We assume that arrivals are Poisson. Service times, and
times between successive capacity changes, follow distribu-
tions Fb and Fc respectively.

3.1 Effect of Fb on blocking
It is well known that Poisson arrivals see time averages

(PASTA). Hence, the probability that an arrival is blocked is
equal to the stationary probability that the system is full. For
a fixed capacity M/G/c/c system, we know that the blocking
probability is insensitive to the service time distribution (i.e.,
only the mean matters) [3]. However, this is no longer valid
in a stochastic capacity system.

Drops in a stochastic capacity system reduce the mean time
that a client spends in the system. In our model, besides the
arrival rate and the designated stochastic variation of capacity,
the mean time spent in the system is the most important factor
affecting the performance. If each client stays in the system
longer on average, then the system becomes more congested,
leading to higher blocking.

Let Tb be the service time, i.e., the time needed for a client
to complete service. Let T ′

b be the amount of time that an ac-
cepted client spends in the stochastic capacity system. We
have T ′

b ≤ Tb, as a client might be dropped before service
completion. The reduction from E[Tb] to E[T ′

b ] is called the
dropping-induced speedup effect.

We claim that in a stochastic capacity system, the mean
time spent in the system may depend on the distribution
of Fb and not just the mean service rate. Now we estimate
µ′ = E[T ′

b ]. Let rdrop be the dropping rate, i.e., the number of
drops per unit time. We assume that: (1) the dropping rate
is fixed, and the time between drops is exponentially dis-
tributed (as an approximation); (2) Tb follows a two-phase
Cox distribution; and (3) a victim for dropping is chosen from
phase i with (long-run) probability φi, i = 1,2. (Statistically,
φi = E[χi], where χi is the decision variable used in discussion
of dropping policies.) Under these assumptions, a client (after
being accepted) departs phase 1 with rate µ1 +rdropφ1, where
rdropφ1 is the rate that a customer in phase 1 is dropped as
a victim. For a client entering phase 2, the rate of departure
from this phase is µ2 + rdropφ2. Among all clients in phase 1,
only a proportion µ1β2

µ1+rdropφ1
enter phase 2. We assume that



rdrop/µ << 1. For the expected time that an accepted client
spends in the system, we have:

1
µ′

=
1

µ1 + rdropφ1
+

µ1β2
µ1 + rdropφ1

×
1

µ2 + rdropφ2

=
1
µ1

×
1

1+
rdrop

µ1
φ1

+
1
µ1

µ1β2
µ2

×
1

(1+
rdrop

µ1
φ1)(1+

rdrop
µ2

φ2)

= (
1
µ1

+
β2
µ2

)−
rdrop

µ1
φ1(

1
µ1

+
β2
µ2

)−
β2
µ2

rdrop
µ2

φ2

+
1
µ̄

o(
rdrop

µ̄
). (4)

In the above derivation, we have applied the expansion 1/(1+
x) = 1−x+o(x) as x << 1. To simplify, we substitute Equa-
tion (2) into Equation (4), and obtain after some manipula-
tions:

1
µ′

=
1
µ̄
−

rdrop
µ̄2 Γ+o(

rdrop
µ̄2 ), (5)

where
Γ = (1− v)φ1 +

v2

β2
φ2.

From Equation (3), we see that v2/β2 = (σ2
b − (1− 2v))/2.

Substituting this into the expression for Γ yields

Γ = (1− v)φ1 + vφ2 +φ2(σ2
b −1)/2. (6)

The amount

E[Tb]−E[T ′
b] =

1
µ̄
−

1
µ′

=
rdrop

µ̄2 Γ+o(
rdrop

µ̄2 ) (7)

measures the dropping-induced speedup effect. Note this ef-
fect is negligible when σb ≤ 1 and rdrop << µ.

For the fixed ratio dropping policy, φi is roughly propor-
tional to υi. For the random dropping policy, φi is proportional
to the expected number in phase i at equilibrium, which (ac-
cording to queueing network theory), is proportional to the
traffic intensity going through phase i. (This does not strictly
apply to a loss system, however it holds approximately when
the loss ratio is low.) We have,

φ1
φ2

≈
λ/µ1

λβ2/µ2
=

µ2
µ1β2

=
1− v

v
.

Note that φ1 + φ2 = 1, hence φ1 ≈ (1− v),φ2 ≈ v. With this,
we find that

Γ ≈ (1− v)2 +(v/2)(σ2
b−1)+ v2. (8)

For a large σb and a fixed non-negligible rdrop, when
factor Γ increases (i.e., as σ2

b increases or v increases),
the dropping-induced speedup effect becomes more obvious.
Consequently the blocking probability decreases.

3.2 Effect of Fc on dropping
We relate dropping metrics to the probability of observing

that the system is full. Let us assume an omniscient observer,
who is sent immediately prior to each capacity decrease. We
refer to this as the dropping observance scenario, in which the
number of times seeing a full system is equal to the number
of drops in the system.

Denote τ∗ the instant of the most recent capacity decrease.
In this section, we denote t the time elapsed since τ∗ (i.e.,
imagine a clock that is reset to 0 every time that a capacity
decrease occurs: t is the reading of this clock). We introduce
a conditional probability as follows: let

p∗(t|c) = Pr{ system is full at τ∗ + t, (9)
no capacity decrease in (τ∗,τ∗ + t)|C(τ+

∗ ) = c}

A typical curve of p∗(t|c) is illustrated in Figure 2: the prob-
ability of the system being full is at its highest immediately
following a capacity decrease, but will decrease until another
capacity decrease occurs. Let T D be the time elapsed between

p*(t|c)

1.0

t

Figure 2. The curve of p∗(t|c) as t elapses

two successive capacity decreases. The system is seen full
with probability p∗(T D|c) (in the dropping observance sce-
nario). Also note that (intuitively) the distribution of T D has
a heavy-tail if Fc is a heavy-tailed distribution.

The blocking probability in the previous discussion relates
only to the time averaged probability that the system is full,
due to the Poisson arrival assumption. However, the dropping
relates to both p∗(t|c) as just defined, and the timing of ca-
pacity decreases (which is presumed to be the arrival instant
of the omniscient observer). But if capacity fluctuates slowly,
then T D typically takes large values. Intuitively, we know that
p∗(T D|c) decreases (asymptotically) to p∗(∞|c) as T D → ∞.
Hence, provided that at the instant immediately prior to a ca-
pacity decrease, the capacity is c, the probability of observing
that the system is full is close to p∗(∞|c), irrespectively of Fc.
This applies when capacity fluctuates slowly.

As capacity fluctuates faster, the distribution of Fc has a
greater impact on the dropping rate. In the model, when dis-
tribution Fc varies both p∗(t|c) and the distribution of T D

may change. However, provided that the mean of Fc does
not change, and if rdrop is low compared to µ̄, and σb < 1
(thus the dropping-induced speedup effect is minimal), then
we may consider that the change of dropping rate while Fc

varies is mainly due to the timing of arrival instants of the



“observer” (i.e., at what time the capacity decreases occur).
Probability p∗(t|c) decreases as t increases (refer to Figure 2).
The observer at larger t in the dropping observance scenario
sees that the system is full with relatively lower probability.
If the observer comes soon after the most recent capacity de-
crease, there is a high probability of seeing a full system.

Strictly speaking, it is the function Fc(t) over the whole re-
gion 0 ≤ t < ∞ that has an impact on the dropping rate, and
not just the tail. For instance, for a distribution Fc with mean
1/λ f , we consider three domains: [0,1/λ f ) (the “head”),
[1/λ f ,3/λ f ] (the “body”), and (3/λ f ,∞) (the “tail”) respec-
tively. Hence, dropping is typically higher when Fc follows
a Gamma distribution, as a Gamma distribution has a larger
density function at the “head” than an exponential distribu-
tion. On the other hand, a typical heavy-tailed distribution is
Pareto distribution with shape parameter 1 < κ < 2, which
has a larger density function at the “tail”. (To refer to the def-
inition of Pareto distribution, please see Formula (20) later in
this paper.) When Fc follows such a Pareto distribution, the
dropping rate is typically lower.

4. DETAILED MODEL USING MRGP
In this section, we develop a detailed model of stochastic

capacity loss system. The state space of a stochastic capacity
system is denoted by:

S = {(n,c) : 0 ≤ n ≤ c ≤ cM}, (10)

Let us consider a row vector ~p(t) indexed by each s ∈ S , with
~ps(t) recording the probability of being in state s at instant t.
We describe the system dynamics:

d
dt

~p(t) = ~p(t)Q̃(t), (11)

where matrix Q̃(t) is the infinitesimal generator matrix.
In later discussion, we will extend S where appropriate,

for the purpose of capturing dropping (Section 4.2) and for
incorporating phase variables in service times (Section 4.3).

4.1 Process of stochastic capacity queue
In Equation (11), if the process has an equilibrium and

Q̃ does not depend on t, then the equilibrium state distri-
bution ~π can be solved from ~πQ̃ = 0. However, only in the
M/M/∼C/∼C case, and where Tc follows an exponential dis-
tribution, would Q̃(t) be independent of t (for this system, all
events are Markovian). In the following, we identify those
special instants that satisfy the Markov property, and con-
struct an MRGP in order to solve for the equilibrium.

We briefly introduce the Markov regenerative process, and
refer readers to rich literature in this area, both in theory de-
velopment and in applications [4] [5] [8] [11] [15]. In an
MRGP, there exist time points where the process satisfies

the Markov property. We call these time instants regeneration
points. Consider a bivariate sequence {(uh, th),h = 0,1,2, ..},
where th is a time point and uh describes the system status
at time th. The sequence {(uh, th)} defines a Markov chain,
satisfying both Markov property and time homogeneity. An
MRGP Z(t) associated with the sequence {(uh, th)} is char-
acterized by the following property: all conditional finite di-
mensional distributions of {z(th + t), t ≥ 0} given {z(·),0 ≤
·< th;uh = i} are the same as those {z(t), t ≥ 0} given u0 = i,
i.e. the evolution of Z(t) after th depends on the state at th, the
most recent regeneration point, but not on evolution before
that th. The time period from th to th+1 is called a regenera-
tive cycle. Evolution of Z(t) is determined by the global ker-
nel K(t) and the local kernel E(t). Kernel K(t) describes the
behaviour of Z(t) at the regeneration instants through an em-
bedded (discrete-time) Markov chain (EMC), while the local
kernel E(t) describes it through the state distribution at time
t between two consecutive regeneration instants.

Let Z(t) = (N(t),C(t)), in which N(t) and C(t) are the
queueing process and capacity variation process in our dis-
cussion. In capacity variation C(t), Tc: the time between ca-
pacity changes, is allowed to follow an arbitrary distribu-
tion. Consider a sequence {Z(th), th},h = 1,2, .., where {th}
denotes the sequence of capacity change instants. This se-
quence is a Markov renewal sequence under certain assump-
tions e.g., for an M/M/∼C/∼C queue; for an M/PH/∼C/∼C
queue (service is phase-type distribution), a Markov renewal
sequence can be formed if phase variables are incorporated
(refer to Section 4.3, where we will address the case that
service is Cox distribution). The stochastic capacity model
Z(t) = (N(t),C(t)) can be viewed as the MRGP associated
with the Markov renewal sequence {Z(th), th}.

Now we specify the kernels K(t) and E(t) for this system.
Assume 0 = t0 < t < t1. (Consideration of this interval is suf-
ficient, due to the Markov property and time homogeneity).
The entry of matrix E(t) is given by E(n,c,n′,c′)(t), which is
the probability that, given that the system was in state (n,c)
just after the previous capacity change occurred at time 0, the
system will be in state (n′,c′) at time t, and from instant 0 to t
there is no capacity change. From this definition it is obvious
that for any n 6= n′ we have E(n,c,n′,c′)(t) = 0. For time in-
terval (0, t), the dynamics governing the system are identical
to those in a fixed capacity system, which have been studied
extensively in literature. The entry of matrix K(t) is given
by K(n,c,n′,c′)(t), which is the probability that the system will
be in state (n′,c′) immediately after the next capacity change
at time t, given that the system was in state (n,c) just after
the previous capacity change occurred at time 0. Now con-
sider the Markov chain embedded (EMC) at each instant im-
mediately after each capacity change. The one-step transition
probability for this EMC is given by K(∞).

Related to the global kernel, we define the following. Let



t−1 be the instant immediately prior to the capacity change.
Now denote ψn,n′(c) = Pr{N(t−1 ) = n′|N(t0) = n,C(t+0 ) = c}
and for 0≤ c≤ cM, define the matrix ψ(c) = (ψn,n′(c)). There
is no capacity change for transitions described in ψ’s. These ψ
matrices facilitate the construction of the global kernel. Con-
cerning the derivation of ψ matrices, we discuss as follows.
Assume that C = c during time interval [t0, t1). We denote
p(t,n′|n,c) the transient probability of observing queue size
n′ at instant t0 + t prior to t1. These transient probabilities are
needed in the construction of ψ(c), as shown below:

ψn,n′(c) =

Z ∞

0
p(t,n′|n,c)dFc(t). (12)

To calculate the transient probabilities, the approach of dis-
cretization (also known as uniformization) can be applied.
Please see e.g. [7] for details.

However, we still have not explicitly captured the drop-
ping, which is important. For elaboration on this point and
how to construct the global matrix, please see Section 4.2.

The equilibrium solution
We address the calculation of ~π, which is the equilibrium

state distribution for the MRGP specified by (K,E). We fol-
low the standard solution process, e.g. [8], with some adapta-
tion of notation. Define~γ as a row vector of proper size, with
entry γs denoting the probability of being in state s, when the
EMC described by K is in equilibrium. The following equa-
tion gives the solution of~γ,

~γK =~γ;

From the local kernel E, we can calculate:

αi j =

Z ∞

0
Ei j(t)dt,

which is the expected accumulated time spent in j in a regen-
erative cycle that starts from i. Finally, the equilibrium state
distribution~π for the MRGP under consideration is given by:

π j =
∑i γiαi j

∑i γi ∑k αik
, (13)

For this model, if we require that ∑ j∈S γ j = 1, then the de-
nominator in formula (13) reduces to E[Tc].

4.2 Capturing dropping explicitly
Now we develop a new EMC that captures droppings ex-

plicitly. Let us denote ∆ as a special value, where (c is ∆)
is used to indicate that a dropping is to occur immediately.
Denote S∆ = {(c,∆) : 0 < c ≤ cM}, in which c is the ca-
pacity at t−1 . (See Figure 3, where we show an example for
cM = 3). Let S ∗ = S ∪S∆. Suppose N(t0) = n,C(t+0 ) = c and
N(t1) = n′,C(t−1 ) = c′. If dropping occurs, it must hold that

(1,1)

(1,2) (2,2)

S

S∆

(0,3)

(0,2)

(0,1)

(0,0)

(1,3) (2,3) (3,3)

(3,∆)

(2,∆)

(1,∆)

Figure 3. Extended state space S ∗ in model

n′ = n−1 = c′. (Note that at the dropping instant, the system
is full and at t1 the capacity decreases by 1.) This dropping
will be recognized in the new process by forcing a two-step
transition, as below:

(n,c) → (c,∆), (14)
(c,∆) → (n′ = c−1,c′ = c−1).

In this way, we can find the number of droppings by count-
ing the number of visits to S∆ (but the time spent in S∆ is
presumed 0).

We define on S ∗ a new matrix K∗ = K∗(∞), based on the
matrices (ψ(c)),0 ≤ c ≤ cM . K∗ is constructed as:

K∗
(n,c,n′,c′) =

































0; if |c− c′| 6= 1,c or c′ is not ∆
f↑(c)ψnn′(c); if c′ = c+1,n′ ≤ c

(case 1)
0; if c′ = c+1 = n′ (case 1a)
f↓(c)ψnn′(c); if c′ = c−1,c > 0

(case 2)
f↓(c)ψnc(c); if c′ is ∆,n′ = c,c > 0

(case 2a)
1; if c is ∆,n′ = n−1 = c′ (case 2b)
0; otherwise

(15)
We claim that K∗ is the transition probability matrix of the

new EMC Z∗(t), which extends Z(t) for S to the new state
space S ∗. This is readily verified by each case. We point out
that the two-step transition as stated in (14), corresponds to
case (2a) followed by case (2b) in Equation (15).

Why is this construction necessary? In order to tell whether
a dropping occurs at an instant, we must know the system sta-
tus immediately prior to that dropping instant. However, such
information is not available in the original EMC defined on S
(recall that the EMC in our model is embedded immediately
after instants of each capacity change). Droppings are cap-
tured in S ∗ when any transition involving dropping is forced
to visit S∆.



4.3 Incorporation of phase variables
We extend the model above, which deals with only expo-

nential service, to a model incorporating phase-type service.
The purpose is to accommodate the multi-phase Cox service
described in Section 2.2. For a k−phase Cox distribution, we
can use (n,n2, ..,nk) for state description. Here n1 is left out
to remove the redundancy from n1 = n−∑ j 6=1 n j.

We make adaptations to the step of constructing the kernel.
This is analogous to the global kernel given in Equation (15),
except for two major differences. First, in the place of ma-
trix ψ(c), we need a new matrix that incorporates phase-type
services. Second, case 2a) in Equation (15) must be split into
several cases corresponding to different dropping rules. These
details are tedious, but straightforward.

A state is described as (n,θ), where θ = (n2,n3, ..,nk). Now
consider the process Z̄(t) = (N(t),Θ(t),C(t)) defined on the
expanded state space S̄ = {(n,θ,c) : 0 ≤ n ≤ c ≤ cM ,θ =
(ni, i = 2,3, ..k) : ∑k

i=2 ni = n−n1}. The description of phases
is included here in order to be general. A state j in this
space expands to j = (n,θ,c). We can define ~̄γ, ᾱi j and ~̄π,
which have meanings similar to~γ, αi j and~π, but are for Z̄(t).
Through extending the solution process for Z(t) on S to the
extended space S̄ , these metrics can be worked out.

Finally, we define

S̄∆ = {(n,θ,∆) : 0 < n≤ cM,θ = (ni, i = 2,3, ..k) :
k

∑
i=2

ni = n−n1}

(16)
and S̄∗ = S̄ ∪ S̄∆. State space S̄∆ are similar to S∆ when we ad-
dress the methodology of capturing dropping in Section 4.2,
but corresponds to the situation incorporating phase variables.

5. LOSS METRICS
We calculate loss metrics as follows.

Blocking
Define:

S̄block = {(n,θ,c) : n = c} (17)
Then the blocking probability pblock is:

pblock = ∑
j∈S̄block

π̄ j = ∑
j∈S̄block

∑
i∈S̄

γ̄i
ᾱi j

E[Tc]
. (18)

Dropping
The following formula calculates the dropping rate rdrop:

rdrop =
∑ j∈S̄∆

γ̄ j

∑i∈S̄ ∑k∈S̄ ᾱik
=

∑ j∈S̄∆
γ̄ j

E[Tc]
. (19)

Here, state j ∈ S̄∆ expands to j = (n,θ,∆), respectively state
k ∈ S̄ expands to k = (n,θ,c),0 ≤ c ≤ cM.

The dropping probability is the ratio of customers dropped
among all customers admitted. From this, we have

pdrop = rdrop/(λ− rblock).

6. NUMERICAL EXAMPLES
We investigate by numerical examples the loss metrics in

response to the input parameters in a variant of M/M/∼C/∼C
system. The service time follows a Cox type distribution.

For calculation of loss metrics, we apply the detailed model
developed in Section 4. Let µ = µ̄,λ,λ f be respectively the
mean service rate, the arrival rate and the mean capacity fluc-
tuation rate. Let Tb,Tc denote respectively the random vari-
able of service times, and times elapsed between successive
capacity changes. Tb and Tc follow distributions Fb and Fc re-
spectively. We choose a default set of parameter values, and
then selectively vary some of them. The default settings are as
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follows. We set cM = 10, f↑(c) = 0.65 for 0 < c < cM , f↑(0) =
1.0 and f↓(cM) = 1.0. Distribution Fb is Gamma with mean
1.0 and shape parameter k = 2. Note that σb < 1 for this par-
ticular distribution. Fc is exponential with mean 1.0. The load
level is λ/µ = 4.25, and the dropping policy is random drop-
ping, unless otherwise mentioned.

We conducted four experiments.
The first experiment is designed to study the effects of

the traffic load (λ/µ) and the capacity fluctuation timescale
(λ f /µ) on loss metrics. We consider three different load levels
(High: λ/µ = 9.0; Medium: λ/µ = 4.25; Low: λ/µ = 2.10),
and the timescale λ f /µ varies from 0.1 to 10. All other pa-
rameters are the same as defaults. The results are reported in
Figure 4. From the figure, we see that as the capacity fluc-
tuates more frequently, the dropping rate increases signifi-
cantly, however the blocking probability decreases slightly.
Note σb < 1 in this experiment.

The second experiment focuses on the effect of distribution
Fc on the dropping rate. The service time distribution Fb is
Gamma (k = 2). We consider a set of different distributions
for Fc, where the parameter λ f varies from 0.1 to 10. The first
two choices are: (1) an exponential distribution with rate λ f ;
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and (2) a Gamma distribution with density function

xk−1 e−x/ξ

ξkΓ(k)
for x > 0,

where the shape parameter k = 10 and ξ = 0.1/λ f . The mean
for this Gamma distribution is 1/λ f . For these two choices,
we will write Fc ∼ Exp and Fc ∼ Gamma respectively. Other
choices are taken from the family of Pareto distributions, with
density function

(κ/xm)(xm/x)κ+1 for x > xm, (20)

and 0 otherwise. We refer to κ as the shape parameter: κ takes
the values of 1.15, 1.5 or 2.0; xm is chosen such that the mean
fluctuation rate λ f varies from 0.1 to 10. For these choices,
we will write Fc ∼ Pareto(κ = 1.15), Fc ∼ Pareto(κ = 1.5),
Fc ∼ Pareto(κ = 2.0). Note that the Gamma distribution and
the Pareto distribution are two families that have quite dif-
ferent characteristics. A Gamma distribution is light-tailed. A
Pareto(κ) distribution is heavy-tailed, and when κ decreases,
the tail becomes heavier.

The results are reported in Figure 5. When the timescale
λ f /µ < 1, dropping rates for different Fc are almost the same.
When λ f /µ > 1, it is in the case Fc ∼ Pareto(κ = 1.15) (the
heaviest tail) that we see the lowest dropping rate, while in the
case Fc ∼ Gamma(k = 10) we see higher dropping rate than
in the case when Fc is an exponential distribution. These are
consistent with earlier analysis using the approximate model.

In the third experiment, we study the effect of details of Fb

(beyond mean) on the blocking. We choose λ f /µ = 1. Partic-
ularly, we examine the system behaviour when the coefficient
of variation grows larger (specifically σb > 1, unlike in first
two experiments, where σb < 1). For simplicity, we examine
only the situation that Fb is taken from a two-phase Cox dis-
tribution; for this situation, we may use the alternative param-
eterization (σb,v) for Fb. We choose four different configura-
tions. For each configuration, a curve of blocking probability
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is generated when σ2
b varies from 1 to 100, with the config-

uration annotated. The results are reported in Figure 6. For
this experiment, in the region σ2

b ≤ 1, different configurations
of Fc and the v parameter (with the same λ f ) produce little
difference in the blocking probability. When σ2

b is larger, the
difference becomes more obvious. The blocking probability
decreases while v parameter increases.

In the fourth experiment, we look at the impact of different
dropping policies. We use the default setting, except that dis-
tribution Fb is taken from a two-phase Cox distribution. Using
the alternative parameterization, we set the parameter v = 0.2
and σ2

b varying from 1 to 100. The following dropping poli-
cies are considered: (1) the random dropping; (2) dropping
with a fixed fraction: φ1 = 0.5,φ2 = 0.5, (3) similar to the
second policy except that φ1 = 0.8,φ2 = 0.2; and (4) simi-
lar to the second policy except that φ1 = 0.9,φ2 = 0.1. One
curve is generated for each policy. The results are reported
in Figure 7. We note that for large σb, the blocking probabil-
ity decreases more when victims are chosen more often from
phase 2, which is the slow phase.
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Lastly, we check on the consistency of the two models in
this paper. The trend (from the detailed model) in the change



Table 1. Effect of Fb distribution: comparison of models
Parameters % reduction % reduction

in Fb in E[T ′
b] in pblock

σ2
b = 1 0 almost none

φ2 = 0.2,σ2
b = 5 2.8 7.4 - 9.1

φ2 = 0.2,σ2
b = 10 6.3 10 - 17

φ2 = 0.5,σ2
b = 5 7.0 11 - 18

of blocking and dropping when Fb and Fc varies, is exactly
as we have analyzed using the approximate model. A quan-
titative comparison follows regarding different choices of Fb,
the dropping-inducedspeedup effect and reduction of pblock.
We can calculate the reduction of time spent in the system
(i.e., E[T ′

b ]) using Formula (7) in Section 3.1, and we find
out the reduction in the blocking probability (pblock) from
the detailed model. We choose the following parameters:
cM = 10, λ/µ = 4.25,λ f /µ = 1; for this case rdrop ≈ 0.07.
Parameters σ2

b and v relating to Fb, together with the results
are listed in Table 1. We see that the decrease in E[T ′

b ] is re-
flected in the reduction in pblock.

7. SUMMARY AND OUTLOOK
The model studied in this paper provides a useful tool for

performance study in areas such as rapidly developing cel-
lular networks. In such networks, the system capacity may
be affected through many factors of complex nature such
as communication link downtime, guard channels to pro-
tect high-priority users or loss sensitive applications, thermal
noise and fading effect in wireless channels. Thus modeling
the capacity fluctuation by a general distribution is necessary.
For some of the individual capacity-affecting factors men-
tioned above, there has been some research. However, we are
more interested to present a framework, from which we can
study the performance implications for any combination of
these individual factors. The stochastic queue model is an ab-
straction from these scenarios as well as others.

To address the issues above, we formulate the model of
a loss queueing system with stochastic capacity. The MRGP
model is developed to calculate the exact loss metrics. We
also developed an approximate model to gain insight and in-
fer the performance implications of system inputs, especially
for the “fine characteristics”. For service times, we limit the
discussion to two-phase Cox distributions in the approximate
analysis and in numerical examples, but the method devel-
oped applies to general phase-type distributions.

An obvious observation is that the dropping rate increases
fairly sharply as λ f (rate of capacity fluctuation) increases.
This holds consistently irrespective of distributions Fb and Fc.
In contrast, the blocking probability responds differently to
the increase of λ f for different situations, ranging from be-
ing negligible (Figure 4, where σb < 1) to being significant

(Figure 6 where σb is large).
We focus on the system’s functional behaviour w.r.t. the

fine characteristics of Fb and Fc. On this aspect, there are sev-
eral main findings:

(a) Regarding the dropping rate, the difference in Fc (pro-
vided the mean is the same) has a modest to medium
effect. The dropping rate is typically lower when the dis-
tribution Fc has a heavier-tail (Figure 5).

(b) Provided that coefficient of variation (CoV) in Fb is
small (σb ≤ 1), there is relatively little change in pblock
when different distributions Fb and Fc are assumed in the
model. A particular case is when Fb is exponentially dis-
tributed. For this situation, pblock is insensitive to de-
tails of Fc as well as insensitive to the dropping policy.

(c) For sufficiently large CoV in Fb (σb >> 1), we ob-
serve significantly lower blocking probability than oth-
erwise. The behaviour in this situation is complicated.
The change in pblock depends on σb as well as on the
details of Fb beyond the first two moments (Figure 6)
and on the dropping policy (Figure 7).

This work reveals some interesting and complicated be-
haviour for a stochastic capacity loss system. Qualitatively,
we show that in a stochastic capacity system, large σb can
be beneficial in the reduction of blocking. However, in the
random dropping policy, customers in the slow phase (inter-
preted as customers having large unfinished workload) are
more likely to be dropped: a price paid to reduce blocking.

These findings have practical significance, e.g., regarding
capacity planning. We can identify certain regimes in which
some loss metrics show the approximate insensitivity. One
example is that dropping rate is approximately insensitive
to details of Fc beyond mean, if capacity fluctuation is slow
(λ f /µ < 1). Another example is that pblock is approximately
insensitive to the distribution of Fb provided σb ≤ 1. For these
regimes, we expect that the simpler model developed in Sec-
tion 3, after some adaptation, may be applied to evaluate loss
metrics. This deserves further attention.

For future work, we also plan to further illustrate the ap-
plicability of the stochastic capacity queue, by deriving the
performance implications for specific applications that have
capacity variations.
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