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Abstract

This paper uses trace-driven simulation to study the unfairness properties of Web server
scheduling strategies, such as Processor Sharing (PS) and Shortest Remaining Processing
Time (SRPT). We use a general-purpose probe-based sampling approach to estimate the
mean and variance of the job response time for different job sizes, for arbitrary arrival
processes and service time distributions. The results illustrate two different aspects of
unfairness called endogenous unfairness and exogenous unfairness. We quantify each, fo-
cusing on the mean and variance of slowdown conditioned on job size, for a range of system
loads. Our work confirms recent theoretical results regarding the asymptotic convergence
of scheduling policies with respect to slowdown, and illustrates typical performance results
for a practical range of job sizes in an empirical workload. Finally, we show the sensitivities
of SRPT and PS scheduling to selected characteristics of the arrival process and job size
distribution.
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1 Introduction

The Shortest Remaining Processing Time (SRPT) scheduling policy has received increasing at-
tention in the research literature recently, primarily in the context of request scheduling at Web
servers [4, 7, 15]. The SRPT policy selects for service the pending job in the system with the least
remaining service time. The policy is preemptive, so that if a new job arrives into the system
with a smaller service time than the job currently in service, the scheduler switches immediately
to service the newly arriving job. The SRPT policy is provably optimal: it guarantees the lowest
mean response time for the system as a whole [28, 32].

The primary concern with SRPT is unfairness: a large job in the system may starve if the
continuous arrival of small(er) jobs preempts it from service. Prior results in the literature
clearly establish the advantages of SRPT over a conventional scheduling policy such as Processor
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Sharing (PS), particularly for small jobs. Small jobs are serviced much more quickly under SRPT
scheduling than under PS scheduling. However, jobs at the upper end of the job size distribution
may experience worse performance under SRPT than under PS. Bansal and Harchol-Balter
illustrate this clearly in several of their papers [4, 15].

Harchol-Balter et al. [16] have recently established asymptotic bounds on the slowdown per-
formance for the largest jobs under SRPT (or any other) scheduling policy. In particular, their
results show that the slowdown metric (defined as the job response time divided by the job size)
asymptotically converges to the same value for any scheduling policy. In other words, for the
largest of jobs, SRPT is no worse than PS. In addition, they prove that for sufficiently large jobs,
the slowdown performance under SRPT is only marginally worse than under PS, by at most a
factor of 1 + ε, for small ε > 0. In our paper, we use the term “crossover region” to refer to the
range of job sizes for which SRPT provides worse slowdown than PS.

There are two main objectives of this paper. The first objective is to study the relationship
between prior theoretical work and the performance for typical job sizes at an SRPT Web server,
based on empirical data. For example, it is not clear what “sufficiently large” [16] means in
practice. As another example, is the crossover region observable in practice, and if so, for what
range of job sizes does it occur? The second objective is to study the effects of the request arrival
process and the job size distribution on scheduling policy performance. Synthetic traces are used
to study these impacts.

Our work is carried out using trace-driven simulation. We use a probe-based sampling
methodology [10, 11] to evaluate job slowdown for SRPT and PS scheduling policies in a simu-
lated Web server system, with an empirical Web request stream for static Web content from the
1998 World Cup Web site [1]. The sampling methodology provides a robust means of estimating
the mean and variance of job slowdown as a function of job size and system load, enabling a
methodical study of the performance differences between SRPT and other scheduling policies.

There are three main contributions in this paper. First, our results show that there are two
types of unfairness in a Web server scheduling system: endogenous unfairness that a job can
suffer because of its own size, and exogenous unfairness that a job can suffer because of the state
of the Web server (i.e., other jobs in the system) when it arrives. By revisiting the notion of
unfairness more carefully, and quantifying these effects separately, we provide new insights into
the differences between the “unfair” SRPT policy and the “fair” PS policy. Second, we confirm
prior theoretical results in the literature, quantifying their presence in an empirical workload.
Third, we illustrate the impacts of the request arrival process and the service time distribution
on the performance of Web server scheduling policies.

The rest of the paper is organized as follows. Section 2 provides background information on
Web server performance and SRPT scheduling. Section 3 motivates and explains our probe-based
sampling methodology. Section 4 describes the experimental methodology for our simulation
study. Section 5 focuses on the empirical trace, and Section 6 uses synthetic traces that vary the
request arrival process and the job size distribution. Finally, Section 7 concludes the paper.
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2 Background and Related Work

2.1 Web Server Performance

Web server performance is a popular theme in the recent research literature [1, 16, 22]. The
user-perceived performance for Web browsing depends on many factors, including server load,
network load, and the protocols used for client-server interaction. In this paper, we focus on one
aspect of Web server configuration, namely the scheduling policy for servicing HTTP requests.

The scheduling policy used at the Web server determines the relative order of service for
incoming client requests. The simplest scheduling policy, assuming a single-process Web server,
is First-Come-First-Serve (FCFS): requests are served serially in the order of their arrival. In
practice, most Web servers use multi-process or multi-threaded designs. With this approach,
many requests (typically hundreds to thousands) can be in progress at a time, each sharing the
available CPU, I/O, and network resources. This approach is commonly approximated with the
Processor Sharing (PS) scheduling discipline: if there are N requests pending in the system, then
each request receives service at a rate 1/N of the maximal rate. This approach is deemed “fair”
because it shares resources equally amongst contending requests.

The Shortest Remaining Processing Time (SRPT) first policy is a preemptive scheduling
policy that optimizes mean job response time. Using advance knowledge of job service time
requirements, the SRPT policy always selects for service the job that has the least remaining
service time. With this approach, the mean waiting time and the mean job response time are
minimized [28, 32].

2.2 Related Work

The early theoretical work on SRPT scheduling in queueing systems was done over 30 years
ago [28, 29]. This topic has seen renewed activity in the last 10 years as well [24, 27, 30].

The investigation of SRPT scheduling for Web servers began in the late 1990’s [7]. There
are solid theoretical underpinnings for the idea [4, 16], as well as a prototype implementation
of SRPT scheduling in the Apache Web server [15]. Experimental results confirm many of the
performance advantages of SRPT scheduling established in the theoretical work. The SRPT
policy is also effective at combatting system overload, since it minimizes the number of jobs that
are starved [31].

Despite this solid theoretical and experimental work in the literature, concerns remain about
the unfairness of SRPT scheduling, with respect to starvation and unbounded slowdown for the
largest jobs. The SRPT policy is not yet widely deployed in Internet Web servers, in part because
there is incomplete understanding of its behaviour for empirical Web workloads. It is on this
front that our paper makes one of its main contributions.

Recent research has spawned several other scheduling policies that attempt to capture the
advantages of SRPT, but improve upon its fairness properties. Examples of these policies include
the Fair Sojourn Protocol (FSP) [9], Least Attained Service (LAS) [25], Resource Allocation
Queueing Fairness Measure (RAQFM) [26], and K-SRPT [12]. The FSP protocol combines
aspects of PS and SRPT. It selects for service the pending job that would complete the earliest
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under PS scheduling, and then devotes full service to this job until the next arrival or departure
event (which may change the system state). The LAS policy approximates the effectiveness of
SRPT, without the need to know job sizes in advance. In fact, Lu et al. [19] show that the
performance of SRPT deteriorates a lot if it does not have precise job size information. The idea
behind RAQFM is to balance fairness between the service requirement (size) and seniority of a
job. The K-SRPT policy generalizes SRPT to have up to K jobs simultaneously in service (on
a PS basis), for the K jobs with the smallest remaining service times.

All of these policies in the literature demonstrate the advantages of biasing size-based schedul-
ing in favour of small jobs. The policies differ in how well they improve upon the unfairness of
SRPT. In our paper, we focus primarily on PS and SRPT, which arguably demarcate the two
endpoints for this broad spectrum of scheduling policies.

3 Sampling Methodology

This section motivates and explains our probe-based sampling methodology for assessing the
unfairness of SRPT scheduling. Section 3.1 presents a simple example to provide some insight
into the dynamic behaviour of scheduling policies. Section 3.2 introduces our sampling method.

3.1 Preliminaries: Understanding SRPT Scheduling

Figure 1 provides a simple example of a request stream constituting a Web server workload. This
example has 20 requests, in order of their arrival. The two-column format shows the timestamp
(in seconds) and the response (job) size (in bytes) for each request. This is the trace format
assumed for Web server workloads throughout the paper.

Figure 2 provides a graphical illustration of the busy period structure for FCFS, PS, SRPT,
and LRPT (Longest Remaining Processing Time) scheduling at a Web server processing this
input request stream. We assume that the Web server is idle when the first request arrives.

Figure 2(a) shows the instantaneous number of jobs in the system for the FCFS policy on
this workload, as a function of time. The vertical upward steps represent job arrivals, and the
vertical downward steps represent job departures. Figure 2(b) shows the corresponding number
of bytes in the system for the FCFS scheduler. The vertical upward spikes represent job arrivals,
which can be of arbitrary size. The downward slope represents the byte service rate when the
server is busy. Whenever this downward slope meets the horizontal axis, the current busy period
ends, and the server remains idle until the next job arrival.

Figure 2(c) shows the instantaneous number of jobs in the system for the PS policy on the
same workload, and Figure 2(d) shows the corresponding number of bytes. Figures 2(e) and (f)
show the results for the SRPT policy, while Figures 2(g) and (h) show the results for LRPT.

Three observations are evident from Figure 2. First, the profiles for “byte backlog” are
identical for each of the scheduling policies considered (though the job departure points may
differ). This obvious property holds for any work-conserving scheduling policy on this workload,
assuming the same job arrival times, the same job sizes, and the same byte service rate. Second,
the start and end times of the busy periods are the same for each policy. This follows directly from
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TIMESTAMP SIZE
0.000000 3,038
0.000315 949
0.001048 2,240
0.004766 2,051
0.005642 366
0.005872 201
0.006380 298
0.006742 1,272
0.007271 597
0.008008 283
0.008653 482
0.010165 852
0.010911 929
0.013306 191
0.013969 1,005
0.016681 322
0.016961 1,420
0.017391 191
0.018563 3,867
0.018783 914

Figure 1: Simple Example of Web Server Workload Request Stream
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the first observation. What this means is that the number of busy periods, as well as the mean and
variance of the busy period duration, are invariant across (work-conserving) scheduling policies.
This invariant propery provides a useful validation check on the simulation implementations of
different scheduling policies. Third, and most important, the distribution of the number of jobs
in the system is different for each of the policies considered. For the small sample workload
considered here, the SRPT policy never has more than 3 jobs simultaneously in the system,
while the PS policy has up to 5 jobs in the system, and LRPT has up to 11 jobs in the system
at a time.

The tradeoff between PS and SRPT scheduling is now more evident. With PS scheduling, an
arriving job receives immediate service, but its service rate may be low because of the (larger)
number of jobs in the system. With SRPT scheduling, a job either receives immediate service at
the maximal rate (if it has the least remaining service time requirement), or receives no service
while it waits (if it is not). The probability of immediate service depends in part on the number
of jobs in the system, but mostly on the relative sizes of the competing jobs. Simple intuition
suggests that the fewer competing jobs in the system, the sooner service will be received, but
this is not necessarily true for SRPT.

The difference in “jobs in the system” is precisely the property that we focus on in the
experiments to follow. In fact, our probe-based sampling methodology is designed to estimate
the impact of this property on the response time of a job, from the job’s perspective. A description
of our sampling algorithm follows.

3.2 Probe-based Sampling Algorithm

Figure 3 provides a high-level algorithmic description of our sampling methodology for quantify-
ing the unfairness properties of SRPT scheduling compared to PS and other scheduling policies.
The sampling methodology is probe-based, and relies on the PASTA principle: Poisson Arrivals
See Time Averages.

The algorithm works as follows. Given a pre-defined system load (i.e., Web request arrival
stream) and a scheduling policy at the Web server, a single probe job is inserted at random into
the request arrival stream, and the Web server is simulated using the modified request stream
to determine the response time for the probe job. By repeating the experiment N times (e.g.,
N = 3000, in our experiments) with random placement (according to the PASTA principle) of
the single probe job in the request stream, we obtain samples of the response time distribution
for a job of that size. By repeating the experiment with different probe job sizes, we can assess
the unfairness properties of a specific scheduling policy. We can also vary the system load to
determine the load level at which unfairness is most pronounced, for a particular job size.

The straightforward naive implementation of the algorithm in Figure 3 would be very compute-
intensive, since it requires many executions of the Web server simulator, each with a slightly
modified version of the request stream. In practice, there are several optimizations to expedite
the simulations. For example, there is no need to re-simulate all the busy periods that complete
prior to the arrival of the probe job. Rather, it suffices to simulate (in its entirety) the busy
period in which the probe job arrives and completes. Similarly, there is no need to simulate all
busy periods that follow the busy period in which the probe job completes. With these optimiza-
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Figure 2: Simulation Results Illustrating Busy Period Structure for FCFS, PS, SRPT, and LRPT
Scheduling on the Example Workload 7



For scheduling algorithm S = ( PS, SRPT, LRPT, FCFS, FSP, ... ) do
For background load level U = ( 0.50, 0.80, 0.95 ) do

For probe job size J = ( 1 KB, 10 KB, 100 KB, 1 MB, 10 MB ) do
For trial i = ( 1, 2, 3, ... N ) do

Insert probe job at randomly chosen point in original request stream
Simulate Web server scheduling policy on modified request stream
Compute and record response time and slowdown for probe job

end for i

Plot marginal distribution of slowdown for this J, U, S combination
end for J

end for U
end for S

Figure 3: Algorithmic Overview of Sampling Methodology Using Probe Jobs

tions, the algorithm in Figure 3 is computationally feasible, though clearly the greatest overhead
occurs for high system loads, since idle periods are few and far between.

Our current implementation of the algorithm uses a checkpointing technique so that all job
probes can be simulated using a single pass through the workload stream. Additional optimiza-
tions could exploit parallelism in simulating probe jobs that affect disjoint busy periods; we have
not yet investigated this technique.

4 Simulation Methodology

4.1 Simulation Model

Trace-driven simulation is used to evaluate the performance of different scheduling policies on a
simulated Web server. The input trace to the simulator follows the format introduced in Figure 1,
namely a two-column file containing request arrival time and response size in bytes.

The Web server model in the simulation is simple. A configuration parameter specifies the
service rate for the server, in bytes per second. Outgoing network bandwidth is assumed to
be the bottleneck. This assumption is consistent with prior work on SRPT scheduling [15, 31].
A second configuration parameter specifies the scheduling policy to be used. Currently, our
simulator supports FCFS, PS, SRPT, LRPT, and FSP. A request that arrives to an idle server
begins service immediately at the specified byte service rate. A request that arrives to a busy
server either waits its turn (FCFS policy, and possibly SRPT and LRPT depending on job sizes),
or begins service immediately (PS policy, and possibly SRPT and LRPT depending on job sizes).
The PS policy adjusts the per-job service rate dynamically at the time of arrival and departure
events based on the number of jobs in the system. The SRPT and LRPT policies dynamically
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Table 1: Characteristics of Empirical Web Server Workload Used (World Cup 1998)

Item Value

Trace Name wc day66 6.gz
Trace Date June 30, 1998
Trace Duration 861 sec
Total Requests 1,000,000
Unique Documents 5,549
Total Transferred Bytes 3.3 GB
Smallest Transfer Size (bytes) 4
Largest Transfer Size (bytes) 2,891,887
Median Transfer Size (bytes) 889
Mean Transfer Size (bytes) 3,498
Standard Deviation (bytes) 18,815

choose the next job to service, based on remaining bytes, preempting as necessary.
Instrumentation in the simulator records job arrivals, job departures, and the byte backlog in

the system at arrival and departure events. The simulation also records information about busy
periods, idle periods, and the number of jobs and bytes in the system during busy periods.

4.2 Web Server Workload Trace

The primary Web server workload used in our experiments is an empirical trace from the 1998
World Cup Web site [1, 17]. The same trace is also used by Schroeder et al. [31]. As in prior
SRPT work, we assume that all requests are for static Web content. The trace selected has 1
million requests, representing an elapsed time duration of just over 14 minutes. The average
request arrival rate is 1160 requests per second. The largest 1% of the transfers account for 20%
of the bytes transferred. Additional trace characteristics are discussed in [12].

Table 1 provides further information about the trace. In our experiments, we augment the
one-second resolution timestamps in the trace to distribute requests uniformly at random across
each one-second interval, while preserving the order of request arrivals. The modified timestamps
are used to determine the request arrival process.

4.3 Experimental Design

The experiments use a multi-factor experimental design. The primary factors of interest are
scheduling policy, job size, and system load. The scheduling policies considered are PS and
SRPT. System load is controlled by setting the byte service rate (i.e., network link capacity) for
the server. We consider probe job sizes ranging from 100 bytes to 10 MB, since this (arguably)
spans the most relevant range for typical Web object sizes. The largest probe job size considered
(10 MB) represents a “small” perturbation to the total load (i.e., it increases the total transferred
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Table 2: Experimental Factors and Levels for Web Server Scheduling Experiments
Factor Levels

System Load (U) 0.50, 0.80, 0.95
Probe Job Size (J) 100 bytes, 1 KB, 10 KB, 100 KB, 1 MB, 10 MB
Scheduling Policy (S) FCFS, PS, SRPT, LRPT

bytes by less than 0.3%). However, it is larger than any other job size in the empirical workload,
and depending on the probe arrival time, could extend the simulated completion time slightly.

Table 2 summarizes the factors and levels used in our experiments. For space reasons, only
a subset of the experiments is reported in this paper. Additional results are available in [10].

4.4 Performance Metrics

The simulation experiments use the following performance metrics:

• Number of jobs in the system: This metric is used in time series plots and in frequency
histogram plots to illustrate the behaviours of different scheduling policies.

• Number of bytes in the system: This metric is used to validate the correct operation of
different scheduling policies, as discussed in Section 3.1.

• Response time: This metric is used to measure the response time for the probe job in our
sampling methodology. Response time is defined as the elapsed time from when the request
first arrives in the system until it departs from the system.

• Slowdown: The slowdown metric is used to measure the performance for the probe job in
our sampling methodology. We define Slowdown as the response time of a job divided by
the ideal response time if it were the sole job in the system. This metric is often referred to
as normalized response time, inflation factor, or stretch factor in the literature [21]. Lower
values of the slowdown metric represent better system performance.

The slowdown metric is used in time series plots and in frequency histogram plots to
illustrate the behavioural properties of different scheduling policies. The mean slowdown,
where used, is the average slowdown computed across all samples.

• Coefficient of Variation (CoV) of slowdown.

There are several proposed definitions for “fairness” in Web server scheduling [3, 4, 26, 33].
We focus on an application-layer measure of job-level fairness, rather than a network-layer
measure of flow-level fairness (such as Max-Min fairness [14]). In particular, we use the
CoV of slowdown to measure the degree of unfairness. In a perfectly fair environment, the
slowdown of different requests should be the same, so the CoV is zero. The larger the CoV
value is, the greater the unfairness.
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Figure 4: Simulation Validation Results for PS and SRPT Scheduling Policies (U = 0.95)

4.5 Validation

Significant effort focused on verification and validation of the results reported by our simulator.
This section briefly describes several of these steps.

The first validation step involved testing our simulator on short traces such as that in Figure 1,
for which results could be verified by hand. We verified that the busy period behaviour was
correct, and that the byte backlog process was consistent for all scheduling policies considered.

The second validation step involved testing our sampling approach to ensure that it followed
the PASTA principle. Our probe generation approach passed these tests, indicating that the
system state is sampled in a Poisson fashion.

The third validation step compared slowdown results reported by our simulator to published
results in the literature for the SRPT and PS policies (albeit for different traces). An example
of these simulation results is provided in Figure 4, for our workload trace. Figure 4(a) shows job
response time, while Figure 4(b) shows the normalized slowdown metric, both plotted versus the
percentile of job sizes in the job size distribution, following the format used in [4]. Our simulation
results are qualitatively consistent with those reported in [4], providing further confidence in the
results reported by our simulator.

One additional validation test studied the number of busy periods, and how the number of
busy periods is affected by the insertion of the probe job. Three cases are possible:

• The probe job can increase the number of busy periods, by one. This case occurs if the probe
job arrives in an idle period, and is completely served within that (formerly) idle period.
The probability of this occurrence depends on the probe job size and the proportion of
time that the server is idle. Tests with infinitesimal (1 byte) probe jobs produced results
consistent with the level of system load.

• The probe job can leave the number of busy periods unchanged. This case occurs if the probe
job arrives in (or just slightly before) an existing busy period, and is serviced to completion
in that (slightly extended) busy period, without merging with the following busy period.

• The probe job can reduce the number of busy periods, by one or more. This case occurs if
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the addition of the probe job causes two or more busy periods to coalesce. The coalescence
case is common for large probe job sizes, especially at moderate and high loads.

Analysis of the busy period behaviour in our experiments was consistent with the explanations
provided here. Figure 5 provides an example of the busy period analysis from 300 random probes,
for different probe job sizes at 95% system load. For a 1 KB probe job size, the insertion of the
probe job adds at most one busy period to the initial total of 49,714 busy periods, and removes
at most two. For a 10 KB probe job size, up to 8 busy periods coalesce. For a 100 KB probe
job size, about 30 busy periods coalesce on average, while for 1 MB probe jobs, about 300 busy
periods coalesce on average.

This suite of validation tests confirms that our Web server simulator is working correctly.
The validation process establishes confidence in the simulation results, which we present in the
following sections.

5 Simulation Results: Empirical Trace

5.1 General Observations

Figure 6 provides a high-level view of the key differences between the PS and SRPT policies.
These graphs show short (60 second) time series plots for the number of jobs simultaneously in
the system for PS and SRPT scheduling policies on the empirical Web server workload trace,
as well as the marginal distribution (frequency histogram) of the number of jobs in the system,
based on the full empirical trace. The results are illustrated for three different levels of system
load (50%, 80%, and 95%), from top to bottom in Figure 6. Note that the vertical scales of the
graphs are different for each load level considered.

The top row of graphs in Figure 6 shows the results for 50% load. The time series plots show
the number of jobs in the system for each scheduling policy: PS in Figure 6(a), and SRPT in
Figure 6(b). Figure 6(c) shows the resulting marginal distributions. In this graph, there is little
difference between the marginal distributions for PS and SRPT. Both plots start at 0.5, since
the server is idle half the time (by definition of the system load), and tail off relatively quickly
after that. At this modest level of load, it is rare to have more than 10 jobs in the system at a
time, with either policy.

The second row of graphs in Figure 6 shows the results for 80% load. Again, two time series
plots are shown (PS in Figure 6(d), and SRPT in Figure 6(e)), with the marginal distribution
results in Figure 6(f). At 80% load, the differences between policies are more apparent. While
both plots start at 0.20 (corresponding to 80% load), the marginal distribution for the SRPT
policy is very “tight”, while that for the PS policy has a much longer tail. The means of the
distributions differ significantly.

These differences are even more apparent in the third row of graphs in Figure 6, which shows
results for 95% load. In Figure 6(i), the marginal distribution for SRPT is very tight; there are
never more than 30 jobs in the system at a time for this workload. The marginal distribution
for the PS policy shows a much longer tail, with up to 180 jobs in the system at a time.
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Figure 5: Illustration of Busy Period Analysis for Simulation Validation (SRPT, U = 0.95)
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Figure 6: Simulation Results for PS and SRPT Scheduling Policies
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Figure 7: Illustration of Endogenous Unfairness

5.2 Revisiting Unfairness

The results in Figure 6 show that the number of jobs in the system can differ a lot from one
scheduling policy to another. These results lead us to revisit the notion of “unfairness” for Web
server scheduling policies. In particular, we argue that there are (at least) two different aspects
to unfairness, which we call endogenous unfairness and exogenous unfairness. These are defined
as follows:

• Endogenous unfairness refers to unfairness caused by an intrinsic property of a job, such
as its size. The size of a given job is the same regardless of when it arrives, and thus this
aspect of unfairness is invariant.

• Exogenous unfairness refers to unfairness caused by external conditions, such as the number
of other jobs in the system, their sizes, and their arrival times.

To illustrate endogenous unfairness, we study the performance of SRPT and PS on a job size
basis. We grouped the jobs in the empirical trace into 200 bins according to the job sizes, and
calculated the mean slowdown and the CoV of slowdown for each bin. These results are for 95%
system load.

Figure 7 presents the slowdown results versus the percentile of the job size distribution. Fig-
ure 7(a) shows the mean slowdown results for PS (top line) and SRPT (bottom line). While both
plots show some noise (due to exogenous unfairness effects), the PS line is roughly horizontal (as
expected), while the SRPT line has a distinct upward trend in the tail of the job size distribution.
That is, large jobs can experience unfairness under SRPT. The largest 1% of the jobs in SRPT
experience a slowdown almost 10 times worse than that for smaller jobs, though the slowdown is
still better than that with PS. Figure 7(b) shows the CoV of slowdown results for the same job
size classifications. About 99% of jobs have lower CoV of slowdown with SRPT scheduling than
with PS. That is, except for the largest 1% of jobs, the jobs in each bin are more fairly treated
by SRPT than by PS, which suffers from exogenous unfairness.

Exogenous unfairness is due to fluctuations in ambient load. To illustrate exogenous unfair-
ness, we study slowdown in the time domain, as a time series process. In particular, we group
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Figure 8: Illustration of Exogenous Unfairness

jobs into 200 bins according to the time they arrived during the simulation. In each bin, we
calculate the mean slowdown, and CoV of slowdown.

Figure 8(a) shows the mean slowdown for PS and SRPT as a function of time. The mean
slowdown under PS varies a lot with time, due to load variation. For example, jobs that arrive
near time 300 seconds have slowdown values 10 times higher than jobs arriving near 700 seconds.
In other words, bursty request arrivals can increase the slowdown dramatically for PS. The
impact of load variation on SRPT in Figure 8(a) is comparatively minor.

Figure 8(b) shows the results for CoV of slowdown as a function of time. Here, the CoV
results for SRPT (top line) are generally higher than those for PS (lower line). That is, over
any short interval of time, PS provides relatively consistent slowdown amongst jobs, while SRPT
does not (because of endogenous unfairness).

The results shown in Figure 7 and Figure 8 are consistent with each other. Combined, these
results support the following observations:

• The SRPT scheduling policy has high endogenous unfairness. The mean slowdown in
Figure 7(a) increases with job size, and the CoV of slowdown is high in Figure 8(b).

• The SRPT scheduling policy has low exogenous unfairness. The mean slowdown in Fig-
ure 8(a) is relatively consistent, and the CoV of slowdown in Figure 7(b) is low.

• The PS policy has high exogenous unfairness. The mean slowdown varies a lot with time
in Figure 8(a), and the CoV of slowdown in Figure 7(b) is high.

• The PS policy has low endogenous unfairness. The mean slowdown in Figure 7(a) is
independent of job size, and the CoV of slowdown in Figure 8(b) is low.

It is important to note that pre-emption is vital to the performance of SRPT. This fact can
be illustrated by considering the performance of the Shortest Job First (SJF) scheduling policy,
which is the non-preemptive version of SRPT.

Figure 9 compares the results for the SJF, SRPT, and PS scheduling policies at system load
95%. Figure 9(a) shows response time results as a function of job size, while Figure 9(b) shows the
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Figure 9: Simulation Results for SJF, PS, and SRPT Scheduling Policies (U=0.95)

slowdown results. In general, SJF (top line) gives performance similar to the PS policy (middle
line), though neither is as good as SRPT (bottom line). Interestingly, SJF performs even worse
than PS for small jobs. The reason is that when system load is high, a small job can often be
blocked by a large job that is already in service (a manifestation of exogenous unfairness). This
greatly affects the slowdown of small jobs, even more so than it affects the response time. The
obvious conclusion is that preemption is extremely important for the effectiveness of the SRPT
size-based scheduling policy, because it drastically reduces exogenous unfairness.

The differences between endogenous and exogenous unfairness can be further illustrated using
our simulation technique. The effect of exogenous unfairness can be quantified using our sampling
methodology, by measuring the variability of response times for a particular job size, depending
upon job arrival time. By varying the probe job size, system load, and scheduling policy, we
can determine the expected response time behavior for a wide range of job sizes, quantifying
endogenous unfairness.

Figure 10 provides a graphical illustration of the slowdown results observed for different
probe job sizes. Each graph in this figure shows the marginal distribution of the slowdown
metric observed from 3000 random placements of the probe job in the empirical Web server
workload request stream. Note that all graphs use a logarithmic scale on the horizontal axis.
These simulation results are for 95% system load.

Figure 10(a) and Figure 10(b) show the results for small probe job sizes of 100 bytes and 1
KB, respectively. For these probe job sizes, there are dramatic differences between the slowdown
results for the PS and SRPT scheduling policies. For the SRPT policy, the marginal distribution
is highly concentrated near 1. For the PS policy, the slowdown values span from 1 to 150.

Figure 10(c) shows the results for a 10 KB probe job size. Similar observations apply here: the
SRPT policy consistently gives slowdown values below 5, while the PS policy exhibits slowdown
as high as 140. Clearly, exogenous unfairness is dominant for PS, but not SRPT. Furthermore,
the exogenous unfairness of PS increases with system load (see Table 3 and Figure 11).
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Figure 10: Sampled Marginal Distributions of Normalized Slowdown for PS and SRPT Schedul-
ing, for Different Probe Job Sizes (U = 0.95)
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Table 3: Statistical Results for Normalized Slowdown

System Probe PS Policy SRPT Policy Statistical Better
Load Job Size Mean Var Mean Var Difference? Policy

U = 0.50 J = 1 KB 2.06 2.42 1.05 0.03 Yes SRPT
U = 0.50 J = 10 KB 2.07 2.13 1.23 0.11 Yes SRPT
U = 0.50 J = 100 KB 2.06 1.17 1.85 0.88 Yes SRPT
U = 0.50 J = 1 MB 2.04 0.31 1.94 0.16 Yes SRPT
U = 0.50 J = 10 MB 2.01 0.04 2.00 0.04 No -
U = 0.80 J = 1 KB 5.61 28.87 1.09 0.05 Yes SRPT
U = 0.80 J = 10 KB 5.63 27.71 1.45 0.28 Yes SRPT
U = 0.80 J = 100 KB 5.44 18.87 4.54 17.62 Yes SRPT
U = 0.80 J = 1 MB 5.18 5.88 4.55 3.16 Yes SRPT
U = 0.80 J = 10 MB 5.11 1.36 5.07 1.34 No -
U = 0.95 J = 1 KB 27.16 844.19 1.11 0.07 Yes SRPT
U = 0.95 J = 10 KB 27.22 828.06 1.58 0.40 Yes SRPT
U = 0.95 J = 100 KB 27.11 801.18 15.59 391.71 Yes SRPT
U = 0.95 J = 1 MB 26.01 582.09 15.06 130.53 Yes SRPT
U = 0.95 J = 10 MB 21.32 94.39 21.77 115.32 No -

As the size of the probe job is increased, the differences between the two marginal distributions
are less pronounced. For example, Figure 10(d) shows the simulation results for a probe job size
of 100 KB. The two marginal distributions partially overlap. According to a t-test, the means of
the two distributions are statistically different (15.59 for SRPT versus 27.11 for PS), at the 0.05
level of significance (see Table 3). Under the PS policy, the mean slowdown is approximately the
same for all probe job sizes (as expected). However, the variance of slowdown is a decreasing
function of job size. For SRPT, the mean slowdown clearly depends on job size. Furthermore,
the variance of slowdown peaks at intermediate job sizes (e.g., 100 KB); the variance is lower
both for smaller jobs and for larger jobs. In other words, endogenous unfairness is dominant for
SRPT; its effect is also more pronounced at higher load (see Table 3).

Figure 10(e) presents results for a probe job size of 1 MB. Here, the two distributions overlap
a lot, though the SRPT policy still has a shorter tail, compared to PS. The means of the
distributions still differ statistically.

Finally, Figure 10(f) presents results for a 10 MB probe job. At this job size, there is no
statistical difference between the means of the two distributions. In fact, the distributions are
almost visually identical. This graphical result supports the claim in [16] about the asymptotic
convergence of scheduling policies with respect to slowdown (though our metric is different).
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Table 4: Statistical Results for Normalized Slowdown (U = 0.95)

Probe PS Policy SRPT Policy Statistical Better
Job Size Mean Var Mean Var Difference? Policy

J = 1 MB 26.01 582.09 15.06 130.53 Yes SRPT
J = 2 MB 25.24 481.32 18.86 164.65 Yes SRPT

J = 2.5 MB 24.71 422.61 26.38 671.76 Yes PS
J = 3 MB 24.16 366.74 25.92 504.08 Yes PS

J = 3.5 MB 23.62 312.41 25.13 428.22 Yes PS
J = 4 MB 23.30 268.19 24.79 371.34 Yes PS
J = 5 MB 22.38 216.65 22.86 274.84 No -
J = 10 MB 21.32 94.39 21.77 115.32 No -

5.3 The Crossover Region

Harchol-Balter et al. [16] state (and prove) an intriguing theoretical claim: while the asymptotic
slowdown results for the largest jobs are the same for any scheduling policy, there are (slightly
smaller) large jobs for which SRPT is worse in terms of slowdown, by a factor 1 + ε, for small
ε > 0. However, their paper provides no concrete information on where this “crossover region”
occurs (i.e., what job size range). As the second main contribution in this paper, we apply our
sampling methodology in an attempt to find this region, for our empirical workload.

Figure 11 summarizes our simulation results. These experiments present results for probe job
sizes ranging from 3 KB to 10 MB, with system loads ranging from 50% to 95%. For 50% load
(first column of graphs in Figure 11) and 80% load (second column of graphs in Figure 11), no
crossover effect is evident, for any of the probe job sizes considered. For 95% load (third column
of graphs in Figure 11), a slight crossover effect appears in Figure 11(i). For this graph, the
probe job size is 3 MB, and the system load is 95%.

To further explore this phenomenon, Figure 12 presents more detailed simulation results for
95% system load. For our particular workload trace, probe jobs in the range of 2.5-4 MB are in
the “crossover region” (see Table 4). Figures 12(a) and (b) show example results for a probe job
of size 4 MB. Figure 12(a) uses a linear horizontal scale, while Figure 12(b) uses a logarithmic
scale. In these plots, the SRPT results show slightly longer tail behaviour than the PS results.
This difference, though small, is enough to skew the mean of the distribution, leading to the
crossover effect. The differences in means between SRPT and PS are statistically significant
(t-test, 0.05 level of significance). Table 4 summarizes these results.

In summary, our probe-based sampling approach has provided independent verification of the
“crossover region” established theoretically in [16]. Furthermore, our results have quantified its
practical range for an empirical Web server workload.
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Figure 11: Simulation Results Searching for the SRPT “Crossover Region”
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Figure 12: Detailed Simulation Results Illustrating the “Crossover Region” (U = 0.95)

6 Simulation Results: Synthetic Traces

In this section, additional experiments are conducted to evaluate the sensitivity of the previous
results to the request arrival process (e.g., self-similarity), and the job size distribution (e.g.,
heavy-tailed). Synthetic traces are generated using WebTraff [20], a locally-developed tool for
modeling Web server and Web proxy workloads.

6.1 Effect of Request Arrival Process

It is well-known that network traffic exhibits the features of long-range dependence and self-
similarity [13, 18, 23]. Long-range dependence (LRD) refers to non-negligible correlations that
occur in the arrival count process across many time scales, from seconds to minutes to hours.
Self-similarity refers to a “fractal” pattern in the traffic: similar looking bursts are seen across
many time scales. Several studies have shown that self-similarity has an adverse impact on
network performance due to amplified queueing delay and packet loss [23]. Self-similarity is a
special type of LRD with hyperbolic decay to the autocorrelation function. Standard statistical
methods exist for testing for LRD and self-similarity [23].

In order to evaluate the impact of a self-similar traffic arrival process on the performance
of the scheduling policies, the effects caused by job size differences should be removed. This is
achieved by using fixed size jobs (3 KB in this experiment). When the job size is constant, the
slowdown for a particular job under PS scheduling depends primarily on the number of competing
jobs present in the system. The SRPT policy behaves the same as FCFS: a job that arrives and
begins service first will have fewer bytes remaining than any job that arrives later.

The degree of self-similarity in the synthetic traces is captured by the Hurst parameter H,
which we vary from 0.50 (low) to 0.90 (high). For each trace, the self-similar arrival count process
is converted into a timestamped arrival process by randomly distributing requests uniformly
in each one second interval. For all traces, the average request arrival rate is the same. The
performance results for the SRPT and PS policies are evaluated. The metrics used for comparison
are the mean slowdown, the standard deviation of slowdown, and the CoV of slowdown.
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Figure 13: Marginal Distribution of Number of Jobs in the System for Different Arrival Processes
(3 KB Jobs, U = 0.80)

The experiments are conducted for three different load levels: 50%, 80%, and 95%. For space
reasons, only the results for 80% system load are presented here.

Figure 13 shows marginal distribution plots for the number of jobs in the system for PS and
SRPT scheduling. Figure 13(a) is for H = 0.5, while Figure 13(b) is for H = 0.9. Figure 13
shows that the number of jobs in the system tends to increase with the degree of self-similarity in
the request arrival count process. This observation applies for both PS and SRPT. The impact
of the bursty arrival process is even more pronounced at higher load.

In general, increasing the burstiness of the request arrival process (i.e., higher Hurst param-
eter) has an adverse impact on system performance, consistent with previous research. For both
PS and SRPT policies, the mean slowdown and the variance of slowdown tend to increase with
an increase in the Hurst parameter. The differences are more pronounced at higher system load.
Even with a constant job size, the response time of a particular job in PS highly depends on
when it arrives and the number of competing jobs during the processing. The simulation results
show that PS has higher mean slowdown and higher CoV of slowdown than SRPT at different
system loads. A bursty arrival process (higher values of Hurst parameter) has a larger adverse
impact on the performance of PS than on SRPT.

Additional experiments show that the CoV of slowdown for the PS policy is higher than that
for the SRPT policy at all system loads and for all Hurst parameters tested. Once again, this
suggests that PS is more prone to exogenous unfairness than SRPT. In particular, jobs arriving
in a bursty fashion are treated more unfairly by the PS policy than by the SRPT policy.

6.2 Effect of Heavy-tailed Job Size Distribution

Previous studies have investigated the distribution of file sizes seen on Web servers [2, 5, 8]. An
important property of Web file size distributions is that they exhibit a heavy tail.

The heavy-tailed property indicates high variability in file size. This is often manifested as
many small values (mice) mixed with a few very large values (elephants). The weight of the
elephants typically skews the mean of the distribution, making it much larger than the median.
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Table 5: Characteristics of Synthetic Traces for Heavy-Tailed Workloads

Item α = 1.0 α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2.0

Total Requests 96,000 96,000 96,000 96,000 96,000 96,000
Total Transferred Bytes (GB) 1.5 0.85 0.69 0.65 0.57 0.51
Smallest Transfer Size (bytes) 59 59 59 59 59 59
Median Transfer Size (bytes) 3,503 3,503 3,503 3,503 3,503 3,503
Mean Transfer Size (bytes) 15,804 8,932 7,257 6,911 5,942 5,360
Largest Transfer Size (bytes) 13,788,773 5,592,636 3,663,559 1,681,387 408,505 40,621

Heavy-tailed distributions are prevalent in the Web [2, 8].
The purpose of this experiment is to assess the impact of a heavy-tailed job size distribution

on the performance of PS and SRPT scheduling policies. Similar to the idea in the previous
section, here the effects caused by the burstiness of the arrival process should be removed. This
is achieved by generating the timestamps for different jobs according to a deterministic arrival
process (i.e., constant spacing between job arrivals). The same timestamps are used for each
trace. This mitigates the effects of exogenous unfairness. Again, the simulations are conducted
for 50%, 80%, and 95% system load, though we present only the results for 80% load for brevity.

The transfer size distribution is carefully controlled by adjusting the parameters in WebTraff.
In WebTraff [20], the transfer size distribution in a synthetic trace is modelled using a hybrid
distribution, consisting of a lognormal distribution for the body and a Pareto model for the tail.
The proportion of transfers in the tail of the distribution is another parameter to the model.
The default setting is 20%, with the tail beginning at k = 10 KB.

To investigate the impact of the heavy-tailed property only, the effect from the body of the
distribution is eliminated by keeping the lognormal parameters the same for all traces. Only the
file sizes larger than the 10 KB threshold are changed for traces with different Pareto parameters.

The Pareto parameter value α determines the weight of the tail. The smaller the value of
α is, the more pronounced the heavy-tailed property is. The empirically observed value of α

normally ranges from 1.0 to 1.6. In this experiment, a slightly larger range (1.0 to 2.0) is used.
Table 5 summarizes the statistical characteristics for 6 traces used in the simulations. Table 6

summarizes the tail behaviour for the 6 traces. The results show that as α increases, the mean
and standard deviation of file size decrease. Moreover, for α = 1.00, the largest 1% of all jobs
make up 58% of the total bytes transferred by the server. For comparison, for α = 2.0, the
largest 1% of all jobs account for only 6% of the total load.

Figure 14 shows the simulation results for 80% system load. Figure 14(a) shows results for
the lightest heavy-tail value considered (α = 2.0), while Figure 14(b) shows results for α = 1.4.
In both plots, the PS policy always has a larger tail to the distribution than for the SRPT policy.
The length of the tail depends on the heaviness of the tail for the job size distribution (i.e.,
inversely related to α).

This behaviour makes sense intuitively. When the system load is low, small incoming jobs
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Table 6: Statistical Analysis of Heavy-Tailed Workloads in Synthetic Traces (Tail Only)

Pareto Value Minimum Median Maximum Mean Std Dev

α = 1.00 9,287 18,701 13,788,773 78,400 404,111
α = 1.20 9,728 17,023 5,592,636 37,171 125,546
α = 1.40 9,598 15,447 3,663,559 27,119 58,514
α = 1.60 10,037 15,199 1,681,387 25,041 40,818
α = 1.80 10,147 13,868 408,505 19,232 22,340
α = 2.00 10,180 13,331 40,621 15,736 6,409
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Figure 14: Marginal Distribution of Number of Jobs for Different Tail Weights (U = 0.80)

often find the system empty and finish soon. Backlogs occur only when a large job shows up in
the system. The larger the job size is, the longer the backlog will last, resulting in more jobs in
the system. This phenomenon is more pronounced for the PS policy, and less pronounced for
the SRPT policy.

In summary, by adjusting the tail behaviour of file size distribution, the impact of heavy tails
on the scheduling policies is illustrated. The low α cases represent high variability in file size
distribution, whereas the high α cases represent low(er) variability in the file size distribution.
The CoV of slowdown for SRPT tends to be an increasing function of α. SRPT has a greater
advantage over PS when the heavy-tailed property is present. In fact, endogenous unfairness is
more pronounced when variability in the file size distribution is low.

6.3 Combined Effects

As a final simulation experiment, we consider the combined effects of LRD traffic and heavy-
tailed job size distributions. The simulations are conducted using four new synthetic traces. The
four traces are generated by combining two different arrival processes and two different job size
distributions. For arrival processes, we consider SRD (H = 0.5) and LRD (H = 0.9) processes.
For job size distributions, we consider heavy-tailed distributions with two different tail weights.
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Figure 15: Marginal Distributions for Combined Effects of LRD and Heavy-tails (U=0.80)
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Both are generated using a Pareto distribution for the tail, with different tail index α. We use
α = 2.0 for a “lighter” heavy tail, and α = 1.4 for a “heavier” heavy tail. We mix the two
different arrival processes with the two different heavy-tailed distributions to get four different
traces.

Figure 15 shows the results from these experiments. Each graph shows the marginal distri-
bution for the number of simultaneously active jobs in the system, under SRPT and PS policies.
Figure 15(a) shows the “best case” for the four workloads considered (H = 0.5, α = 2.0), while
Figure 15(d) shows the “worst case” (H = 0.9, α = 1.4),

The results in Figure 15 are quite consistent with those in the previous two subsections. That
is, the more bursty the arrival process, the worse the impact on the performance of the scheduling
policies. Similarly, the heavier the tail of the job size distribution, the worse the impact on the
performance of the scheduling policies.

The main new observation here is that the arrival process has a larger impact on the per-
formance of the scheduling policies than does the tail characteristics of the job size distribution.
This is illustrated by comparing Figures 15(b) and (c). Also, we can observe the impact from
different job size distributions for H = 0.5 (as in Figures 15(a) and (b)). However, the difference
is negligible when there is a bursty arrival pattern (as in Figures 15(c) and (d)). In other words,
the arrival process has a more dominant effect than the job size distribution, when comparing
scheduling policies.

While most analytical work has focused on M/M/1 or M/G/1 models, our results show that
it is very important to study the scheduling policy behaviour under a bursty arrival process.

7 Summary and Conclusions

This paper has presented a detailed study of the unfairness properties of the PS and SRPT
Web server scheduling policies. Our work is carried out using trace-driven simulation, with an
empirical workload trace from World Cup 1998.

The paper makes three main contributions:

• The paper revisits and refines the notion of unfairness.

Two types of unfairness in a Web server scheduling system are identified: endogenous
unfairness that a job can suffer because of its own size, and exogenous unfairness that
a job can suffer because of the state of the Web server (i.e., other jobs in the system)
at the time it arrives. The simulation results show that the SRPT scheduling policy has
higher endogenous unfairness than the PS policy, while the PS policy has higher exogenous
unfairness.

• The paper confirms prior theoretical results regarding the crossover region and asymptotic
convergence, illustrating these properties for an empirical workload.

A probe-based sampling methodology was developed and used for estimating the mean
and variance of slowdown for different Web server scheduling policies. The approach is
general-purpose, in that it can be applied for any arrival process, service time distribution,
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and scheduling policy. By applying this approach, the asymptotic convergence property of
the slowdown metric is illustrated for the largest jobs, providing independent confirmation
of previous theoretical results [16]. Furthermore, the existence of the “crossover region”
is verified for some job sizes under SRPT scheduling, again confirming prior theoretical
results [16], and extending them to an empirical workload.

• The paper studies the impact of the request arrival process and the job size distribution on
the performance of PS and SRPT.

A sensitivity study is conducted using synthetic traces with desired workload characteris-
tics. The simulation results illustrate three properties. First, as the degree of self-similarity
(burstiness) in the request arrival process increases, system performance worsens for both
PS and SRPT. However, the effect on PS is more pronounced, because of exogenous unfair-
ness. In general, a bursty request arrival process tends to reduce the size of the crossover
region. Second, the heavier the tail of the job size distribution is, the greater the perfor-
mance differences between PS and SRPT. The SRPT policy thrives on the heavy-tailed
property, which ameliorates its endogenous unfairness. Finally, when the combined effects
of traffic arrival process and heavy-tailed distributions are considered, our results show that
the bursty traffic arrival process has a more pronounced effect.

We believe that our simulation-based approach complements the theoretical and experimental
work in the literature on SRPT. We hope that our results provide further insight into unfairness,
increasing the “comfort level” associated with SRPT scheduling, and encouraging its deployment
in Internet Web servers.
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