Impact of Stochastic Traffic Characteristics
on Effective Capacity in CDMA Networks

Hongxia Sun

Qian Wu

Carey Williamson

Department of Computer Science
University of Calgary
Calgary, AB, Canada T2N 1N4
Email: {sunh,qianwu,carey}@cpsc.ucalgary.ca

Abstract

In this paper, a comprehensive system model is
built to evaluate system performance for data services
in CDMA networks. Unlike traditional analyses, we
model both system capacity and traffic demands using
stochastic processes.

Call-level simulation is conducted based on the pro-
posed analytical model. The simulation results show
that stochastic traffic characteristics can affect the sys-
tem performance significantly. Traffic correlation is
beneficial for the same system load level. Moreover, the
simulation results illustrate that using a simple activ-
ity factor to model the traffic process can cause capacity
overestimation.
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1. Introduction

In a CDMA network, the available system capacity
usually varies with time. The capacity variation arises
from the mobility of users, traffic burstiness caused by
data services, and the time-varying characteristics of
the wireless propagation environment [8]. In a CDMA
system, there is a “soft capacity” limit for active calls
that is determined by intra-cell and inter-cell interfer-
ence [5]. This dynamic “soft limit” determines the in-
stantaneous capacity of the system.

Networks with time-varying capacity tend to have
higher call blocking rates and higher outage proba-
bilities than fixed-capacity networks. In other words,
the “effective capacity” of the system is usually lower.
Evaluating performance in such stochastic capacity
networks requires considering not only the traffic de-
mands but also the underlying characteristics of the

capacity variation process. The effective capacity of
the system may even depend on the interactions be-
tween traffic and the system itself [9].

Although there has been extensive research on sys-
tem capacity of CDMA networks, the system is not well
modeled in that most studies oversimplify the input
traffic characteristics and the capacity variation pro-
cess. Moreover, most prior studies ignore the effects of
interactions between network traffic and the stochastic
capacity process.

In this paper, we analyze effective capacity of a
CDMA network. A comprehensive system model is
built for the analysis. In this model, we consider net-
work traffic and system capacity as stochastic pro-
cesses. Based on the proposed analytical model, we
conduct call-level simulation to evaluate system per-
formance. Our simulation results illustrate that the
stochastic characteristics of network traffic can signifi-
cantly affect the effective capacity of the system. More-
over, the simulation results also show that the overall
system performance depends on the interactions be-
tween the stochastic traffic process and the capacity
variation process. The correlations in the processes are
beneficial to the system.

The rest of this paper is organized as follows. Sec-
tion 2 reviews the prior related work. Section 3 intro-
duces our analytical model. Section 4 presents system
analysis based on the analytical model. Section 5 de-
scribes the evaluation methodology used in our simu-
lation study. Section 6 presents the simulation results.
Finally, Section 7 concludes the paper.

2. Related work

Effective capacity in CDMA networks has been a
popular research topic for years. Two main analytical
methodologies are typically used in the investigation.



The first method models interference as a stochastic
process, and abstracts the traffic process using a sim-
ple traffic activity factor. Several authors [3, 4] have
used this method to evaluate the system performance.
Conversely, the second method considers the network
input traffic as a stochastic process, such as a Pois-
son process, and defines the system capacity as a fixed
value over time. This method was used for studies pre-
sented in [1, 6, 7].

As introduced in Section 1, a CDMA network is
a stochastic capacity system. FEvaluating networks
with time-varying capacity requires the combination of
channel-level models for capacity variation and user-
level models for subscriber traffic. The oversimplified
models used in prior studies may overestimate or un-
derestimate system performance.

Our work differs from the foregoing studies in two
important ways. First, we use stochastic processes to
model the system capacity and the input traffic de-
mands. We believe that the stochastic models are more
accurate than simplified fixed values to represent the
real CDMA networks. Second, using stochastic models
for network traffic and system capacity makes it pos-
sible for us to explore impacts of interactions between
these two factors. Our simulation results show that
the interactions between network traffic and capacity
variation processes can affect system performance.

3. Analytical methodology

Figure 1 provides a conceptual overview of our
methodology for studying the system performance of
CDMA networks. The network outage probability, a
user-perceived performance metric, is used to evalu-
ate the CDMA system. It can implicitly reflect the
effective capacity in the system, since higher effective
capacity corresponds to lower outage probability. Note
that our analysis focuses on the reverse-link capacity.
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Figure 1. Overview of Modeling Methodology

The system outage probability mainly depends on
two factors: time-varying system capacity and stochas-
tic traffic demands. In our study, we define our traffic
demand model on a per-user basis, to reflect the user

service pattern.

For a CDMA network, the system capacity is
interference-limited [3]. Hence, it is necessary to in-
clude an interference model, as shown in Figure 1, when
analyzing the system capacity. Moreover, the power
and rate control mechanisms are also factored into the
interference model by normalizing the interference con-
tributions from individual users.

The following subsections provide detailed descrip-
tions for each module in Figure 1.

3.1. Traffic model

For data services in CDMA networks, ON-OFF traf-
fic source is typical. Traffic measurements for CDMA
cellular networks have shown that both active (ON) pe-
riod and idle (OFF) periods follow heavy-tailed distri-
butions. We incorporate this observation in our traffic
model.

The Probability Density Function (PDF) for heavy-
tailed distribution is:

B

Pl) = 22 (1)

where 0 < a < 2.

The parameter a is known as the tail index, and 8
represents the smallest possible value of the random
variable. As a decreases, the tail of the distribution
becomes heavier.

3.2. Interference model

The interference model includes three key factors:
wireless propagation environment, signals from active
users, and background noise.

Given two cells C; and C;, the number of active users
in each cell is IV; and IV;. User k is power controlled by
its base station ¢, and is at distance dj; from i. The
propagation loss in cell C; is generally modeled as:

Ly; = dp} - 10%:/1 (2)

where £, ; is a random variable that models the shad-
owing effect between user k and base station i, typi-
cally following a zero-mean Gaussian distribution with
standard deviation 7. [ is the path loss constant.

We assume that the shadowing process is slow
enough so that it can always be compensated by the
power control. A fast power control mechanism is also
assumed so that we can simplify the stochastic inter-
ference process without involving multi-path fading in
the analysis.



The normalized interference caused by user k for cell
C; is given by:
—1 /10
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Thus, the interference for cell C; caused by all active
users in cell C; can be calculated [2] using:

o) L o

where A; is the area of cell C;. Assuming users are uni-
formly distributed in each cell, Equation 4 is simplified

to:
Iz,] =p- Z fk,j'Ni (5)
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where p = e(n(10)/10)* "anq f, . = S Je.( Z:; - dA.
fr,; represents the impact of interference caused by
each active user. It can be seen that the inter-cell inter-
ference experienced by cell C; depends on the number
of active users in cell C; and their corresponding inter-
ference.

Unlike prior studies that model the network traf-
fic using a simple traffic activity factor, we use an
ON/OFF stochastic process X (t) for our traffic model,
as introduced in Section 3.1. Therefore, the interfer-
ence is a function of time:

Lij(t) =p- Z frg - Xii(t) (6)

keC;

The total inter-cell interference is given by:

I]z:nter (t) =p- Z Z fk,j . Xk,z'(t) (7)
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where C' is the set of all neighboring cells of cell Cj.
From Equation 3, the intra-cell interference for a
specific user U in cell Cj is given by:

> Xi(t) ®)
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3.3 Stochastic system capacity

The system capacity of a CDMA network is deter-
mined based on the Signal-to-Interference-plus-Noise-
Ratio (SINR). Given an active user U in cell C}, the
SINR for user U is given by:

r(t) = 9)

R/W . (Ij(intra) (t) + Ij(inter) (t)) + NO/P

where Ny is the variance of white Gaussian noise, and
P is the mean transmission power. R/W is the ra-
tio of rate and bandwidth in the system. Substituting
Equation 7 and Equation 8 into Equation 9, we have:

r(t) = No/#/?’%—z (10)
where
Y= > Xt (11)
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and
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To meet the Quality of Service (QoS) requirements,
the SINR must be maintained above a certain thresh-
old. Given the threshold I" and the number of active
users IV;, we have:

D Xi;(t)
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Effective capacity refers to the average number of
active users that the system can accommodate based
on the QoS requirements. It is determined from the
SINR. constraints for the users. The evolution of this
constraint limits the traffic processes in the home cell
so that the aggregate capacity demand is below the
available capacity provided. The available capacity is
a time-varying process, which depends on inter-cell in-
terference and system parameters (such as bandwidth
and transmission rate).

Effective capacity is determined by the available ca-
pacity process and the traffic demand process. The
available capacity increases when inter-cell interference
decreases, and thus the system can accommodate more
users. The traffic process in the home cell could be an
independent random process. Therefore, effective ca-
pacity also depends on interactions of these two ran-
dom processes. Our study shows that not only the
long term distribution of these random processes im-
pacts the effective capacity, but also the temporal cor-
relation and frequency of the value-changing function
impact the effective capacity.

4 System analysis

In this section, we study the effective capacity by
analyzing the outage probability.



Equation 13 allows us to separate the impacts of
traffic generated by users in the home cell from those
for traffic generated by neighboring cells. This sepa-
ration facilitates our study on effect of user behavior,
namely traffic stochastic characteristics, user distribu-
tion and density.

The left-hand side of Equation 13, and the second
item on the right-hand side, are superpositions of many
ON/OFF processes, while the channel fading process
can be seen as “rewards” for each ON-period. Let A(%)
be the aggregate stochastic process on the left side of
Equation 13, and let C(t) be the aggregate stochastic
process on the right side of Equation 13. The outage
probability is the probability that the traffic demands
A(t) exceed the available capacity C(t).

Given an ON/OFF process X (t), X(t) = 1 means
that there is a call active at time ¢. It can be deemed as
a reward at time ¢. Since each user generates its own
call sequence, it has its own reward. At time ¢, the
superposition process A(t), or cumulative call count,
is Ezﬂil Xi(t), where M is the total number of users
counted in the process. The aggregate cumulative call
count in time interval [0,T] is given by:

T M
Xp(T) = / (3 Xi(0) - d (14)

This is an aggregate stochastic process. It is proved
in [10] that the process stochastically behaves in accor-
dance with the following theorem:

Theorem 4.1 For large M and T, the aggregate cu-
mulative call process behaves statistically like
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Bp(t) represents fractional Brownian motion, which

is the only Gaussian process with stationary increments
that is self-similar. The covariance function is:
1
E(Bn(s)Bu(t)) = 5(8”’ + 27— |s —t27)  (16)

More precisely, Equation 15 can be expressed in the
following way:

X(T) = TM ot
m(T) pithr  — g Bu(t) (17)
TH /M

where the limit refers to convergence in the sense of the
finite-dimensional distributions.

lim lim
T—o00 M—o00

Now the effective capacity can be analyzed by find-
ing outage probability under the requested threshold.
For simplicity, we assume that all users have homoge-
neous traffic characteristics in the following analysis. It
is not difficult to extend the analysis using an aggregate
process for traffic with different patterns.

By moving the second item on the right side of Equa-
tion 13 to the left side, we have:

Z Xy ;(t) - M +
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The right side of Equation 18 is now a constant,
and the left side is a combinational process consisting
of two fractional Brownian motion processes with dif-
ferent weights o0y, We can rewrite it as follows:

(oifm® + oiim ") Bu(t) < W/R- (1/T = No/P) (19)

where ali%" is for the inter-cell aggregated process,
and o{7tra is for the intra-cell aggregated process.

The outage probability is the probability that the
value of the joint process on left side exceeds the con-
stant on right side of Equation 19. We express this
as:

Probl(ffr™ + oi#") By (t) — W/R - (1/T = No/P)]
(20)
It can be seen that the density function of Bg(t)
determines this probability. As the converged equiv-
alent Hurst parameter H of By (t) is known, assume
that there exists an equivalent cumulative distribution
function of By (¢):

Fp(t) = (b/t)" (21)

where b is a constant. Then, the outage probability is
obtained:

P(Bu(t) > wiim) = (b/wiim)*? (22)

where
_ W/R-(1/T — No/P)

lim intra inter
Olim T Olim P

(23)

Note that the condition that the aggregate processes
can be represented by fractional Brownian motion is
that the number of ON/OFF processes and the rescale
time interval are approximately infinite. Therefore,
this outage probability can be seen as a lower bound in
a heavily loaded network (i.e., many users in the home
cell and in the neighboring cells). We consider this case
as our performance bound.



5 Evaluation methodology
5.1 Simulation model

We use call-level simulation to investigate the im-
pacts of traffic characteristics on the effective capacity
in CDMA networks.

Our simulator consists of three modules as shown
in Figure 2. The user traffic generator generates time-
ordered call sequences with specified stochastic char-
acteristics. In general, the traffic pattern follows an
ON-OFF process. For simplicity, handoff traffic or traf-
fic with different services is integrated into the traffic
model.

Traffic Generator

Outage
CDMA2000 System [ Probability

Channel model >

Figure 2. Simulation Model

A seven-cell CDMA2000 system is simulated in the
system model. The user data rate is varied from 9.6
Kbps to 1.03 Mbps. A chip rate of 3.68 Mcps is used
on a 5 MHz reverse channel. Fast power control mech-
anism is assumed.

The wireless channel model provides a channel fad-
ing model and a user location information. The chan-
nel fading model is based on path loss with log-normal
shadowing, which uses an autoregressive (AR) model.
User information includes mobility pattern and loca-
tion information for each user.

Table 1 summarizes the related system parameters
used in our experiments.

Table 1. Parameter settings
| Factor | Value |

Path loss coefficient 4
Variance in shadow fading | 3dB

System processing gain 15.1dB
SINR threshold 9.2dB
P/Ny 19dB

5.2 Experimental design

Three sets of experiments are conducted to investi-
gate the system performance with different stochastic

parameters and statistical distributions. The outage
probability is used as the primary performance metric
in all experiments.

The first set of experiments uses Pareto distribution
for both active and idle periods. H; is the Hurst pa-
rameter used for the active period distribution, while
Hj is the Hurst parameter used for the idle period dis-
tribution. There are 60 users in the home cell and a
total of 240 users in the 6 neighboring cells. Each user
generates 10,000 data service calls. We then explore
the impact of the Hurst parameter on the system per-
formance.

The second set of experiments evaluates the effects
of different statistical distributions. We consider four
groups of distributions for ON-OFF periods: Pareto-
Pareto, Exponential-Pareto, Deterministic-Pareto, and
Exponential-Exponential.

The third set of experiments studies the impact of
correlation. In the experiments, we first generate two
long-range dependent (LRD) traffic processes using a
Hurst parameter H = 0.8 and H = 0.9. We generate
another two traffic processes with little or no correla-
tion structure. We do so by shuffling the two original
processes separately into random order. This shuffling
preserves the mean and variance of the original pro-
cesses, but changes the correlation structure. The num-
ber of users in the home cell of an active user is varied
from 50 to 90, while the number of users in neighboring
cells is fixed at 240.

Table 2 summarizes the factors and their levels.

Table 2. Traffic factors and levels

Factors Levels
ON | Distributions | Deterministic,
Exponential, Pareto
OFF | Distributions | Deterministic,
Exponential, Pareto
H, 0.6 to 0.9 in steps of 0.05
H, 0.7, 0.75, 0.8

6 Simulation results
6.1 Effect of Hurst parameter

Figure 3 shows the impact of the Hurst parameter.
The horizontal axis shows the Hurst parameter for the
call ON (active) period, while the vertical axis repre-
sents the outage probability. Three lines are shown on
the graph, representing different Hurst values for the
OFF (idle) period.

Figure 3 shows that the outage probability increases
when H; increases and H> decreases. These results are
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Figure 3. Outage Probability versus Hurst Pa-
rameter

understandable, since increasing H; or decreasing H,
implies higher traffic load level in the network.

We compare our simulation results with the results
calculated using traffic activity factors. Similar to the
approach in [1, 3], we estimate the available capacity
using;:

NjfaWR‘(l/F_NO/P)+1_P' Z fij-Ni
C; €C,Ci#£C;

(24)
where a = #ETM [4]. The outage probability is
then calculated based on this constant capacity. Traffic
is modeled using a stochastic process in the calculation.

Table 3 shows the effective capacity (EC) calculated
using Equation 24. It can be found that for each traffic
load level, the estimated capacity using the activity
factors approach is large enough to accommodate the
60 users. Therefore, the outage probability is zero for
all tested load levels. Obviously, for data traffic, the
traditional method overestimates the effective capacity
in the network.

Table 3. Estimated capacity using traffic ac-
tivity factor

Hy 0.75
H; | 0.90 | 0.85 | 0.80 | 0.75 | 0.70 | 0.65 | 0.60
EC | 89 123 | 151 | 176 | 198 | 218 | 235

This result clearly illustrates that the traffic activ-
ity factor is not appropriate to reflect all impacts from
traffic. While the activity factor for voice traffic is usu-
ally set to 0.375, choosing an activity factor for data
traffic is not straightforward. For the foregoing com-
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Figure 4. Outage Probability versus Traffic
Distribution

parison, we use the approach in [4] to calculate the
activity factor.

6.2 Effect of traffic distribution

Figure 4 shows impacts from different distributions
for data calls. For the Pareto-Pareto combination,
H, is varied from 0.6 to 0.9, while H> is fixed at
0.75. Other distribution combinations preserve the
same mean holding time and the same mean idle time
as those used in the Pareto-Pareto combination.

Figure 4 shows that when the ON/OFF processes
follow the Pareto distribution, the network usually has
lower outage probability. This phenomenon is more
evident with increased network load level. The other
three distribution combinations perform closely.

This phenomenon happens because the Hurst pa-
rameter affects the mean of the aggregated traffic.
Theoretical analysis in Section 4 illustrates that the
Hurst parameter of superposition of many ON/OFF
processes is dominated by the heavier of the two tail pa-
rameters for the ON and OFF processes. With stronger
correlations in the aggregate process, “Pareto-Pareto”
case has lower mean traffic load than the others. There-
fore, it has lower outage probability. The aggregate
processes formed by other cases have little correlation
because the aggregate process is weakened by the non-
correlated call holding process. Therefore they have
almost the same mean load. At the low end of the
x-axis, they converge to the same performance.

6.3 Effect of correlations

Figure 5 shows the impact of process correlation.
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Two main observations are evident on the graph.
First, the outage probability increases with more users.
Second, the correlation structure affects system perfor-
mance significantly. Traffic exhibiting long-range de-
pendence always gains higher effective capacity than
that with little correlation. The performance differ-
ence also depends on the network parameters and the
traffic patterns.

Different from voice traffic, the long-range depen-
dence property of data traffic introduces research issues
on evaluating effective capacity in CDMA networks.

The LRD property of data traffic poses new chal-
lenges. In Figure 6, we illustrate the different behav-
iors that the correlated traffic and non-correlated traffic
show under the same user activity models. To com-
pare the fairness to the users, we assign these traffics
to each group of users in network with total 240 users
in their neighbors. The correlated traffic is generated
using the Pareto distribution with the Hurst parameter
of 0.9 for the ON process and 0.8 for the OFF process.
The non-correlated traffic is generated using the ex-
ponential distribution with the same mean ON/OFF
periods as those for the Pareto distributed traffic. The
graph presents outage probability as a function of the
number of users in the home cell. Again, it shows that
correlated traffic has better performance. This implies
an appropriate traffic control policy may be more effi-
cient when considering the difference of the traffic and
the integrated effect of traffic characteristics.

7 Conclusions

In this paper, a comprehensive system model is
built to evaluate system performance for data services
in CDMA networks. Unlike traditional analyses, we
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Figure 6. Outage Probability versus Number
of Users

model both system capacity and traffic demands using
stochastic processes.

Call-level simulation is conducted based on the pro-
posed analytical model. The simulation results show
that traffic stochastic characteristics can affect the sys-
tem performance significantly. Traffic correlation is
beneficial for the same system load level. Moreover,
the simulation results illustrate that using an activity
factor to model the traffic process can cause capacity
overestimation.

Future work includes more accurate models for chan-
nel fading, user mobility, and dynamic traffic control
protocols.
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