
TCP NewReno: Slow-but-Steady or Impatient?
Nadim Parvez Anirban Mahanti Carey Williamson

Department of Computer Science
University of Calgary

2500 University Drive NW
Calgary, AB, Canada T2N 1N4

Email: {parvez, mahanti, carey}@cpsc.ucalgary.ca

Abstract— In this paper, we compare the throughputs of two
different TCP NewReno variants, namely Slow-but-Steady and
Impatient. We develop analytic throughput models of these
variants as a function of round-trip time, loss event rate, and
the burstiness of packet drops within a loss event. Our models
build upon prior work on TCP Reno throughput modeling, but
extend this work to provide an analytical characterization of
the NewReno fast recovery algorithms. We validated our models
using the ns-2 simulator. Our models accurately predict the
steady-state NewReno throughput for a wide range of loss rates.
Based on these models, we analytically determine the preferred
operating regions for each TCP variant. Our results show that
the Slow-but-Steady variant is comparable to or superior to
the Impatient variant in all but the most extreme scenarios for
network packet loss.
Keywords: TCP, TCP NewReno, Congestion Control, Fast
Recovery, Throughput Model

I. INTRODUCTION

Several variants of the Transmission Control Protocol (TCP)
are used for reliable data transfer on the Internet. This paper
develops bulk data transfer throughput models for the Slow-
but-Steady and Impatient variants of TCP NewReno [9]. We
use these models to provide new insight into the performance
of the two NewReno variants.

Our work is motivated by three observations. First, although
many analytic models of TCP’s congestion-controlled through-
put have been proposed, most have modeled TCP Reno [3],
[6], [8], [11], [16], [18], [20], [21], [22], [24], rather than
TCP NewReno. Second, recent measurement studies indicate
that TCP NewReno is widely deployed on the Internet [19],
[23]. Third, it seems reasonable to expect that TCP NewReno
implementations will continue to be dominant, at least in the
near future, in order to provide better support for TCP peers
without SACK [9].

The Slow-but-Steady and Impatient variants of NewReno
differ in their fast recovery behavior, specifically with respect
to how they reset the retransmit timer. The Slow-but-Steady
variant resets the timer after each partial1 acknowledgement
(ACK), and continues to plod along with small adjustments
to the congestion window. The Impatient variant resets the
retransmit timer only upon the receipt of the first partial ACK.
Subsequent losses or partial ACKs typically trigger a coarse
timeout, which in turn triggers a drastic congestion window

1An ACK that acknowledges some but not all of the outstanding data.

reduction, and a renewed slow start phase to probe the (new)
available capacity of the network.

RFC 3782 recommends the Impatient variant, but provides
no justification for this recommendation [9]. Our results,
however, show that Impatient outperforms Slow-but-Steady
only in very unusual network packet loss conditions. We
thus recommend Slow-but-Steady as the preferred NewReno
variant.

The remainder of this paper is organized as follows. Sec-
tion II presents an overview of NewReno congestion control.
The throughput models for the NewReno variants are devel-
oped in Section III. Model validation and performance results
are presented in Section IV. Section V provides further insight
into the performance of the Impatient and Slow-but-Steady
variants. Section VI presents our conclusions.

II. TCP NEWRENO CONGESTION CONTROL

Modern TCP implementations incorporate congestion con-
trol algorithms that adapt the sending rate of the source
according to perceived changes in available network band-
width. This dynamic adaptation is achieved by computing
the congestion window size (cwnd), a TCP state variable
that places an upper bound on the number of (maximally-
sized) unacknowledged segments in the network. Depending
on the congestion window adaptation policy in use, TCP
may be classified as Tahoe [13], Reno [14], NewReno [9],
SACK [7], or Vegas [5]. The following sections briefly discuss
the components of NewReno congestion control. The reader
is referred to references [9], [14], [27], [28] for a detailed
treatment of TCP NewReno congestion control.

A. Slow Start and Congestion Avoidance

Let cwnd and ssthresh refer to the current congestion
window size and the current slow start threshold, respectively.
Then, if cwnd < ssthresh, receipt of a non-duplicate ACK
results in cwnd increasing by one segment. Thus, in the
absence of segment loss, cwnd doubles every round-trip time
(RTT) until it reaches the slow start threshold value ssthresh.
This algorithm is called the slow start algorithm [13].

If cwnd ≥ ssthresh, cwnd increases by 1/cwnd for
each non-duplicate ACK received. This window evolution in
which the congestion window size increases by about one
segment every RTT is referred to as the congestion avoidance
algorithm [13].

B. Fast Retransmit and Fast Recovery

During slow start or congestion avoidance, receipt of four
back-to-back identical ACKs (referred to as “triple duplicate
ACKs”) causes the sender to perform fast retransmit [14].
In fast retransmit, the sender does the following. First, the
segment implicitly requested by the triple duplicate ACK is
retransmitted. Second, ssthresh is set to cwnd/2. Third,
cwnd is set to ssthresh (new) plus 3 segments. Following
these steps, the sender enters fast recovery [9], [14].

Upon entering fast recovery, the sender continues to increase
the congestion window by one segment for each subsequent
duplicate ACK received. The intuition behind the fast recovery
algorithm is that duplicate ACKs indicate the reception of
some segments by the receiver, and thus can be used to
trigger new segment transmissions. The sender transmits new
segments if permitted by its congestion window.

TCP NewReno (unlike Reno) distinguishes between a “par-
tial” ACK and a “full” ACK. A full ACK acknowledges all
segments that were outstanding at the start of fast recovery,
while a partial ACK acknowledges some but not all of
this outstanding data. Unlike Reno, where a partial ACK
terminates fast recovery, NewReno retransmits the segment
next in sequence based on the partial ACK, and reduces the
congestion window by one less than the number of segments
acknowledged by the partial ACK. This window reduction,
referred to as partial window deflation, allows the sender to
transmit new segments in subsequent RTTs of fast recovery.
On receiving a full ACK, the sender sets cwnd to ssthresh,
terminates fast recovery, and resumes congestion avoidance.

C. Slow-but-Steady versus Impatient

The Slow-but-Steady (SBS) variant of NewReno resets the
retransmit timer on receipt of each partial ACK. Thus, the
Slow-but-Steady variant can recover from multiple segment
losses in the same window by potentially retransmitting one
lost segment per RTT. The TCP sender remains in fast recovery
mode until a full ACK is received.

The Impatient (IMP) variant of NewReno resets the retrans-
mit timer only for the first partial ACK. Thus, the Impatient
variant attempts to avoid lengthy fast recovery periods by
invoking slow start following a timeout, and recovering lost
segments using a Go-back-N approach.

Exactly when the Impatient variant experiences a timeout
depends upon the retransmit timeout (RTO) estimation tech-
nique and the timer granularity. For example, if 2RTT <
RTO < 3RTT , Impatient will continue in fast recovery for
at least 3 RTTs. Thus, if 4 or more segments are dropped
from a large window, Impatient will incur a timeout. In RFC
3782, the Impatient variant is recommended over the Slow-
but-Steady variant [9].

III. THROUGHPUT MODELS FOR TCP NEWRENO

This section develops simple stochastic models for the
steady-state throughput of the Slow-but-Steady and the Im-
patient variants of TCP NewReno. We begin this section by

TABLE I
MODEL NOTATION

Parameter Definition
p Loss event rate
m Avg. number of segment losses per loss event
R Avg. round-trip time
RTO Avg. duration of first timeout in a series of timeouts
WSBS Avg. of the peak cwnd during CA (Slow-but-Steady)
WIMP Avg. of the peak cwnd during CA (Impatient)

outlining our assumptions. Model notation is summarized in
Table I.

A. Model Assumptions

Our assumptions are similar to those in prior works (e.g.,
[6], [11], [18], [22], [25], [26]), except for those pertaining to
segment losses.

Our models characterize the steady-state throughput of bulk
transfers. TCP’s 3-way connection establishment and initial
slow start phases are ignored. We also assume that the sender
always transmits full-sized (i.e., MSS) segments, that the
receiver’s advertised buffer space does not limit the congestion
window, and that an ACK is sent for each received segment.

The evolution of the TCP congestion window is modeled
in units of “rounds” [22]. The first round begins with the start
of congestion avoidance; its duration is one RTT. All other
rounds begin immediately after the previous round, and their
durations are also one RTT. As in prior work, we assume that
the round duration is larger than the time required to transmit
segments in a round, and that the round duration is independent
of the congestion window size.

We characterize segment losses in terms of loss events. A
loss event begins with the first loss in a round that eventually
causes TCP to transition from the congestion avoidance phase
to either the fast recovery or the timeout phase. The occurrence
of loss events is characterized by a Bernoulli process with
parameter p. That is, p is the loss event rate. Within a loss
event, it is assumed that there are a total of m segment losses.
Furthermore, we assume that all loss events are identified
by triple duplicate ACKs (i.e., m < W − 2), and all loss
events therefore trigger fast recovery. Within a fast recovery,
we assume that retransmitted segments are never lost.

B. Model for the Slow-but-Steady Variant

From our assumptions and using arguments analogous to
those in [22], [25], it follows that TCP’s segment transmissions
can be viewed as a concatenation of statistically identical
cycles, where each cycle consists of a congestion avoidance
(CA) period followed by a fast recovery (FR) period, as
illustrated in Figure 1(a). Therefore, the throughput of the flow
can be determined by analyzing one of these cycles.

In the congestion avoidance period, TCP’s window grows
from WSBS

2 to WSBS , with the window size increasing by one
segment per RTT. For m segment losses per loss event, the fast
recovery period continues for m RTTs, with TCP transmitting

WSBS

0

N
ew

S
eg

m
en

ts
S

en
t

p
er

R
T

T

Time

CA FR CA FR CA FR CA FR

2

SBS
W

4

SBS
W

0

N
ew

S
eg

m
en

ts
S

en
t

p
er

R
T

T

TOCA SS TOCA SS TOCA SS TOCA SS

Time

2

IMP
W

4

IMP
W

1

WIMP

(a) Slow-but-Steady (b) Impatient
Fig. 1. Segment Transmission Cycles of the TCP NewReno Variants

approximately WSBS

4 segments per RTT.2 Hence, the number
of segments SSBS transmitted in a SBS cycle is:

SSBS=
PWSBS

i=
WSBS

2

i+m
WSBS

4 =
WSBS

4

�
3

WSBS
2 +m+3

�
. (1)

From the Bernoulli loss event assumption, it follows that
SSBS = 1/p. Therefore, we obtain:

WSBS =
−3p−mp +

√
9p2 + 6mp2 + m2p2 + 24p

3p
. (2)

The elapsed time duration DSBS for each SBS cycle is:

DSBS =
(

WSBS

2
+ 1

)
R + mR. (3)

Therefore, the steady-state throughput TSBS of a Slow-but-
Steady NewReno bulk transfer is:

TSBS =
SSBS

DSBS
=

1/p

R
(

WSBS

2 + m + 1
) , (4)

with WSBS computed using Equation 2.

C. Model for the Impatient Variant

In this section, we derive a model for the Impatient variant.
For this model, we are interested in the timeout case, which
occurs when the number of segment losses exceeds some
critical value. That is, we restrict our analysis to the case when
m ≥ m∗, where m∗ is the number of segment losses required
per loss event to cause a coarse timeout before fast recovery
terminates with a full ACK. For m < m∗, Impatient and Slow-
but-Steady behave identically, so Equation 4 can be used.

For m ≥ m∗, the segment transmissions for the Impatient
variant can be viewed as a concatenation of statistically
identical cycles, where each cycle consists of a congestion
avoidance (CA) period, an incomplete fast recovery period, a
timeout (TO) period, and a slow start (SS) period, as shown3

in Figure 1(b).
Consider a cycle as shown in Figure 1(b). Upon occurrence

of a loss event, the TCP sender enters fast recovery and reduces
its congestion window from WIMP to WIMP

2 and sets the slow
start threshold, ssthresh, to WIMP

2 . Since Impatient does not

2During fast recovery, the number of segment transmissions per RTT ranges
from 0 to (WSBS

2
− 1), depending on the value of m. Experiments and

analysis suggest that WSBS
4

is a reasonable (but conservative) estimate of
the average number of transmissions per RTT.

3The illustration does not show the incomplete fast recovery period.

schedule a new timer for subsequent partial ACKs, the TCP
sender experiences a timeout after RTT + RTO. When the
timeout occurs, the slow start threshold is first set to half of
the current congestion window size (i.e., ssthresh = WIMP

4),
and then the congestion window size is set to one segment. As
a result, TCP re-enters slow start. In the slow start phase, the
congestion window size doubles every round until the slow
start threshold is reached. To simplify our model, we count
the last round of slow start (i.e., its segments and duration) as
being part of congestion avoidance. This simplification does
not affect the throughput formulation.

The number of segments SIMP sent in an IMP cycle is the
sum of the number of segments transmitted during the slow
start and congestion avoidance periods. We do not count the
new transmissions during the incomplete fast recovery, since
TCP NewReno forgets all outstanding data upon a timeout4.
Therefore,

SIMP =(1+2+···+ WIMP
8)+

PWIMP

i=
WIMP

4

i= 15
32 W 2

IMP + 7
8 WIMP−1. (5)

From the Bernoulli loss event assumption, it follows that
SIMP = 1/p. Hence, we obtain:

WIMP =
−14p + 2

√
169p2 + 120p

15p
. (6)

The duration DIMP of an IMP cycle is the sum of the dura-
tions of slow start, the congestion avoidance, the incomplete
recovery (equal to one RTT), and the timeout periods. Hence,

DIMP =
�

log
WIMP

8 +1
�

R+
�

3WIMP
4 +1

�
R+(R+RTO). (7)

Thus, the steady-state throughput TIMP of an Impatient
NewReno bulk transfer is:

TIMP =
SIMP
DIMP

=
1/p

(log
WIMP

8 +1)R+(3WIMP
4 +1)R+(R+RT O)

, (8)

with WIMP obtained using Equation 6.

4Technically, packets transmitted during fast recovery (due to the reception
of partial ACKs) could be acknowledged before the RTO occurs, but this
depends on the RTO value. Consider the average case, in which the loss event
(with m packet losses) starts in the middle of a round transmitting W packets.
If RTO > 2RTT , then TCP would receive 2 partial ACKs, acknowledging
approximately 2W/m packets before the timeout occurs. Thus TCP would
have W/2 + 2W/m packets acknowledged since the start of the last round.
As an approximation, we assume that the number of packets successfully
acknowledged before the timeout is W .

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20 25 30 35 40

T
hr

ou
gh

pu
t (

P
ac

ke
ts

/R
T

T
)

Number of Packet Drops per Loss Event (m)

Simulation(SBS)
Model(SBS)

Simulation(IMP)
Model(IMP)

 15

 20

 25

 30

 35

 40

 45

 50

 55

 0 5 10 15 20 25 30 35

T
hr

ou
gh

pu
t (

P
ac

ke
ts

/R
T

T
)

Number of Packet Drops per Loss Event (m)

Simulation(SBS)
Model(SBS)

Simulation(IMP)
Model(IMP)

(a) p = 0.05% (b) p = 0.10%
Fig. 2. Model Accuracy and Performance with Bernoulli Loss Events

IV. MODEL VALIDATION AND RESULTS

This section validates the proposed NewReno throughput
models using the ns-2 network simulator [1]. The results
reported in this section also identify the regimes in which
Slow-but-Steady outperforms Impatient, and vice versa.

A. Network and Traffic Models

The results reported here are for a simple dumbbell network
topology with a single common bottleneck between all sources
and sinks. Each source/sink pair is connected to the bottleneck
link via a high bandwidth access link. The propagation delays
of the access links are varied to simulate the desired round-
trip delay between a source/sink pair. The flows that are being
actively monitored are referred to as the “foreground” flows,
with all other traffic considered “background” flows.

All experiments have two foreground NewReno flows –
one Slow-but-Steady and one Impatient. The receiver-side
buffers of the foreground flows are large enough that the buffer
space advertisements do not constrain the congestion window
size. Experiments are reported for both Drop-Tail and RED
management policies at the bottleneck queue. For RED queue
management, the minthresh and the maxthresh are set to
1/3 and 2/3 of the corresponding queue size [10].

Experiments with background traffic consider a mix of long
duration FTP transfers and short duration HTTP sessions.
The background HTTP sessions are simulated using a model
similar to that in [17], [25]. Specifically, each HTTP session
consists of a unique client/server pair. The client sends a
single request packet across the (reverse) bottleneck link to its
dedicated server. The server, upon receiving the request, uses
TCP to send the file to the client. Upon completion of the data
transfer, the client waits for a period of time before issuing the
next request. These waiting times are exponentially distributed
and have a mean of 500 ms. The file sizes are drawn from a
Pareto distribution with mean 48 KB and shape 1.2 to simulate
the observed heavy-tailed nature of HTTP transfers [4].

Background FTP and HTTP sessions use TCP NewReno
(Slow-but-Steady) with a maximum congestion window size
of 64 KB. The packet size is 1 KB. All packets are of identical
size except HTTP request packets and possibly the last packet
of each HTTP response. The round-trip propagation delays of
the background flows are uniformly distributed between 20 ms
and 460 ms, to model WAN delays similar to those reported
in the Internet measurement literature [2], [15].

From the simulations, the necessary input parameters for
the analytical models are obtained. Each experiment simulates
1000 seconds. Results are reported using data from the last
750 simulated seconds of the simulation.

B. Bernoulli Loss Events

Before validating the model in the presence of background
traffic, validation is carried out in isolation. The configuration
considered here consists of two foreground NewReno flows
with 70 ms RTT traversing a 45 Mbps bottleneck link. A
separate packet drop module was placed on the receiver’s
access link of each flow to simulate “non-congestion” packet
losses, as might be observed, for example, with wireless
access technologies [12]. The packet drop module has two
parameters, namely p and m.

Figure 2 shows the results for varying m (m > 0) with two
different values5 of p. Figure 2(a) shows the throughput results
from the simulations and the analytic models when p = 0.05%
and m ranges between 1 and 40. Figure 2(b) shows results for
p = 0.10% with m ranging from 1 to 35.

For both Impatient and Slow-but-Steady, the proposed mod-
els accurately track the simulation throughput over the entire
range of m values. The prediction error of a model is defined
as |simulation−model|/simulation, where simulation and
model refer to the throughput values from the simulation
and model, respectively. For the Slow-but-Steady model, the
prediction error ranges from 0.15% to 3.11% when p = 0.05%,

5The models work well even for values of p as large as 5%. See Table II
in Section IV-C.

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

P
ac

ke
ts

/R
T

T
)

Background Flows

Simulation(SBS)
Model(SBS)

Simulation(IMP)

 0

 10

 20

 30

 40

 50

 4 8 16 32 64 128 256

T
hr

ou
gh

pu
t (

P
ac

ke
ts

/R
T

T
)

Background Flows

Simulation(SBS)
Model(SBS)

Simulation(IMP)

(a) Drop-Tail (b) RED
Fig. 3. Model Accuracy and Performance with Background FTP/HTTP Traffic

and from 0.20% to 6.29% when p = 0.10%. For the Impatient
model, the prediction error ranges from 0.45% to 3.34% for
p = 0.05%, and from 0.74% to 5.54% when p = 0.10%.

The Slow-but-Steady model slightly underestimates
throughput when m is small and overestimates when m is
large. This trend can be attributed to the approximations used
for estimating the segment transmissions during fast recovery.
Qualitatively similar results were obtained from experiments
with other values of p, ranging up to 5%.

Figure 2 indicates three distinct performance regions: a
region where Slow-but-Steady is superior; a region where
Impatient is superior; and an equality region where Impatient
and Slow-but-Steady provide comparable performance. The
equality region prevails for m < m∗, where m∗ = 4 in our
experiments.

Slow-but-Steady is superior for small to moderate values
of m. While Slow-but-Steady spends a significant amount of
time in fast recovery, the penalty is not as bad as a coarse
timeout. In Figure 2(a), the SBS superior region spans m
values between 4 and 25, and in Figure 2(b) it spans between
4 and 20.

The Impatient variant is superior when m is large, and the
penalty of a timeout is less than a lengthy fast recovery. The
IMP superior region occurs for m ≥ 26 in Figure 2(a), and
for m ≥ 21 in Figure 2(b).

C. FTP/HTTP Background Traffic
The next experiment considers a 15 Mbps bottleneck link

with a queue of capacity 150 packets. The background traffic
consists of a mix of 25% FTP and 75% HTTP flows. The total
number of background flows is varied from 4 to 256. There
are two foreground flows: one Impatient NewReno flow and
one Slow-but-Steady NewReno flow. Both foreground flows
have a round-trip propagation delay of 50 ms.

Figure 3 shows the simulated throughputs of the NewReno
variants along with the Slow-but-Steady model predictions.
Figure 3(a) is for a Drop-Tail bottleneck queue, while Fig-
ure 3(b) is for a RED queue.

In both graphs in Figure 3, the throughputs for the fore-
ground flows decrease (as expected) as the number of com-
peting background flows increases. The loss event rate and the
packet loss rate also increase with the number of background
flows. Table II shows the loss event rate, packet loss rate,
simulation throughput, and model prediction for Slow-but-
Steady in the Drop-Tail experiments.

Figure 3(a) and Table II show that the analytic model for
Slow-but-Steady tracks the simulation throughput reasonably
well when the number of background flows is between 4 and
200. In this range, the loss event rate ranges from 0.07% to
5.31%, and the number of drops per loss event is between 2.11
and 4.16.

For 4 to 200 background flows, the model prediction is
below the simulation throughput by 9.78% on average. One
reason is our somewhat conservative estimate of the average
number of segment transmissions per RTT in fast recovery.
Simulation and analysis indicate that the average number
of segment transmissions per RTT during fast recovery is
approximately WSBS

2 for the m values experienced, but we
used WSBS

4 in the throughput model.
With 200 or more background flows, timeouts dominate, and

the model overestimates throughput since it does not capture
direct timeout or timeout due to losses of retransmitted seg-
ments (which occur in the simulation). The largest prediction
error observed is 20.64% with 256 background flows (see
Table II).

In this experiment, the Impatient variant experiences 1.93
to 2.93 packet drops per loss event, on average. The number
of drops is below m∗ = 4. Since the Impatient throughput
model does not apply in this regime, the corresponding model
results are not shown in Figure 3.

Figure 3(b) shows that the performance differences between
the two TCP variants diminish when a RED queue is used. The
reason is that RED queues reduce the burstiness of packet
drops. In our experiments, most loss episodes consisted of
a single packet drop. The ratio of packet loss rate to loss

TABLE II
MEASURED CHARACTERISTICS FOR SBS FLOW UNDER DROP-TAIL

Background Loss Event Loss Simulation Prediction
Flows Rate Rate (Pkts/RTT) (Pkts/RTT)

4 0.07% 0.20% 45.88 41.69
8 0.08% 0.30% 43.28 38.42
12 0.08% 0.30% 43.52 38.27
16 0.10% 0.42% 38.08 32.88
24 0.15% 0.58% 30.44 26.74
32 0.21% 0.81% 25.29 22.06
48 0.38% 1.20% 18.06 15.91
64 0.66% 1.99% 12.89 11.15
96 1.24% 3.40% 8.61 7.87
128 2.43% 5.74% 5.38 5.23
160 4.06% 8.97% 3.58 3.67
180 4.74% 10.25% 3.14 3.42
192 5.31% 11.22% 2.85 3.08
224 7.28% 14.97% 2.08 2.47
256 8.29% 16.34% 1.83 2.21

event rate is about 1.22 with 4 background flows, and about
1.40 with 256 background flows. The Slow-but-Steady model
tracks the simulation throughput reasonably well up to 200
background flows, with an average prediction error of 7.07%.

With Drop-Tail queues, we observed bursty packet losses.
The average number of packet drops per loss event ranged
from 2.11 to 4.16. In most cases, the variants operate in
the equality region (1 ≤ m < 4), although in a few cases,
they operate in the SBS superior region. The protocols never
operate in the IMP superior region, since there are few packet
drops per loss event.

When the number of background flows ranges from 4 to 64,
the average throughput difference (in simulation) between the
Slow-but-Steady and the Impatient variant is approximately
13.59%. As the background load increases (from 64 to 256
flows), the loss event rate experienced by the foreground flows
increases. At higher loss event rates, the maximum attainable
congestion window size decreases substantially, thus increas-
ing the probability of timeout events. Since the treatment of
timeouts is identical in Slow-but-Steady and Impatient, the
throughput difference between them decreases. In this range,
the average throughput difference between Slow-but-Steady
and Impatient is approximately 5.54%.

V. DISCUSSION

In this section, we use the analytic models to obtain further
insight into the performance of the NewReno variants. Specif-
ically, we focus on finding the range of m values for the three
performance regions, namely the SBS superior region, the IMP
superior region, and the equality region.

Figure 4 shows the different regions for a range of loss event
rates. The following observations are evident from this graph:
• The equality region is independent of the loss event rate.

This region is bounded by 1 ≤ m ≤ m∗, where m∗ = 4
in this plot.

• The SBS superior region lies above the equality region,
representing moderately higher loss scenarios. This re-
gion is upper bounded by a threshold value mt, where

0

10

20

30

40

50

60

70

0.05 0.1 0.2 0.4 0.8 1.6 3.2

Loss Event Rate, p (%)

N
u

m
b

e
r

o
f

D
ro

p
s

p
e

r
L

o
s

s
E

v
e

n
t

(m
)

IMP Superior Region

SBS Superior Region

Equality Region

Fig. 4. Fast Recovery Regions for NewReno Variants

mt can be computed by analytic intersection of TSBS and
TIMP for a particular p. Note that mt must satisfy mt ≤
(WSBS − 3). Analytic computation produces mt = 27
for p = 0.05% and mt = 21 for p = 0.10%, consistent
with the simulation results reported in Figure 2.

• The IMP superior region lies above the SBS superior
region. It prevails for more extreme loss scenarios, but
is also bounded. The upper bound for the IMP superior
region is at (WIMP − 3), which is the maximum num-
ber of segment losses that can be tolerated, while still
triggering fast recovery.

Figure 4 can be used to determine the network conditions
under which a certain TCP variant is preferable. We make
such an argument for each of the two TCP NewReno variants.

The Impatient variant is superior when the loss event rate is
low, but the number of packet drops per loss event is high (e.g.,
at least 26 drops at p = 0.05%). These network conditions
are rather rare, and did not arise in our simulations. These
conditions may apply for some network scenarios, such as
high bandwidth-delay product networks, satellite networks, or
high performance grid computing applications.

Quantitatively, IMP is superior at p = 0.05% when
mt/WIMP ≥ 1

3 . That is, IMP is preferred if at least one-third
of the packets in the (large) window are dropped. Similarly,
IMP is superior at p = 0.25% if mt/WIMP ≥ 1

2 . While these
results show that there exist conditions under which IMP is
superior, we believe that such scenarios may be rare on the
Internet.

When the loss event rate is even higher, the Impatient variant
offers little advantage. In particular, at a high loss event rate
(p > 0.8%), the congestion window becomes small, and the
IMP superior region becomes very thin (and it requires almost
a full window of packets to be dropped). TCP is unlikely to
operate consistently here in practice, since most packet drops
lead directly to a timeout.

The SBS superior region is broader, and more likely to arise
in practice. For example, as long as Slow-but-Steady loses less
than half of the segments from a window at p = 0.25%, it

outperforms Impatient.
Although our models do not capture direct timeout, we still

believe that the results in Figure 4 are useful and accurate. At
a loss event rate of 3% or higher, the IMP superior and the
SBS superior regions essentially vanish. Based on the results in
Table II, we believe that our model predictions are reasonably
accurate up to loss event rates of 5%.

VI. CONCLUSIONS

This paper compares the throughputs of two different vari-
ants of TCP NewReno. It provides analytic throughput models
for each variant, expressing steady-state throughput in terms of
RTT, RTO, and losses (i.e., loss event rate and the burstiness
of packet losses).

Our NewReno throughput models are formulated using a
flexible two-parameter loss model that can better capture
the dynamics of loss events for TCP. We have validated
our models with extensive ns-2 simulation experiments. Our
results show that the proposed models can predict steady-state
TCP NewReno throughput for a wide range of loss scenarios.

Using our models, we derived a fast recovery region plot
that explicitly shows the operating conditions under which
different TCP variants are superior. Our results show that the
Impatient variant is superior only under very extreme network
conditions (i.e., low loss event rates, but many packet drops
per loss event). The Slow-but-Steady variant is superior to
Impatient, or comparable to Impatient, in all other operating
regimes, although RED queues diminish the performance
differences observed. We thus recommend Slow-but-Steady as
the preferred variant of TCP NewReno, contrary to RFC 3782.

ACKNOWLEDGEMENTS

Financial support for this work was provided by the Natural
Sciences and Engineering Research Council (NSERC) of
Canada, as well as by the Informatics Circle of Research
Excellence (iCORE) in the Province of Alberta. The authors
thank Naimul Basher for his help with graph plotting, and the
anonymous ICC 2006 reviewers for their very careful reading
of the initial version of this paper.

REFERENCES

[1] The NS Project. The Network Simulator: ns-2.
http://www.isi.edu/nsnam/ns.

[2] M. Allman. A Web Server’s View of the Transport Layer. ACM
Computer Communications Review, 30(5):10–20, October 2000.

[3] E. Altman, K. Avrachenkov, and C. Barakat. A Stochastic Model of
TCP/IP with Stationary Random Losses. In Proc. of ACM SIGCOMM,
pages 231–242, Stockholm, Sweden, August 2000.

[4] M. Arlitt and C. Williamson. Internet Web Servers: Workload Charac-
terization and Performance Implications. IEEE/ACM Transactions On
Networking, 5(5):631–645, October 1997.

[5] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. In Proc. of ACM SIGCOMM,
pages 24–35, New York, USA, August 1994.

[6] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP Latency. In
Proc. of IEEE INFOCOM, pages 1742–1751, Tel-Aviv, Israel, March
2000.

[7] K. Fall and S. Floyd. Simulation-Based Comparisons of Tahoe, Reno,
and Sack TCP. ACM Computer Communication Review, 26(3):5–21,
July 1996.

[8] S. Floyd. Connections with Multiple Congested Gateways in Packet-
Switched Networks. ACM Computer Communication Review, 21(5):30–
47, 1997.

[9] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782, April 2004.

[10] S. Floyd and V. Jacobson. Random Early Detection Gateways for Con-
gestion Avoidance. IEEE/ACM Transactions on Networking, 1(4):397–
413, 1993.

[11] M. Goyal, R. Guerin, and R. Rajan. Predicting TCP Throughput from
Non-Invasive Network Sampling. In Proc. of IEEE INFOCOM, pages
180–189, New York, USA, June 2002.

[12] A. Gurtov and S. Floyd. Modelling Wireless Links for Transport
Protocols. ACM Computer Communication Review, 34(2):85–96, April
2004.

[13] V. Jacobson. Congestion Avoidance and Control. In Proc. of ACM
SIGCOMM, pages 314–329, Stanford, USA, August 1988.

[14] V. Jacobson. Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno. In
Proc. of the 18th Internet Engineering Task Force, Vancouver, Canada,
August 1990.

[15] H. Jiang and C. Dovrolis. Passive Estimation of TCP Round-trip Times.
ACM Computer Communication Review, 32(3):75–88, July 2002.

[16] T. Lakshman and U. Madhow. The Performance of TCP/IP for Networks
with High Bandwidth-Delay Products and Random Loss. IEEE/ACM
Transactions on Networking, 5(3):336–350, July 1997.

[17] A. Mahanti, D. Eager, and M. Vernon. Improving Multirate Congestion
Control Using a TCP Vegas Throughput Model. Computer Networks,
48(2):113–136, June 2005.

[18] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm. ACM Computer
Communication Review, 27(3):67–82, July 1997.

[19] A. Medina, M. Allman, and S. Floyd. Measuring the Evolution of
Transport Protocols in the Internet. Computer Communications Review,
35(2):37–51, April 2005.

[20] A. Misra and T. Ott. The Window Distribution for Idealized TCP
Congestion Avoidance with Variable Packet Loss. In Proc. of IEEE
INFOCOM, pages 1564–1572, New York, USA, March 1999.

[21] V. Misra, W. Gong, and D. Towsley. Stochastic Differential Equation
Modeling and Analysis of TCP-Windowsize Behavior. In Proc. of IFIP
PERFORMANCE, Istanbul, Turkey, October 1999.

[22] J. Padhye, V. Firioiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. In Proc. of
ACM SIGCOMM, pages 303–314, Vancouver, Canada, September 1998.

[23] J. Padhye and S. Floyd. On Inferring TCP Behavior. In Proc. of ACM
SIGCOMM, pages 287–298, San Deigo, USA, August 2001.

[24] V. Paxson. Empirically Derived Analytic Models of Wide-Area TCP
Connections. IEEE/ACM Transactions on Networking, 2(4):316–336,
1994.

[25] C. Samios and M. Vernon. Modeling the Throughput of TCP Vegas. In
Proc. of ACM SIGMETRICS, San Diego, USA, June 2003.

[26] B. Sikdar, S. Kalyanaraman, and K. Vastola. An Integrated Model for the
Latency and Steady-State Throughput of TCP Connections. Performance
Evaluation, 46(2-3):139–154, September 2001.

[27] W. Stevens. TCP/IP Illustrated Vol. 1: The Protocols. Addison-Wesley
Longman Publishing Co., Inc., Boston, USA, 1994.

[28] W. Stevens and G. Wright. TCP/IP Illustrated Vol. 2: The Implemen-
tation. Addison-Wesley Longman Publishing Co., Inc., Boston, USA,
1995.

