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Abstract

This paper studies pricing strategies for networks with
stochastic capacity variation. Call-level simulation is used
to compare the profit generated with four different pricing
models, and with different policies for the management of
call dropping episodes in the network. Both user-oriented
and network-oriented performance metrics are considered.
The simulation results show that the choice of an optimal
pricing strategy depends on the call dropping control policy
used in the network, and vice versa. The NewestArrival call
dropping policy provides surprisingly robust performance
for the pricing strategies considered.
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1 Introduction

In conventional network environments, such as wired net-
works, the physical transmission capacity is a fixed quan-
tity. In such networks, the only stochastic characteristics
of interest arise from the offered network traffic. These
networks have been well-studied for many years, with the
emphasis on topics such as admission control, quality of
service, congestion control, and fairness.

In other network environments, including wireless
networks, the available network capacity may vary unpre-
dictably with time [1, 2, 4, 6, 11, 12]. This phenomenon
can occur in CDMA cellular systems, wireless LANs, and
wireless ad hoc networks, where capacity variation arises
from the mobility of users and the time-varying character-
istics of the wireless propagation environment [1, 4, 6].

The traditional techniques used to deal with capacity
variation problems are admission control, resource reser-
vation, or adaptive rate control. For example, in wireless
CDMA systems, dynamic power control and rate adapta-
tion are used to reduce the aggregate data rate when capac-
ity problems occur [10]. This approach maintains all active
calls, but with degraded service quality.

In this paper, we consider a different approach to the
stochastic capacity problem, namely call dropping. This
approach removes (drops) selected calls from the network
when the traffic demands temporarily exceed the available
resources in the network, due to a capacity decrease.

In most networks, call dropping is a last resort. Call
blocking at the time of call arrival is deemed tolerable, as

long as it is low (e.g., at most 2%). In fact, call blocking
performance is the key metric used in the capacity plan-
ning process for traffic engineering (e.g., Erlang B block-
ing formula). Dropping a user in the middle of a call (e.g.,
failed handoff [3]) is deemed unacceptable, since it disrupts
users, violates service agreements, and wastes the network
resources consumed.

Our work considers a network model in which the
physical network capacity has stochastic characteristics. In
such a network, call dropping episodes are inevitable, par-
ticularly when the network is operating at high utilization
when a capacity decrease occurs. A carefully chosen call
dropping policy is important to maintain overall system
performance, particularly when the traffic demands and the
capacity variation have complex statistical behaviours.

The purpose of our paper is to explore pricing mod-
els for stochastic capacity networks. Call dropping con-
trols are used to make judicious decisions about which
calls are disrupted during the dropping episodes, with the
intent of minimizing the number of disrupted calls. The
dropping control mechanisms have a noticable impact on
call-level performance, in terms of call blocking, call drop-
ping, and network utilization. When coupled with different
pricing strategies, additional tradeoffs occur amongst the
different performance metrics, particularly between user-
oriented quality of service (QoS) metrics (e.g., call block-
ing, call dropping) and the metrics of interest to network
service providers (e.g., utilization, revenue, profit).

Our paper makes three main contributions. First, we
show via call-level simulation that call dropping policies
can have an important impact on call-level performance in a
stochastic capacity network. Second, we propose and eval-
uate four possible pricing strategies for stochastic capacity
networks. Third, we demonstrate the performance trade-
offs that occur between call blocking, call dropping, and
profit maximization in stochastic capacity networks.

2 Related Work

There are many papers in the literature discussing variable-
capacity networks [5, 8, 10, 11, 12]. However, most of this
work [8, 9, 10, 11, 12] focuses on Connection Admission
Control (CAC), rather than call dropping controls or net-
work pricing strategies.

Our work draws partly upon ideas from performa-
bility modeling [3, 7], which takes into account both per-



formance and availability of a system. Traditional perfor-
mance modeling ignores stochastic variation of a system’s
shared resources, and can overestimate system perfor-
mance. Meanwhile, availability analysis tends to be con-
servative, since performance considerations are not taken
into account. Performability modeling, however, can pro-
vide a complete picture for system performance analysis.

Prior simulation work by Sun and Williamson [13]
studies the call-level performance of dropping policies in
stochastic capacity networks. However, only user-oriented
QoS metrics were considered. The recommended control
policies may not be optimal if other optimization criteria,
such as network-oriented metrics, are used. Identifying
these tradeoffs is the main contribution of our paper.

3 System Model

We model a stochastic capacity network. The network has
an overall average capacity for carrying C simultaneously
active calls, but the capacity varies randomly with time.
The network capacity always has a non-negative integer
value, but the capacity changes can occur at arbitrary points
in continuous time.

Our model specifies both the timing characteristics of
the stochastic capacity process, as well as the distribution
for the capacity value. We focus primarily on the Normal
distribution, for which it is easy to control both the mean
and the variance of the network capacity. Capacity values
are drawn from this distribution as independent and identi-
cally distributed (iid) samples.

We model a generic call-level workload, suitable for
an arbitrary network carrying either voice or data services.
New calls arrive according to a specified arrival process,
such as Poisson. Each call has a specified holding time,
drawn from a specified distribution (e.g., Exponential).
Each call requires one unit of network capacity for the du-
ration of the call.

The network uses a simple Greedy CAC algorithm in
which a call is admitted into the network if and only if ade-
quate capacity exists for it at the time of call arrival. There
is no future lookahead in the CAC mechanism.

3.1 Call Dropping Policies

Call dropping occurs in a stochastic capacity network when
the aggregate traffic load currently in the network tem-
porarily exceeds the available network capacity. This phe-
nomenon happens if the network is full or nearly full when
a capacity decrease occurs. When this unfortunate network
condition occurs, the network must expunge one or more
victim calls in order to conform to the new capacity con-
straints. We call such an event a call dropping episode.

Choosing which call(s) to drop in a dropping episode
is determined by a call dropping policy. These policies im-
pact both user-level and network-level performance.

We consider 7 simple call dropping policies, as
in [13]. Random chooses uniformly at random amongst
the active calls in the network whenever a victim call must
be dropped. NewestArrival removes the youngest call, and
OldestArrival removes the oldest call from the network.
EarliestDeparture removes the active call that is scheduled
to complete next, and LatestDeparture drops the active call
whose departure time is furthest in the future. ShortestDu-
ration drops the call with the shortest holding time spec-
ified at the time of its arrival, and LongestDuration drops
the active call with the longest original holding time.

3.2 Pricing Model

Our network revenue model operates as follows. The net-
work provider receives payment from a user for each Suc-
cessful call that is admitted to the network and completed
without disruption. This income is referred to as Revenue.
Conversely, the network provider pays to the user a penalty
fee for each Dropped call: a call that is initially admitted
to the network, but is prematurely disrupted and dropped
from the network prior to completion. Note that there is
no revenue generated from Dropped calls; only the outflow
of penalty payment occurs. These payments are referred to
as Expenses. Finally, we assume that Blocked calls, which
are rejected from the network at the time of call arrival, are
revenue-neutral. That is, no payment occurs at all, since the
user receives no service, and the network does not expend
any bandwidth resources on the call.

The primary performance metric of interest is Profit,
which is defined as Profit = Revenue−Expenses. The
network provider is interested in maximizing profit, for a
given call workload and network capacity conditions. The
call dropping controls used in the network influence the
number of calls that are Successful, Blocked, or Dropped,
while the pricing strategy determines the monetary value
associated with each call. We express all revenue, ex-
penses, and profit values in arbitrary monetary units.

We consider two main categories of pricing strategies,
namely Prix Fixé (fixed price) and Per Unit (usage-based)
pricing. The fixed price approach sets a universal price for
all calls (e.g., 1 monetary unit each), regardless of the call
duration. In usage-based pricing, the revenue associated
with a Successful call is directly proportional to the call
duration. Similarly, the penalty associated with a Dropped
call is directly proportional to the time that the call spent in
the network prior to dropping.

Within each of these categories, we consider two vari-
ants, namely single-class and multi-class pricing. The
multi-class strategies use three different price levels: a low
price for short duration calls (e.g., less than 10 sec), a mod-
erate price for medium duration calls, and a high price for
long duration calls (e.g., longer than 30 sec). In our exper-
iments, about one-third of the generated calls are in each
category (i.e., 27% short, 35% medium, and 38% long).

The four resulting pricing strategies are called Prix
Fixe 1 (fixed price, single-class), Prix Fixe 3 (fixed price,



three classes), Per Unit 1 (usage-based, single-class), and
Per Unit 3 (usage-based, three classes) in the paper.

4 Experimental Methodology

Our work is carried out using call-level simulation. The
two inputs provided to the simulation are a call workload
file and a network capacity file.

The workload files are generated using the call work-
load parameters indicated in Table 1. We use workload
files with 100,000 calls. We consider this trace length ade-
quate to highlight performance differences among the pric-
ing strategies and call dropping policies evaluated. Steady
state is reached after about 10,000 calls. The additional
run length used enables greater statistical confidence in the
results obtained.

Table 1. Call-Level Workload Parameters

Parameter Levels

Stochastic Arrival Process Poisson
Traffic Holding Time Exponential
Call Arrival Rate (calls/sec) 0.1 . . . 1.0 . . . 6.0

Mean Call Holding Time (sec) 30

The capacity files are generated using the models and
parameters indicated in Table 2. We use capacity files with
up to 10,000 capacity change events. In some simulations,
only the initial portion of the capacity file is needed, de-
pending on the frequency of capacity changes.

Table 2. Network Capacity Parameter Settings

Parameter Levels

Mean Time between 10, 15, 30,
Capacity Changes (sec) 60, 120

Stochastic Change Timing Deterministic
Capacity Change Value Normal
Capacity Mean 40

Value (calls) Standard Deviation 5

The different call dropping and pricing strategies are
modeled within the simulator. We provide each policy with
the same input files, so that each policy handles the same
traffic demands under the same network conditions. Differ-
ences observed in call-level performance reflect differences
in the call dropping and pricing strategies used.

Table 3 shows the factors and levels used in our simu-
lation experiments. We explore the impacts of different call
dropping policies, as well as a variety of pricing strategies.

The performance metrics of interest fall into two cat-
egories. The user-oriented performance metrics are the call
blocking probability and the call dropping probability. The
network-oriented metrics are revenue, expenses, and profit.

Table 3. Factors and Levels in Call-Level Simulations

Factor Levels

Random,
NewestArrival,

Call OldestArrival,
Dropping EarliestDeparture,

Policy LatestDeparture,
ShortestDuration,
LongestDuration

Pricing Pricing Model Prix Fixe, Per Unit
Strategy Number of Classes 1, 3

5 Simulation Results

5.1 Overview

Figure 1 presents the call-level performance results from
a representative simulation experiment with 100,000 calls.
In this experiment, the call arrival process is Poisson, and
the call holding times are exponentially-distributed with a
mean of 30 seconds. The average offered load is 30 Er-
langs. During the simulation, the network capacity varies
stochastically, with a random capacity change every 10 sec-
onds. The capacity (in calls) is drawn from a Normal dis-
tribution with a mean of 40 and a standard deviation of 5.
We chose these parameter values as an approximate model
for a typical commercial wireless CDMA system.

There are four graphs in Figure 1. Figure 1(a) shows
the number of successful calls for each call dropping policy
considered. Figure 1(b) presents the call blocking results,
showing the number of offered calls rejected from the net-
work at the time of their arrival. The average blocking rate
ranges from 2.9% to 4.5%, depending on the call dropping
policy used. Figure 1(c) presents the call dropping results,
showing the number of accepted calls that are subsequently
dropped from the network prior to completion. The aver-
age call dropping rate is lower than the call blocking rate,
ranging from 1.3% to 1.5% of the total calls. Figure 1(d)
shows the number of call dropping episodes experienced
by each call dropping policy. For this workload, there are
about 450 call dropping episodes. On average, about 3.2
calls are dropped per dropping episode.

Figure 1 shows that the call dropping policies all
achieve a similar number of successful calls. About 95% of
the offered calls are Successful, regardless of the call drop-
ping policy used. However, the dropping policies do ex-
hibit differences in blocked calls, dropped calls, and drop-
ping episodes. The error bars shown on the Random col-
umn show the minimum and maximum values from 30
simulation runs, implying that the performance differences
seen among the call dropping policies are statistically sig-
nificant.

It is known that judicious call dropping improves both
blocking and dropping performance in the network [13].
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Figure 1. Overview of Simulation Results (100,000 calls; PE30; DN(40,5))

For example, the LatestDeparture policy is optimal for
user-oriented performance. However, this policy is not nec-
essarily optimal if network-oriented performance metrics,
such as utilization, revenue, and profit are considered, as
we demonstrate next.

5.2 Pricing Results

Next, we vary the pricing strategies to study the effect on
revenue, expenses, and network profit. Figure 2 shows
these simulation results, for the same network capacity and
call workload model as in the previous section.

There are four rows of graphs in Figure 2, with each
row representing simulation results for a different pricing
strategy. In each row, there are two graphs. The graph on
the left shows Expenses (penalties paid), while the graph on
the right shows Profit (Revenue minus Expenses). Revenue
is not shown, since it is similar for all dropping policies.
For comparison purposes, we normalize all results relative
to the values achieved by the Random call dropping pol-
icy in the same experiment, as shown with the horizontal
dashed line. On each graph, there is one pillar shown for
each call dropping policy considered. For ease of compari-
son, the dropping policies are consistently presented in the
same relative order in all of the graphs. Note that the three
graphs without detailed labels have a different vertical scale
than the other five graphs.

Figure 2 illustrates four important observations. First,
there are substantial differences among the call dropping
policies in terms of the expenses (penalties) that they incur.
For example, with the single-class usage-based (Per Unit 1)
pricing in Figure 2(e), the OldestArrival policy incurs ex-
cessive penalties, while the NewestArrival policy does not.

Second, large differences in expenses produce noticeable
differences in profits for the call dropping policies. For ex-
ample, the NewestArrival policy outperforms the OldestAr-
rival policy with respect to profit in Figure 2(f). Third,
the multi-class pricing models tend to alter the differences
amongst the call dropping policies for Prix Fixe, particu-
larly in terms of expenses (compare Figure 2(a) and Fig-
ure 2(c)). This result makes sense since the monetary val-
ues are biased across the classes of traffic; some dropping
policies exploit this property better than others. Finally,
there is no call dropping policy that is universally the best
across the set of pricing strategies considered. For Prix
Fixe 1 in Figure 2(b), the best policy is LatestDeparture.
For this pricing model, profit maximization is actually the
same as minimizing dropped calls. For Per Unit 1 pricing,
LatestDeparture is inferior to NewestArrival, ShortestDu-
ration, and two other call dropping policies. The NewestAr-
rival policy is surprisingly robust across the range of pric-
ing strategies studied; while not always optimal for profit,
this policy is never worse than Random, and often better.

5.3 Effect of Load

The next simulation experiment varies the load level of-
fered to the stochastic capacity network, to study the effect
on call-level performance and network profit.

Table 4 summarizes the call-level performance results
for this experiment. The results show that call blocking,
call dropping, and the number of call dropping episodes
all increase with the level of offered load. These results
are illustrated using the Random call dropping policy as an
example; the results for other call dropping policies would
differ slightly. The call blocking and call dropping rates in
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Figure 2. Simulation Results for Expenses and Profit Relative to Random Call Dropping Policy with Four Different Pricing
Models (100,000 calls; PE30; DN(40,5))
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Table 4. Effect of Load Level on Call-Level Performance

Offered Load Blocking Dropping Dropping
(Erlangs) Rate (%) Rate (%) Episodes

10 0.005% 0.0% 0
20 0.172% 0.060% 22
30 3.485% 1.496% 465
40 12.187% 4.947% 1,240

Table 4 become excessively high at a load of 40 Erlangs.
Figure 3 shows the effect of offered load on the net-

work profit. These results are presented for two selected
pricing strategies, namely Prix Fixe 1 and Per Unit 1. The
horizontal axis represents load, which increases from left to
right. The vertical axis represents Normalized Profit, which
is expressed relative to the profit attainable at a load of 10
Erlangs. The 7 lines on each graph represent the profit re-
sults from the different call dropping policies simulated.
The key on each graph is arranged to match the relative
ordering of the lines in the graph.

Figure 3 shows that network profit tends to decrease
as network load increases. This result is obvious, since in-
creased load can lead to greater call blocking (less revenue)
and the onset of call dropping (more penalties). Both of
these effects reduce the network profit.

Figure 3 also shows that the profit differs amongst the
7 call dropping policies, and that the differences depend on
the pricing strategy. For example, with Prix Fixe 1 pricing
in Figure 3(a), the best profit occurs with the LatestDepar-
ture call dropping policy. For Per Unit 1 pricing in Fig-
ure 3(b), the best policy is NewestArrival, followed closely
by ShortestDuration. LatestDeparture performs similarly
to Random, while OldestArrival is the worst.

5.4 Effect of Frequency of Capacity Change

The final simulation experiment varies the relative fre-
quency of the capacity change events in the stochastic ca-
pacity network, to understand the effect on call dropping
and network profit.

Table 5 summarizes the call dropping performance
observed in this experiment, using the Random call drop-
ping policy as an example. The first row of this table rep-
resents high frequency capacity changes, while the bot-
tom row represents low frequency capacity changes. The
number of call dropping episodes decreases when capac-
ity changes are less frequent. Call blocking remains about
3.4% throughout these experiments. Note that a fixed ca-
pacity network has no call dropping episodes; only Suc-
cessful and Blocked calls are possible.

Figure 4 illustrates the effect on network profit when
the frequency of network capacity changes is varied. These
results are presented for two selected pricing strategies,
namely Prix Fixe 3 and Per Unit 3. The horizontal axis rep-
resents the elapsed time between capacity change events,
with high frequency changes on the left, and low frequency

Table 5. Effect of Frequency of Capacity Changes on Call-
Level Performance

Timing Blocking Dropping Dropping
(sec) Rate (%) Rate (%) Episodes
10 3.506% 1.465% 460
20 3.343% 0.917% 271
30 3.365% 0.572% 175
60 3.390% 0.319% 93

120 3.229% 0.211% 55

changes on the right. The vertical axis represents Normal-
ized Profit, which is expressed relative to the profit attain-
able in a static capacity network with a capacity for 40
calls. The 7 lines on each graph represent the different call
dropping policies simulated. Again, the key on each graph
is arranged to match the relative ordering of the lines.

Figure 4 illustrates two main points. First, the achiev-
able profit tends to increase as the time between capacity
changes increases. This result makes sense since fewer
call dropping episodes occur, and there are fewer penalties
paid. All call dropping policies asymptotically approach
the same profit value when dropping episodes are rare. Sec-
ond, the relative ordering of call dropping policies depends
on the pricing strategy used. For example, while LatestDe-
parture is the best for Prix Fixe 1 (as indicated previously),
it performs no better than Random for the multi-class pric-
ing strategies in Figure 4.

These results demonstrate the tradeoffs between call
dropping policies and pricing strategies in stochastic capac-
ity networks. In particular, the choice of an optimal pricing
strategy depends on the call dropping policy implemented
in the network, and vice versa.

6 Conclusions

This paper studies possible pricing strategies for networks
with stochastic capacity variation. Call-level simulation is
used to study the performance tradeoffs between 4 pric-
ing strategies and 7 different call dropping policies, with
respect to their user-oriented and network-oriented perfor-
mance. The simulations are conducted for a variety of call
workload and network capacity assumptions.

The simulation results show that the choice of an op-
timal pricing strategy depends on the call dropping policy
used in the network. For the simple pricing strategies stud-
ied in our experiments, the NewestArrival call dropping
policy provides relatively robust performance, although it
is rarely optimal. This simple-to-implement call dropping
policy could be suitable as a default call dropping policy
for stochastic capacity networks.
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