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Abstract

In some networks, the physical transmission capac-
ity can vary unpredictably with time. This stochas-
tic variation may degrade system performance, re-
ducing the effective capacity of the network. Tradi-
tional performance modeling ignoring this variation
may overestimate system performance. In this paper,
we investigate the impacts from stochastic capacity
characteristics, using simulation. We explore the ef-
fects of selected parameters, including the mean, vari-
ance, frequency, and correlation of capacity variation.
The simulation results show that higher frequency and
higher variance capacity changes have adverse impacts
on effective capacity. However, correlations in the ca-
pacity value process or the traffic arrival process are
beneficial. In general, the overall system performance
in a stochastic capacity network depends on the inter-
actions between traffic and capacity, and the relative
time scales of these processes.

Keywords: Networks, Stochastic Capacity, Simula-
tion, Blocking Probability

1 Introduction

In many computer systems, the available system ca-
pacity can vary unpredictably with time. Two simple
examples are Web server farms and grid computing
centers, where the failure of a computing node can re-
sult in the loss of jobs from the system. Furthermore,
the temporary removal of computing nodes from the
system (e.g., planned maintenance), even if scheduled
in advance to avoid job losses, has an impact on the
queueing delay and blocking rate experienced by ar-
riving jobs.

Many other examples of stochastic capacity sys-
tems arise in computer networks [3, 15, 20]. For ex-
ample, in a reservation-based network with multiple

priority levels, high priority calls such as emergency
services take precedence over ordinary traffic. The
network capacity available for low priority traffic thus
varies with time based on high priority traffic de-
mands. In multi-hop wireless ad hoc networks, system
capacity (e.g., throughput) is strongly dependent on
the number of hops in the routing path [13]. As nodes
move and routes change, the effective system capacity
also varies. In cellular networks, capacity variation
arises from the mobility of users (e.g., handoffs [4]),
and the time-varying characteristics of the wireless
propagation environment [19]. This phenomenon ap-
plies to wireless LANs and CDMA systems.

Investigating performance in such systems requires
considering not only the input traffic demands but also
the underlying characteristics of the capacity variation
process. The capacity variation may even depend on
the interactions between the traffic and the system it-
self. For example, in a CDMA system, there is a “soft
capacity” limit for active calls that is determined from
intra-cell and inter-cell interference [2]. This dynamic
“soft limit”, rather than the number of physical chan-
nel elements, determines the instantaneous capacity
of the system.

Networks with time-varying capacity tend to have
higher call blocking rates and higher outage probabili-
ties than traditional fixed-capacity networks. In other
words, the “effective capacity” is somehow lower.

Evaluating the performance of stochastic capac-
ity networks requires the combination of channel-level
models for capacity variation and user-level models
for subscriber traffic. In such a system, capacity is a
stochastic process rather than a fixed value. The per-
formance analysis of such networks is of interest since
it may yield deeper insights into traffic control and
network design issues.

In this paper, we use simulation to study the im-
pacts of the capacity variation process on system per-
formance. We focus on the capacity value process, the



capacity timing process, and their interactions with
the offered traffic. Our simulation models allow gen-
eral distributions for the traffic and capacity models.

Our paper makes two main contributions. First, we
present a simulation framework for the performance
analysis of stochastic capacity networks. This model
provides greater flexibility to investigate impacts from
stochastic system characteristics than is possible with
a Markov capacity model. Second, we explore the im-
pacts of selected parameters in the stochastic capac-
ity process, including the mean, variance, frequency,
and correlation of the capacity variation process. The
simulation results show that the frequency and vari-
ance of the capacity variation process have the most
pronounced (adverse) impact on system performance,
while correlation in the capacity variation process is
actually beneficial.

The rest of this paper is organized as follows. Sec-
tion 2 reviews prior related work. Section 3 presents
our methodology for studying stochastic capacity net-
works. Experimental methodology is provided in Sec-
tion 4, with simulation results presented in Section 5.
Section 6 concludes the paper.

2 Related Work

Our work draws upon ideas from performability
modeling [14, 21], which takes into account both per-
formance and availability of a system. Traditional
performance modeling ignores stochastic variation of
a system’s shared resources, and may overestimate
system performance. Conversely, availability analy-
sis tends to be conservative. Performability modeling
can provide a more complete picture for system per-
formance analysis.

Trivedi et al. [22] give an example of performability
modeling in wireless communication systems. The au-
thors use a hierarchical composite Markov chain to ob-
tain a loss formula for a system with channel failures.
Two kinds of traffic, new call arrivals and handoff call
arrivals, are considered. This model is also extended
to a TDMA system consisting of base repeaters with
a control channel.

A common assumption in most of these dimen-
sioning models is that the stochastic processes (e.g.,
new calls, handoff calls, failure events, repair time)
are memoryless (i.e., obey exponential distributions).
However, many processes in communication networks,
such as data call arrivals and the call handoff process,
exhibit non-exponential distributions.

Stochastic Petri Nets have been used to model
non-exponential characteristics [7, 11, 18]. Trivedi et
al. [8, 23] provide examples of performance modeling

by extending a Markov Chain model to a Markov Re-
generative Process, where handoff traffic is modeled
with a general distribution. For analytical tractabil-
ity of the performability model, at most one non-
exponential distribution is allowed in the model.

The network capacity process may be even more
complicated since it is affected by traffic, channel as-
signment, user mobility, and routing protocols. A
Markov process may be inadequate to describe the
capacity process, and may introduce modeling errors.
In our study, we use a flexible model to reflect gen-
eral stochastic characteristics of capacity. Stochastic
characteristics of the capacity timing process are also
considered.

Some papers in the literature consider capacity
variation in wireless networks [6, 22]. An example is
the dynamic control strategy where call admission de-
cisions are made based on instantaneous SINR (Signal
to Noise plus Interference Ratio) [6]. However, these
approaches are not able to study effects from temporal
correlations and from the interactions between traf-
fic characteristics and the network capacity. Gross-
glauser et al. [12] considered the impacts of bandwidth
fluctuations over multiple time scales. However, their
work focuses solely on admission control. The perfor-
mance was analyzed using a decomposition approach.

The queueing theory literature has studied queues
with time-varying load or capacity [1, 10, 17]. To
complement and extend these theoretical studies, we
use simulation to investigate the effects of different
stochastic capacity parameters on the effective capac-
ity of telecommunication networks.

In our study, we build traffic and capacity mod-
els for a general system. The capacity model consid-
ers characteristics such as mean, variance, and cor-
relation structure. Therefore, our results provide a
broad view of capacity impacts, in terms of distribu-
tional and temporal characteristics. The interactions
between traffic and capacity are also studied.

3 System Model and Assumptions
3.1 Overview

Figure 1 provides an overview of our methodol-
ogy for studying stochastic capacity networks. First,
we formalize the stochastic characteristics of capacity.
We model the network, the traffic, and the capacity
using stochastic processes such as a Markov process,
or a semi-Markov process. Next, we combine these
processes to form the stochastic system. We build a
simulation environment to investigate the call block-
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Figure 1. Overview of Modeling Methodology

ing performance for a wide range of network traffic
and capacity characteristics.

The simulation results lead to general observations
about important network properties. We discuss the
impacts on call blocking performance from stochastic
characteristics, such as the mean, variance, and cor-
relation structure of the capacity process.

We study not only the impacts from the capacity
process, but also from the interactions between capac-
ity and traffic processes. The results show that traffic
and capacity characteristics both affect overall system
performance.

3.2 Capacity Model

As stated previously, the capacity of a network may
vary randomly with time because of stochastic traffic
effects, the channel status, and the protocols used for
bandwidth allocation, channel assignment, power con-
trol, and mobility management. In this section, we de-
velop an abstract model for these stochastic capacity
characteristics.

For flexibility and generality, we propose a novel
two-part model to describe capacity variations. Two
independent random processes characterize the capac-
ity evolution. A timing process determines when the
next capacity change occurs, while a value process de-
termines the next capacity value attained.

In the following, we construct our stochastic ca-
pacity model. A semi-Markov model [5] is built to
represent the timing and value processes.

In our model, we assume that the capacity value
process is insensitive to the sojourn time in each
state. Given this independence, we can study sepa-
rately the impacts from capacity changes with respect
to their duration or value. As these two parameters
are strongly related to the system state and control
strategies, it is possible to construct such a capacity
model from real system parameters. Dynamic channel
assignment is one example for this kind of process: as-
signment decisions may occur at times determined by
a general distribution, while the number of channels
may be independent of the state duration.

Suppose that the system has discrete changes in
capacity. Let C(t) denote the capacity value at time ¢.
The set {¢;} represents the instants of state transitions
for the capacity value process.

3.3 Traffic Model

Different traffic types exhibit different stochastic
properties [9, 16]. In our model, network traffic con-
sists of call arrivals. Mathematically, this process is
described as a point process. Another process that
affects traffic characteristics is the holding time for a
call. In traditional traffic models, the holding times
are exponentially distributed and i.i.d. In our work,
we also allow this process to have a general (non-
exponential) distribution.

The arrivals and departures form the traffic process
in our system. It is an occupancy process in the sense
that it represents the number of simultaneously active
calls in the network. We describe this traffic process as
an occupancy function, where N(¢) denotes the num-
ber of active calls at time t.

A simple example of a traffic model is a Poisson pro-
cess, in which the interarrival times are exponentially
distributed with mean %, and holding times are expo-
nential distributed with mean % In a non-blocking
network, the corresponding occupancy process N (t)
satisfies:

)
P{N(t)=n}=-Lt—c¢

n!

Tl

(1)
4 Experimental Methodology

In the rest of this paper, we investigate the im-
pacts of time-varying capacity on network perfor-
mance, using a call-level simulation study. This sec-
tion describes the experimental setup for our simu-
lation study, while Section 5 presents the simulation
results.

4.1 Simulation Model

Our work is carried out using call-level simulation.
The two inputs provided to the simulation are a call
workload file and a network capacity file. These corre-
spond to the traffic process and the stochastic capacity
process described in Section 3.

The call workload file is a time-ordered sequence of
call arrival events. Each call specifies its source node,
destination node, arrival time, and duration. Each call
requires one unit of network capacity (bandwidth).
Workload files are generated using the call workload
models indicated in the top part of Table 1. We use



Table 1. Factors in Simulations

| Factor | Levels |
Stochastic | Arrival process | Poisson, Self-similar
Traffic Holding time Exponential, Constant
Stochastic | Timing process | Deterministic, Exponential, Self-similar
Capacity | Value process Normal

workload files with 100,000 calls. We consider this
trace length adequate to highlight performance dif-
ferences among the different stochastic characteristics
evaluated.

The network capacity file is a time-ordered se-
quence of capacity change events. Capacity files are
generated using the models indicated in the lower part
of Table 1. We use capacity files with 10,000 capacity
change events. In some simulations, only the initial
portion of the capacity file is needed, depending on
the frequency of capacity changes being modeled.

4.2 Experimental Design and Metrics

Table 2 shows the workload parameters and levels
used in our simulation experiments. We explore the
impact of different stochastic parameters as well as
different statistical distributions on the call-level per-
formance, under a broad range of assumptions about
the network capacity variation.

There are two QoS related performance metrics in
stochastic capacity networks, namely blocking proba-
bility and outage probability. In our simulation, the
primary performance metric is the call blocking prob-
ability, which characterizes the user-perceived perfor-
mance. This metric implicitly reflects the effective
capacity in such systems, since higher effective capac-
ity corresponds to lower call blocking rates. Low call
blocking rates (e.g., 2% or less) are desirable in com-
mercial systems.

5 Simulation Results
5.1 Effects of Capacity Value Process

Figure 2 provides an overview of our simulation re-
sults. In this graph, the call blocking rate is plotted
versus the offered load in Erlangs. These simulation
results represent the average (and 95% confidence in-
tervals) from 10 different simulation runs each with
100,000 calls. The call arrival process is Poisson, and
the call holding times are exponentially-distributed
with a mean of 30 seconds. The network capacity
varies stochastically, with a capacity change every 120
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Figure 2. Blocking Rate versus Offered Load

seconds. The capacity (in calls) is drawn from a Nor-
mal distribution with a mean of 40, and a standard
deviation of either 2 (lower line in Figure 2) or 10 (up-
per line). We use the notation DN (X,Y) to denote
that the network capacity changes on a deterministic
(D) schedule, with the capacity value drawn from a
Normal distribution N(X,Y") with mean X and stan-
dard deviation Y.

Figure 2 shows that the call blocking rate increases
with offered load, as expected. Call blocking is neg-
ligible at or below a load of 20 Erlangs, especially
when the capacity variation is low. Higher variation
in the capacity value process leads to higher call block-
ing. When the offered load is 30 Erlangs (75% aver-
age load), call blocking is noticeable, and the influ-
ence of the variance of the capacity process is more
pronounced. As the network approaches saturation,
higher variation in capacity leads to more blocked
calls. Under overload (average load exceeding 40 Er-
langs), the call blocking rates are excessively high
(e.g., exceeding 10%), and the impact of capacity vari-
ation is less pronounced.

Next, we vary the frequency of capacity changes in
the network, to study its effect on the blocking per-
formance. We also change the mean and the variance
of the capacity value process.

Figure 3 shows the simulation results for three dif-



Table 2. Workload Parameters in Simulations

| Parameter | Level
Call arrival rate (per sec) 0.1, 1.0
Mean holding time (sec) 30

Time between capacity changes (sec) | 10, 15, 30, 60, 120

Capacity value | Mean 30, 40, 50
(calls) Variance 2,5, 10
Long-range dependence (H) 0.5, 0.7, 0.9

ferent values of mean capacity (30, 40, and 50 calls),
while Figure 4 shows the results for low, medium, and
high variance in the capacity value process. For these
results, the network capacity values are drawn from
a Normal distribution with the indicated mean and
standard deviation.

In both of these plots, the horizontal axis represents
the time between capacity changes in network (i.e.,
the inverse of the frequency of capacity changes). The
capacity changes exactly every T seconds, where T
is indicated along the axis. The left end of the axis
represents high frequency changes (every 10 seconds),
while the right end represents low frequency changes
(every 120 seconds). The mean call holding time is 30
seconds with an average Poisson arrival rate of 1 call
per second (a load of 30 Erlangs).

Figure 3 and Figure 4 together illustrate several
observations. First, the larger the mean capacity is,
the lower the blocking rate is (see Figure 3). This re-
sult is obvious. Second, higher variance in the capac-
ity value process causes higher call blocking (see Fig-
ure 4). Again, this result is fairly obvious. Third, the
frequency of capacity changes has a noticable impact
on call blocking when the load is high (the DN(30,5)
case in Figure 3) or when there is high variance in the
capacity process (the DN(40,10) case in Figure 4).

These results show that the effective capacity of a
stochastic capacity system is lower than that in a fixed
capacity system. The reduction in effective capacity
is more acute when the capacity is highly variable.
Higher variability could arise from higher variance in
the capacity value process, higher frequency capacity
changes, or both. These observations fit the general
expectations.

Figure 5 shows the impact of the distribution used
for the capacity value process. Three distributions
are considered, all with a mean of 40 and a stan-
dard deviation of 5. The first is a Normal distribution
DN(40,5). The second is a uniform distribution be-
tween 31 and 49 (inclusive), denoted DU(31,49). The
third is a trimodal distribution DT(33,40,47) with 40
as the mode (50% of the time), and two other values
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Effect of Distribution of Capacity Value Process on Call Blocking
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Figure 5. Effect of Capacity Value Distribution

(33 and 47) each occurring 25% of the time. All sim-
ulations use the same traffic workload (30 Erlangs),
and deterministic timing for capacity changes.

Figure 5 shows that different statistical distribu-
tions produce different results. This is because the ca-
pacity process is composed of two processes: the value
process and the timing process. The joint stochastic
capacity process does not necessarily have the same
equivalent mean when the distribution changes, even
though the timing process is the same and the capacity
values have the same mean and variance. The influ-
ence of the distribution is small though, compared to
that of the mean and the variance.

5.2 Effects of Capacity Timing Process

Figure 6 shows the effect of the capacity timing pro-
cess on the blocking performance. We consider three
different distribution models for the timing between
capacity change events: Deterministic, Exponential,
and Self-Similar. The Deterministic model (D) has a
capacity change event every T  seconds. The Exponen-
tial model (E) has capacity change events at random
times, following a Poisson process. The time between
capacity change events is exponentially distributed,
with a mean of T seconds. The Self-Similar model (S)
assumes that capacity change events occur in a bursty
fashion, similar to a self-similar (fractal) process. The
mean time between capacity change events is T sec-
onds. All results use a Normal(40,2) distribution for
the network capacity value process.

Figure 6 shows that the distribution used for the ca-
pacity timing process has negligible impact on the call
blocking performance. This observation is consistent
with the underlying theory: the steady-state prob-
ability of the semi-Markov process is insensitive to

Effect of Distribution of Capacity Timing Process on Call Blocking
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Figure 6. Effect of Timing of Capacity Changes

the high order statistics of the state sojourn times [5].
Here, the timing structure of capacity changes deter-
mines the sojourn times for the semi-Markov capacity
model. Therefore, only the mean sojourn time mat-
ters, not the distribution. This property simplifies our
study of the capacity timing process, which is Deter-
ministic in all remaining experiments.

5.3 Effect of Correlations

Figure 7 shows the effects of correlations in the ca-
pacity value process. We generate a capacity value
process with deterministic timing structure, but with
long-range dependence (LRD) in the capacity value
process. That is, the process exhibits both short-
range and long-range correlations in the capacity val-
ues, with the long-range correlations decaying hyper-
bolically as in a self-similar process. We generate this
capacity process using a Hurst parameter H = 0.9,
to represent a high degree of LRD. To study the im-
pact of the correlations, we generate a second capacity
value process with little or no correlation structure.
We do so by shuffling the capacity value trace into
random order. This shuffling preserves the mean and
variance of the capacity value process, but changes the
correlation structure.

Figure 7 shows results from simulations with these
two processes. We find that correlation in the capacity
value process is beneficial: the call blocking rates for
the correlated capacity value process are lower than
those for the shuffled trace, suggesting that the corre-
lated trace represents a larger effective capacity.

The difference is most pronounced for low fre-
quency capacity changes, where the blocking rate dif-
fers by almost a factor of two. This difference can
be explained based on the interactions with the traf-



Effect of Correlation of Capacity Value Process on Call Blocking
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Figure 7. Effect of Capacity Correlations

fic process. Because correlated capacity values pro-
duce more gradual changes in capacity, the network is
better able to serve the arriving traffic. This relates
to the relative time scales of variations in traffic and
capacity. Later in the paper, we will use R to rep-
resent the ratio of traffic arrival events per capacity
change event, and show how effective capacity varies
as a function of R.

From the simulation results, we see that capacity
variation interacts with the traffic process itself. We
thus continue our study of correlation effects by con-
sidering correlations in the traffic process as well.

We first consider traffic correlations in isolation,
assuming an uncorrelated capacity value process,
namely DN(40,5). We generate a bursty self-similar
traffic arrival process from a synthetically-generated
LRD count process with H = 0.9, and use this as
our first traffic scenario. The second traffic scenario
is generated from the first by randomly shuffling the
(correlated) inter-arrival times used in the trace, but
preserving the order and durations of the calls. Both
scenarios offer the same average load (30 Erlangs), but
the second process has much weaker correlation struc-
ture in the arrivals than does the first process.

Figure 8 shows the simulation results for these two
traffic processes. There are two main observations in
this figure. First, the frequency of capacity changes
impacts performance for these traffic scenarios. How-
ever, it shows non-monotonic behavior with respect
to the frequency of capacity variation (a new observa-
tion). Second, the correlated traffic has a lower block-
ing rate.

Figure 9 demonstrates the impacts of call holding
time distributions. The two traffic files have the same
mean holding time, but different distributions. One
has constant holding times, while the other follows

Effect of Correlation of Traffic Arrival Process on Call Blocking

0.06 ‘ ‘
No SRD/No LRD
SRDILRD ——
0.05 |- |
z
2 ooaf |
-1
c <
[N
2 003} |
4
[5]
3
D 002 |
=
8
001 | |
0 w ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 120

Time Between Capacity Changes (seconds)

Figure 8. Effect of Traffic Correlations

an exponential distribution. The two traffic streams
have exactly the same arrival processes. Four different
versions of these processes are obtained by shuffling
the correlated arrival sequence at different granulari-
ties. This generates four arrival processes with differ-
ent correlation structure. We denote them along the
x-axis from weakest to strongest. For this experiment
only, network capacity is fixed (constant) at 40 calls.

Figure 9 shows that as the correlation in the traf-
fic arrival process changes, the relative order of the
two lines changes. The traffic with constant hold-
ing time (SC) has higher blocking when arrivals are
weakly correlated, but call blocking drops when the
degree of correlation increases. The traffic with ex-
ponential holding time (SE) has lower blocking when
there are weak correlations in the arrivals. The block-
ing rate still drops as correlations grow stronger, but
the drop is slower than that for the first traffic stream,
leading to the crossover between the two lines.

We can explain this phenomenon based on the
peakedness characteristics of the joint traffic process.
Higher variability in holding times weakens the corre-
lations in the occupancy process.

Table 3 shows equivalent means and standard de-
viations at two different correlation levels. Again, we
see that the stronger the correlation is, the lower the
blocking is. This means that effective capacity of the
system benefits from correlations in the capacity value
process and the traffic arrival process.

The foregoing results in Figure 7 and Figure 9 show
that the frequency of capacity changes affects the sys-
tem in two different ways: when the capacity value
process is correlated, and when the traffic itself is cor-
related. In the first case, the favorable effect of corre-
lated capacity is evident with low frequency capacity
changes. Conversely, in the second case, frequent ca-
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pacity changes disrupt the correlation of the traffic
process, leading to higher blocking. Due to these op-
posing effects, the non-monotonic behavior emerges
for self-similar traffic in Figure 8.

5.4 Traffic and Capacity Interactions

The foregoing experiments demonstrate subtle in-
teractions between the traffic process and the capac-
ity process in a stochastic capacity system. Based on
these observations, we see that impacts from stochas-
tic factors in a capacity varying system are compli-
cated. However, the basic factors that determine sys-
tem performance are rather simple. They are the
equivalent means and variances of the capacity and
traffic processes. Distributions and correlations can
also affect the performance.

The main factor that adds complexity to our study
is the stochastic transient effects. However, these ef-
fects could be large or small, depending on the relative
time scales for the traffic and capacity processes.

We return to this issue in this section, using a ratio
R that expresses the expected number of call arrivals
per capacity change event. This metric expresses the
relative time scales of the two processes. Three graphs
are displayed here to illustrate the impacts on the call
blocking performance.

Figure 10 illustrates the relationships between two
capacity value processes. Both have exactly the same
mean and variance, but one exhibits correlation in its
capacity values while the other does not. Both axes
represent the blocking probability for Poisson traffic,
with the mean offered load varying from 20 Erlangs
to 60 Erlangs. Points appearing exactly on the diag-
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onal in the graph indicate that there is no observable
performance difference between correlated and uncor-
related capacity systems.

In Figure 10, the line closest to the diagonal repre-
sents R = 10. Next is the one for R = 60. The third
line is for R = 120. In general, the blocking perfor-
mance for the two different capacity value processes
deviates further from the diagonal when R increases.
The larger R is, the greater is the performance differ-
ence seen with the correlated capacity model.

Figure 11 highlights the impact of R on correlated
traffic processes, with mean capacity varying from 30
to 50 calls. The two traffic processes used in the figure
have the same mean and variance, but different corre-
lation structure in the arrival process. Similar to the
cases shown in Figure 10, correlation improves system
performance compared to the uncorrelated case. That
is, the lines are all below the diagonal, illustrating
lower blocking for correlated traffic than for uncorre-
lated traffic. However, unlike Figure 10, increasing R
reduces the effects of traffic correlations. In particular,
the line farthest from the diagonal is the case R = 10,
and the closest one is R = 60.

Figure 12 is used to study the effect of R for a gen-
eral traffic scenario offering a load of 30 Erlangs. The
horizontal axis shows the blocking probability for the
original traffic in a fixed capacity network, for which
the Erlang B formula can be used. The vertical axis
presents the blocking probability in a stochastic ca-
pacity network. It is clear that capacity changes cause
higher blocking, since the lines all appear above the
diagonal of the graph. In the simulations, we adjust
the capacity change frequency to represent R = 10,
R = 60, and R = 120. The larger R is, the less



Table 3. Equivalent Means and Standard Deviations for Traffics with two Correlation Levels

Arrivals Traffic1(SC) Traffic2 (SE)

Mean | Standard Deviation | Mean [ Standard Deviation
Strongly correlated | 30.3065 | 2.4959 30.2403 | 2.5886
Weakly correlated | 30.3306 | 3.1106 30.2413 | 2.8826
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pronounced is the impact of the stochastic capacity
characteristics.

The observations in this section indicate that when
analyzing effective capacity for a stochastic capacity
network, interactions among the stochastic character-
istics must be considered. These effects exhibit dif-
ferent behaviors in different situations. The graphs
illustrate the interactions between the traffic and ca-
pacity processes. These performance differences will
manifest themselves especially in heavy loaded net-
works.

6 Summary and Conclusions

This paper studies the call-level performance of a
network with stochastic capacity variation. We treat
this as a performability modeling problem.

Our work explores this problem using simulation.
Stochastic characteristics of the capacity process are
considered in the experiments. The simulations are
conducted for a broad set of traffic and capacity as-
sumptions.

Our simulation results show that the stochastic
properties of the capacity variation process strongly
influence the effective capacity of the system. The
most influential characteristics are the mean and the
variance of the capacity value process. High variance
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Figure 12. Effect of Relative Time Scale on
Stochastic Capacity System

or high frequency capacity changes reduce the effec-
tive capacity of a system, leading to higher call block-
ing rates. However, correlations in the capacity value
process or the traffic arrival process are beneficial.

Our ongoing work is developing mathematical mod-
els to explain our observations about effective capacity
in stochastic capacity networks. We are also applying
our stochastic capacity models to cellular CDMA net-
works. Factors such as mobility, power control, and
dynamic channel assignment protocols are under con-
sideration.
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