An Evolutionary Approach to Optimal Web Proxy Cache Placement

Gwen Houtzager

Christian Jacob

Carey Williamson

Department of Computer Science
University of Calgary, Canada
{gwen,jacob,carey} @cpsc.ucalgary.ca

Abstract— This paper studies the Web proxy cache placement
problem, in which m caching proxies are to be placed in
a network so as to minimize the average response time for
users accessing Web content. We compare an evolutionary ap-
proach to this network optimization problem with two classical
approaches, namely dynamic programming and packet-level
simulation. The results show that the evolutionary approach
produces results as good as or better than the other approaches.
Furthermore, the evolutionary approach is computationally
faster, enabling the study of larger network scenarios than
possible with the other approaches.

I. INTRODUCTION

Given the explosion of Internet use in the last decade,
much effort has been directed towards improving user-
perceived performance on the World Wide Web.

One popular approach involves the installation of Web
proxy caches, which provide a shared cache for a set of
Web clients [19]. By exploiting commonalities in the Web
browsing patterns of many users, Web proxy caching can
reduce Internet traffic across a network, improve server
responsiveness by reducing server load, and reduce user-
perceived latency when accessing Web documents.

The strategic placement of Web proxies in a network can
yield many performance advantages. Specifically, the goal is
to keep request/response traffic off of slower inter-continental
links that can inflate client response times. By reducing round
trip delay, Web document downloads are faster for the user.
Equally important, unnecessary network traffic is eliminated
on busy Internet backbones.

The Web proxy cache placement problem is often formu-
lated as an optimization problem: place m proxies within
a network to minimize the mean user response time for
retrieving Web objects. Solutions to this problem include
graph theoretic, combinatorial, dynamic programming, and
vector quantization approaches [6], [10], [11], [12], [13],
[14].

One drawback of most theoretical approaches to the Web
proxy cache placement problem is the limiting assumptions
that are needed to make the problem tractable. For example,
some approaches assume homogeneous clients, fixed-size
documents, and identical hit ratios at each proxy cache.
These assumptions differ from empirical observations of Web
workload characteristics: Zipf-like distributions for client
activity and Web object popularity [2], [5], heavy-tailed
transfer size distributions [1], [5], and diminishing hit ratios
at each successive level of cache due to filter effects [4],
[16], [22]. Furthermore, theoretical approaches often ignore

network protocol effects, such as bursty packet traffic, packet
losses, and the dynamics of TCP flow control.

Another approach is to study the Web proxy cache place-
ment problem from a network-layer perspective, at the packet
level. For example, detailed packet-level simulations often
use more realistic assumptions. Earlier simulation work [8],
[18] has shown the impacts of network-level effects (e.g.,
round trip times, link speeds, network congestion, packet
losses, TCP dynamics) on user-level Web performance.

The drawbacks of the packet-level simulation approach are
the computational demands per simulation, and the number
of simulations required. Conducting multiple simulations is
possible for a small, simple Web proxy caching environment.
However, applying the same “brute force” method to a
moderately sized, complex network becomes infeasible.

In this paper we propose an evolutionary approach to the
Web proxy cache placement problem. Through the evolu-
tionary algorithm we can incorporate important assumptions
about TCP flow control and Web caching effects, while
maintaining the ability to study larger, more realistic network
topologies. In essence, we provide a method for addressing
the deficiencies of classical theoretical and simulation-based
approaches to the problem.

We first compare results of the evolutionary approach
to packet-level simulations and a dynamic programming
algorithm for a small network model. We then apply the evo-
lutionary computation techniques to a larger, more realistic
network model, and discuss the results.

The rest of the paper is organized as follows. Section Il
provides some background on the cache placement problem,
and briefly discusses prior work. Section Il describes the
experimental methodology for our work. Section 1V briefly
describes the classical approaches to this problem, while
Section V introduces the evolutionary approach. Sections VI
and V1 present results for small and large network scenarios,
respectively. Finally, Section VIII concludes the paper.

Il. BACKGROUND AND RELATED WORK

Web proxy caches provide a shared cache to a set of
clients [19]. When a user requests a Web document from
a particular origin server, the request goes via the proxy. If a
valid copy of the document is cached at the proxy, then the
user’s request is served from the proxy in the same way as
it would have been served had it been handled by the origin
server. Alternatively, if the document is not in the proxy
cache, or if the document is not up to date, then the proxy

forwards the request to the origin server. The origin server
responds to the proxy, and the proxy forwards the response
to the client. The proxy typically stores the document in its
cache to serve future requests from other clients for the same
document. To the origin server, the proxy appears and acts
as a client making a request. To the client, the proxy appears
and acts as the origin server responding to a request.

The placement of Web proxy caches (proxies) in a given
network poses an interesting problem. Specifically, there is a
theoretical, optimal solution to the placement problem where
the number, size, and cost of Web caching appliances is
minimized while the benefit of Web caching is maximized
in terms of reducing user latency and bandwidth usage. In
graph theory, this problem is referred to as the k-median
problem, and has been proven to be NP-hard. As a result,
current solutions to the problem rely on heuristic approaches
and approximate models [10], [11], [12], [14].

Li et al. [13] have studied the problem of optimal place-
ment of multiple Web proxies among potential sites, given
a certain traffic pattern. The reduction in overall network
traffic and the reduction in access latency are used to
determine optimal placement. Using a dynamic programming
approach, they propose an optimal solution for linear network
topologies, and a heuristic approximation for tree topologies.
Later work determined an optimal solution to the distributed
caching problem in a network with a tree topology [14]. The
latter paper provides the basis for the dynamic programming
approach used in our work.

What makes the proxy placement problem more com-
plicated than other instances of the k-median problem is
the existence of upstream and downstream dependencies
when evaluating potential proxy site locations. Empirical
measurements show that the cache hit ratios tend to decrease
at each successive level visited in a cache hierarchy [16]. This
phenomenon is called the cache filter effect [22]. Packet-level
simulations have shown that caching dependencies have a
significant influence on the proxy placement problem [8].

The primary contribution in our paper is the application of
an evolutionary algorithm to the Web proxy cache placement
problem. To the best of our knowledge, this is a novel
application domain for evolutionary computation.

I1l. EXPERIMENTAL METHODOLOGY
A. Network Model and Assumptions

The simple network model assumed for our study is shown
in Figure 1. The network topology has a single Web server
at the root (top) of an unbalanced tree, with six clients
at the leaf level. The circular nodes, labeled P1 to P11,
represent candidate proxy locations, at national, regional,
and institutional levels. (Browser caches are ignored.) The
lines represent routing paths from the server to the clients.
Router nodes have buffers of size 100 packets with Drop
Tail queueing. All network links have 10 Mbps transmission
capacity. Link propagation delays are shown on the left edge
of the diagram. The percentages beneath each client (square)
indicate the proportion of the total Web request workload

generated by each client. The numerical values adjacent to
each link in Figure 1 represent weights used by a dynamic
programming approach discussed in Section IV.

The network structure and the traffic workload in our
model are intentionally unbalanced and asymmetric. The
network represents a compromise: large enough so that the
placement of proxies is not trivial, yet simple enough so that
it can be easily studied and the results understood. Given
this specific network topology, it is possible to determine an
optimal placement for a set of m Web proxies using dynamic
programming, packet-level simulation, and an evolutionary
approach. The simple model facilitates the analysis and
comparison of results from these three methods.

The larger network model used in our study follows the
same assumptions outlined for the simple network model.
The larger network is discussed in more detail in Section VII.

B. Simple Network Web Workload Model

The Web workload in our study is synthetically generated
using WebTraff [17], a Web workload modeling tool. The
experiments use a workload of 100,000 requests. Each line
in the workload file represents the download of a Web object
by one of the clients. The workload file format has four
columns: a timestamp (request arrival time); a source node
(provider of the Web object); a sink node (the requesting
client); and a transfer size (in bytes). The request arrival
process is Poisson [1], with a specified mean arrival rate (e.g.,
30 requests per second). The transfer size is drawn from a
hybrid distribution, with a log-normal body, and a Pareto tail.
The median transfer size is 1 KB (2 TCP packets), while the
mean is 8 KB (16 packets). The largest transfer is 3 MB.
The source and sink for each Web transfer are chosen at
random according to the client request rates and the cache
hit ratios being modeled. The default source node for each
Web transfer is the origin server.

C. Experimental Factors and Performance Metrics

The primary experimental factors in our study are the
number of proxies to be placed in the network, and the hit
ratios for the Web proxy caches.

1) Number of Proxies: In the simple network scenario,
there are n = 11 candidate locations for Web proxies. There
are two obvious performance bounds for this network. The
worst possible case occurs when no proxies are placed in
the network. The best possible case occurs when 11 proxies
are used. In our experiments, the number of proxies to be
placed in the network is set from 1 to 11. In the larger
network model, the number of candidate proxy locations is
160, therefore the number of proxies to be placed can be set
from 1 to 160. This network is discussed in Section VII.

2) Cache Hit Ratio: The cache hit ratio is defined as
the proportion of client requests that a given proxy is able
to satisfy from its cache. The hit ratio is expressed as a
percentage of the total client requests handled by that proxy.

Table | shows the cache hit ratio values used for both
the simple and complex network models in our study. These
ratios were designed to represent typical Web proxy cache

25ms

(0.37,5)

National

(0.16,10)

Py

(0.40,10)

(0.15,10)

P
Regional

(0.15,5)

()

Institutional

lms

AR

16% 704 14%0
Fig. 1.

hit rates, as well as the “diminishing returns” cache filter
effect reported in the literature [16], [21], [22].

TABLE |
PROXY CACHE HIT RATIOS ASSUMED FOR EXPERIMENTS

Proxies on Cache Hit Ratios
Client-Server Level 1 Level 2 Level 3
Path Institutional | Regional | National
1 30% - -
1 - 20% -
1 - - 15%
2 30% 15% -
2 30% - 10%
2 - 20% 10%
3 30% 15% 7.5%

The cache hit ratios diminish as the network caching level
increases from the institutional level to the national level.
Since higher level proxies serve more diverse client groups
using a finite shared cache, the probability of an individual
client finding a requested document at a higher level proxy
decreases. Cache hit ratios were assigned consistently across
caching levels for each client stream.

The primary performance metric of interest is the mean
user-perceived transfer time for Web object downloads.

IV. TRADITIONAL APPROACHES

A. Dynamic Programming

The dynamic programming (DP) approach used in our
study is based on work by Li et al. [13], [14]. The approach
assumes that the network is a directed graph of nodes and
edges. Each node has an associated weight that represents
the volume of traffic in the absence of proxies. Within the
network tree, a set of nodes are chosen as proxy sites. Each
proxy set solution has an associated cost, and the set that
minimizes the cost represents the optimal solution.

The dynamic programming algorithm is computationally
efficient. The static costs are pre-computed for small in-
stances of the proxy placement problem, and then stored
in a global array, indexed by the number of proxies and

Sms
0.16,5) 0.07,5) | (0.14,5) (0.26,5) 0.22,8)
G 2

c] & [

26% 22% 1500

a

Network topology and workload characteristics

the subtree in which the proxies are placed. Solutions for
larger instances of the problem are then built in a table-
driven fashion using these pre-computed values. The running
time of the algorithm is O(n3m3). Further details on the DP
approach are provided in [7], [8], [13], [14].

B. The Packet-Level Simulation Approach

The packet-level simulation technique in this paper follows
the same approach as prior work [8]. It represents a “brute
force” exhaustive search of all possible proxy set combina-
tions. Given n candidate proxy locations, and m < n proxies
to be placed, the number of possible combinations is:

o n!
(n,m) = m! (n —m)!

For example, for the 11-node network in Figure 1, there are

C(11,3) = 165 possible ways to place 3 proxies. We use the

ns-2 network simulator [3] to carry out the simulations.

V. THE EVOLUTIONARY APPROACH

Figure 2 provides a structural overview of the evolutionary
algorithm used. The evolutionary approach uses parameters
consistent with those of the simulation experiments. Initially,
candidate proxy locations are randomly selected. Through
the process of mutation and recombination, the initial proxy
set is grown into a population of proxy sets, each one
evaluated for its “fitness for purpose”. The fittest member of a
population advances to the next generation, where the process
is repeated. The algorithm terminates when the specified
convergence criterion is reached [9].

A. Initialization

At each iteration of the evolutionary algorithm, a group
of ‘parent’ proxy set combinations ‘breed’ to produce a
population that includes both the initial parents and their
offspring (children). To initialize the parent population for
generation 0, a randomly selected set of m proxy sites is
assigned. More specifically, an array is populated with a
randomly chosen set of integer values. The length of the
array represents the number of proxies to be placed in the

program EA
t = 0;
initialize population P[t];
until done do {
t =t + 1,

parent _selection P[t];
recombine P[t];
nmutate P[t];

eval uate P[t];
survive P[t];

}

Fig. 2. Structural overview of the evolutionary algorithm

network, while each integer value within the array represents
the arbitrary numerical label associated with a candidate
proxy site. Next, the parent arrays undergo recombination
and mutation (to be explained next), in order to produce
child arrays with similar structure. The number of parents and
children is specified by the program parameters. Combined,
the parents and children represent the population in a given
generation. Each time the evolutionary algorithm is run, a
different initial set of random parents is generated.

B. Genetic Operators

The evolutionary algorithm uses two genetic operators
called recombination and mutation. These two genetic op-
erators serve different purposes. Recombination combines
existing knowledge from different individuals already in
the population, while mutation randomly introduces new,
potentially better values (proxies) into the population.

1) Recombination: Inspired by biological reproduction,
recombination refers to the re-ordering and sharing of exist-
ing genetic information from the parents. More specifically,
the child arrays are produced by swapping the parent in-
formation according to a chosen crossover point (one-point
crossover). The result of recombining two parent arrays is
two new child arrays. Each child array contains a portion
of the proxy sites from one parent array and the remaining
proxy sites from the other parent array. Therefore, the child
array represents a new proxy set combination. There is a
globally specified probability of recombination occurring for
each individual. When recombination occurs, a crossover
point is determined uniformly at random. Figure 3 provides
an overview of the recombination operator.

Given the simplistic nature of the recombination operator,
a child could inherit the same proxy location from both
parents, resulting in a duplicate entry in the child array.
The evolutionary algorithm does not preclude this possibility,
nor does it need to. Intuitively, a proxy set combination
with duplicate entries will have inferior performance, since it
leaves some other candidate location without a proxy. If the
duplication is not eliminated by mutation or recombination,
then the child is unlikely to survive from one generation to
the next. As a result, the algorithm can ignore the issue of

crossOver(parentl, parent2) {

probl = randon{();
if(probl < crossRate)
do {
xPoi nt = random();
for i =1 to xPoint-1
childi[i] = parentl[i];
child2[i] = parent2[i];
for j = xPoint to nunProxy
childi[j] = parent2[j];
child2[j] = parentl]j];
}
}
Fig. 3. The recombination operator algorithm
duplication.

2) Mutation: In nature, mutation refers to the process
of randomly changing the genetic makeup of an organism.
Within the context of the proxy placement problem, mutation
refers to the process of changing the proxy set combination
represented in an array.

During the evolution phase of the algorithm, a mutation
operator is applied to each array within a population. First,
the mutation rate determines whether a single proxy site
within a proxy set will change. Next, the step size determines
the mutability of the item. That is, the step size, which is
drawn from a Gaussian distribution, determines the numerical
amount by which a selected array item can change. Figure 4
provides an overview of the mutation operator.

mutation(child) {

for i =1 to nunProxy do {
probl = randon();
if(probl < nutationRate) do {
step = stepSize * Gaussian();
child[i] = child[i] + step;
}
}

Fig. 4. The mutation operator algorithm

C. Evaluation Function

The evaluation function, also known as the fitness test,
is an important component of an evolutionary algorithm.
This function distinguishes between different proxy set com-
binations, and determines the fittest in a given population.
Our evaluation function uses the same parameters as the
packet-level simulation study. This consistency facilitates
comparison of results from different solution approaches.

For the proxy placement problem, the key is to minimize
the transfer time in order to reduce the user-perceived latency.
For this purpose, the expected overall network transmission
time E(T) is a suitable fitness metric. The transfer time is
the sum of the transmission time that it takes to transfer

packets across the network plus any queueing delays plus any
additional transmissions caused by packet loss. In this study,
queueing delays and packet loss are ignored. However, their
inclusion requires only a slight modification to the fitness
equation.

For a three-level caching hierarchy, the average transfer
time depends on the hit ratio H R for each level of cache,
and the average transfer time from each cache:

E(T) = HRI (T(Pinstitutional)) + HRQ (T(Pregional))

+HR3 (T(Pnational)) + (1 - Z HR) (T(Pser'uer))

Furthermore, the transfer time for an individual client
request with N packets can be approximated by the following
formula [15]. The formula incorporates the effects of TCP
slow start, as well as the network round trip time RT'T.

T(i) = (1+ [logaN]) « RTT4

The overall fitness value for the evolutionary algorithm
depends on the expected transfer times for clients, weighted
by the proportion r of traffic generated by each client:

(&
FitnessValue = Z ri(E(T}))
i=1
The numerical result of the fitness test is used in relative
terms to rank and compare proxy set combinations within
the population.

D. Parent Selection

Survival from one generation to the next is implemented
using one of two deterministic methods, following the se-
lection schemes described for Evolution Strategies [20]. In
the Comma strategy, after evaluating a population, the K
best children survive and replace the parents of the current
generation. Parents do not survive from one generation to the
next. In the Plus strategy, the K best individuals (child and
parent alike) survive to the next generation. Both strategies
are considered in this analysis.

V1. RESULTS FOR SMALL NETWORK MODEL

Table Il provides a comparison between the evolutionary
results and the results from the packet-level simulations
and dynamic programming algorithm. For example, when
placing a single proxy, both the evolutionary algorithm and
the packet-level simulation recommend proxy site P10, while
the dynamic programming approach recommends site P1.
The average transfer time and rank (as determined from the
simulation experiment) for each solution are shown in the
right-hand portion of the table.

The results from the evolutionary algorithm are almost
identical to those from the simulation experiments. The only
difference occurs for m = 3 proxies where the evolutionary
algorithm chose P5 as the third proxy site and the simulation
results indicate that a proxy at P1 is the optimal location

(Figure 5). Note that the set (P5, P6, P10) was the second-
best configuration (rank 2) from the simulations, and the
performance difference between the two choices is only 1
millisecond. Although not shown in the table, beyond m = 4,
the optimal proxy sets in both evolutionary and simulation
results are the same [7].

164
A
o N

(o] &—

i
Blo] ¢

ol (O — (o)

-
o | (
L |

16% 14% 26%

Fig. 5. Optimal Proxy Set for m =3

The evolutionary results improve noticeably upon the
results from the dynamic programming approach. The major
reason for this is that the dynamic programming approach
ignores TCP dynamics (such as slow start), cache hit ratios,
and cache filtering effects [8]. These effects are all considered
in the evolutionary algorithm.

Computationally, the simple network model is a triv-
ial problem for the evolutionary algorithm. The algorithm
quickly converges to an optimal solution in a few seconds,
requiring only 10 to 20 generations of evolution. Packet-level
simulations for the same network required extensive time
and computational effort (i.e., multiple simulations, each 5-7
minutes in duration).

The experimental results from the evolutionary approach
on the simple network model are encouraging. However, a
larger, more realistic network model is required to better test
the capabilities of the evolutionary algorithm.

VII. RESULTS FOR LARGE NETWORK MODEL

Figure 7 shows the larger network model used in this study.
It consists of a single server, 130 clients, and 160 candidate
proxy locations. The network uses three hierarchical caching
layers, with 113 institutional caches, 36 regional caches,
and 11 national caches. The structure of the network was
randomly generated. The network is an unbalanced tree with
non-uniform traffic patterns. Each proxy node has between
2 and 7 clients. To spread the overall Web request load
among the clients in the network, random request counts
were assigned to each client. The maximum count was 106,
the minimum 1, the mean was 80, and the median 83.

A. Discussion of Results

Figure 6 provides an overview of the results for the
evolutionary algorithm. The graph shows the fitness function
value as it behaves over 150 generations. The fitness function
value is averaged over 10 separate trial runs in each case.
As expected, it improves (decreases) over time. Each line on

TABLE |1
COMPARISON OF RESULTS FOR DYNAMIC PROGRAMMING (DP), SIMULATION (SIM), AND EVOLUTIONARY ALGORITHM (EA)

Num Optimal Proxy Set Relative Mean Transfer
Proxies Solution Rank Time (sec)
m DP | SIM | EA DP [SIM | EA DP | SIM | EA
1 {1} {10} {10} 3 1 1 || 0.256 | 0.252 | 0.252
2 {1,2} {6,10} {6,10} 17 1 1 || 0.245 | 0.236 | 0.236
3 {1,2,5} {1,6,10} {5,6,10} 31 1 2 || 0.230 | 0.223 | 0.222
4 {1,2,5,6} | {5,6,8,10} | {5,6,8,10} || 48 1 1 | 0.218 | 0.210 | 0.210

the graph represents results for a different value for m (the
number of proxies placed in the network).

The top line in the graph represents the case when only
5% of the nodes in the overall network are designated as
proxy sites (9 in total). The solution set for m = 9 proxies
determined by the evolutionary algorithm consisted of 6 na-
tional level caches and 3 regional caches. The regional caches
were those along the routes to the busiest clients. Since
this scenario contains the fewest proxies, the overall mean
transfer time (and hence the fitness value) was the highest
(worst) compared with the others. The evolutionary algorithm
converges towards a solution quickly and consistently, as
evidenced by the stable fitness values after 50 generations.

Evolutionary Algorithm Results

4,200,000
— 5%

— %
4,000,000 TEI0%
A% e

— m=50%

3,800,000

3,600,000

Fitriess Walu

i

3,400,000

3,200,000

3,000,000

1 "no# 3 #8678 41 10 11 13 13 1

Generations

Fig. 6. Overview of evolutionary algorithm results

The bottom line in the graph represents the case when
50% of the network nodes are selected as proxy sites (80
proxies). The decline for this curve is more gradual than in
the m = 5% case. The fitness function continues to decrease
in value even after 200 generations, albeit at a much slower
rate than initially.

Figure 7 shows an overview of the network and the proxy
placement configuration determined by the evolutionary al-
gorithm. The solution set contains 45 institutional caches, 24
regional caches, and all 11 national level caches.

While we cannot verify the optimality of this configura-
tion, we can make several qualitative observations about its
structure. Without exception, the sites chosen for institutional
caches are all near the busiest clients. For example, the clus-
ter circled in the upper left corner of Figure 7 represents the
largest subtree and contains a relatively large proportion of
the busiest clients. As expected, this cluster contains a higher

proportion of proxies. Similarly, the cluster highlighted by
the dashed box on the right represents the subtree containing
the fewest busy clients. In this case, the cluster contains few
proxies. The regional caches tend to be placed where the
subtree contains many nodes or where there are fewer proxies
located at the level below. Interestingly, for the regional and
institutional levels, no proxies are placed along routes leading
to low-traffic clients (clusters highlighted by the smaller
dashed circles in Figure 7).

The foregoing solution was determined by running the
evolutionary algorithm for 900 generations (half hour run
time). Each generation included a population of 500 children
and 50 parents. Initially, the mutation rate was set at 30%
with a step size of 40. The probability of recombination was
50%. Both genetic operations were made highly probable
so as to consider a broad set of potential proxy locations.
After the evolutionary algorithm had run for 300 genera-
tions, the genetic operator probabilities were modified. The
mutation rate was reduced to 5% with a step size of 5,
and the probability of recombination was also reduced to
5%. At this point, the important proxy locations had already
been identified by the algorithm. Therefore, to encourage
convergence towards the optimal solution, consideration of
radically different proxy set combinations was no longer
necessary. Finally, after 600 generations, the genetic operator
values were reduced to very low levels. The mutation rate
was set to 1% with a step size of 2, and the probability
of recombination was set to 1%. At this point, only single
elements within the array data structure would be tweaked,
if at all. Therefore, assuming that the solution thus far was
generally correct, a single poor choice for a proxy location
could be corrected if necessary. A detailed sensitivity analysis
of program parameters follows in the next section.

B. Sensitivity of Program Parameters

In evolutionary computation, there is never a single “cor-
rect” setting for the genetic operators and program parame-
ters. To broaden the scope of the evolutionary experiments,
we varied evolutionary control parameters in an attempt
to understand sensitivities in the results. In particular, we
consider the effects of the mutation rate, step size, selection
strategy, and recombination rate.

1) Mutation Rate: Figure 8 shows the behaviour of the
evolutionary algorithm under different mutation rates (all
other program parameters remaining constant). The fitness

Fig. 7.

Evolutionary Algorithm Results
[changing mutation rate)
3,700,000

2,650,000
——mut= 5%

3,600,000 4
—mmut = 5%
2,550,000 4
——mut= 30%
2,500,000

—miut = 5%

3,980,000

Fitress Walu

3,400,000

3,280,000

3,300,000

3,260,000

3,200,000 T T T T
1 1 21 H 41
Generations

Fig. 8. Evolutionary algorithm sensitivity to mutation rate

function value for each mutation rate represents the average
of 10 trial runs. Initially, higher mutation rates appear to
speed up the process of finding better solutions. However, at
a certain point, as the algorithm starts to converge towards a
good solution, a higher mutation rate perturbs the algorithm,
preventing the population from ‘landing’ on the optimal set
of proxies. The mutation rate of 30% seems to perform best
initially. However, in the long run, beyond 10 generations, the
evolutionary algorithm behaves best with a lower mutation
rate of 5%.

2) Mutation Step Size: Figure 9 shows the behaviour of
the evolutionary algorithm for different mutation step sizes.
The step size represents the mean of a Gaussian distribution.
Similar to the mutation rate operator, a somewhat larger step
size (e.g., 40 or 60) produces faster initial improvements, but

SRR Y Jz’, A—a .
L o ol] ! ol . I|
) \) i
- SO A
I] i
it i t
t
r= - ¥ i
| I~
| I
| I
: : ® :SERVER
T ol B CLIENT
| : 9@ PROXYSITE
| I O NOPROXY
: | SITE
o | g1
] ! l _______ 2 o
: .
. ‘I " o i
1 o,
r‘l - - i
¢ ‘ ot \1 N
.II L2 !
' i PO OD

Network topology and evolutionary algorithm results for m = 80 proxies in large network model

the earlier gains disappear as the generations continue. Oddly,
the higher step sizes (e.g., 60 and 90) do not seem to disrupt
the evolutionary algorithm in the long run, which is an
unusual finding. Typically, low mutability is associated with
fine tuning to a local or global optimum. One explanation
for the absence of this phenomenon is that in our model, the
numerical proxy labels do not reflect topological location.
That is, a nearby proxy may have a vastly different numerical
label and hence would require a larger step size to be found
randomly by the evolutionary algorithm.

Evolutionary Algorithm Results
[changing Step Size)
3,600,000

3,550,000

3,800,000

3,460,000

Fitriess Walu

3,900,000

3,250,000 4

2,200,000

3,260,000

1 1" 21 H 41
Generations

Fig. 9. Evolutionary algorithm sensitivity to step size

3) Selection Strategy: When the parents of a population
are not included as part of the next generation, the resulting
children may not be as fit. As a result, the evolutionary
process will go ‘backwards’ for a short while, so to speak. In
nature, parents normally die before their offspring, and there

Evolutionary Algorithm Results
(effects of parent inclusion in nesxt generstion)
3,850,000

3,800,000 4
- = - - parent included

3,780,000 44

parent not included

a3700.000 4

3,650,000

Fitress Walu

3,600,000

3,550,000

3800,000

3,460,000

Generations

Fig. 10. Evolutionary algorithm sensitivity to parent selection

can be deterioration from one generation to another. In fact,
this is an important means of preventing a group or species
from “freezing’ genetically. However, excluding parents from
a population in successive generations can sometimes prevent
an evolutionary algorithm from converging.

Figure 10 shows the fitness function value over 50 gen-
erations for the case in which parent solution sets are
excluded from the surviving group, and for the case in which
parent sets are included in the selection process. The line
representing the ‘parent exclusion’ case is more jagged. If
the parent population was included among the survivors, the
fitness value behaves more consistently.

Evolutionary Algorithm R esults
(Recombination Effects)

Bmut=30% &=tep=40

1] T T T T
1 51 101 151 201 251
Generations
Fig. 11. Prevalence of the recombination operation over 256 generations

4) Recombination: Figure 11 presents a time series plot
that shows the influence of the recombination operator. Re-
call that the recombination operator is applied with a certain
probability, which means that there is an on/off impulse
property to its effect on the behaviour of the evolutionary
algorithm and on the population. The graph shows the
generations in which the fittest individual emerged as a
result of the recombination of parental sets. Initially, the
recombination operator is dominant, as shown early in the
graph. However, as the best solution set in a given generation
approaches the optimal solution over time, recombination is
rare, and the mutation operator becomes the most influential.

VIIl. SUMMARY AND CONCLUSIONS

This paper proposed an evolutionary approach to the
Web proxy placement problem. The approach was applied
to a simple network and the results compared to packet-
level simulation experiments and a dynamic programming
algorithm. The results look very promising.

The dynamic programming algorithm has the advantage
of being scalable to larger networks. However, the optimal
proxy sets from the dynamic programming algorithm did not
match those determined by simulation experiments. The most
likely explanation is that the dynamic programming method
considers only network traffic volume and link transmission
latency. It does not consider network influences such as
cache filtering effects and TCP dynamics. The packet-level
simulation experiments show that these network influences
are significant.

While the combinatorial simulation approach to the proxy
placement problem guarantees an optimal solution for a given
network topology and client workload (since all possible
cases are simulated), the effort required becomes prohibitive
as the size of the network and the number of proxies grow in
scale. Unfortunately, for most practical network topologies,
this approach is not economically or computationally viable.

The evolutionary approach provides the best of both
worlds. The results for the simple network closely match
those determined by the packet-level simulations, indicating
that the fitness function captures the essential elements of the
network and caching implications. As well, the evolution-
ary approach can handle much larger network topologies,
although for these networks the proxy placement solution
cannot be proven optimal. Fortunately, given the many uncer-
tainties about Web workloads and TCP dynamics in a large
internetwork, robust good solutions are more desirable than
perfectly optimal solutions [8]. The evolutionary approach
can quickly find good solutions to the proxy placement prob-
lem, dramatically narrowing the search space for subsequent
optimization efforts.

ACKNOWLEDGEMENTS

Financial support for this research was provided by iCORE
(Informatics Circle of Research Excellence) in the Province
of Alberta, and by the Natural Sciences and Engineering Re-
search Council of Canada, through NSERC Research Grant
OGP0121969 and an NSERC Postgraduate Scholarship.

REFERENCES

[1] M. Arlitt and C. Williamson, “Internet Web Servers: Workload Char-
acterization and Performance Implications”, IEEE/ACM Trans. Net-
working, Vol. 5, No. 5, pp. 631-645, October 1997.

[2] L. Breslau, P. Cao, G. Phillips, and S. Shenker, “Web Caching and
Zipf-like Distributions: Evidence and Implications”, Proceedings of
IEEE INFOCOM, pp. 126-134, March 1999.

[3] L. Breslau et al., “Advances in Network Simulation”, IEEE Compurter,
\Vol. 28, No. 5, pp. 59-67, May 2000.

[4] M. Busari and C. Williamson, “Simulation Evaluation of a Het-
erogeneous Web Proxy Caching Hierarchy”, Proceedings of IEEE
MASCOTS, pp. 379-388, 2001.

[5] M. Busari and C. Williamson, “On the Sensitivity of Web Proxy
Cache Performance to Workload Characteristics”, Proceedings of IEEE
INFOCOM, Vol. 3 pp. 1225-1234, 2001.

(6]

(71
(8]

(]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]
[19]

[20]

[21]

[22]

C. Cameron, S. Low, and D. Wei, “High Density Model for Server Al-
location and Placement”, Proceedings of ACM SGMETRICS, pp. 152-
159, June 2002.

G. Houtzager, Optimizing Web Proxy Cache Placement and Perfor-
mance, M.Sc. Thesis, University of Calgary, 2005.

G. Houtzager and C. Williamson, “A Packet-Level Simulation Study
of Optimal Web Proxy Cache Placement”, Proceedings of IEEE
MASCOTS, pp. 324-333, October 2003.

C. Jacob, lllustrating Evolutionary Computation with Mathematica.
Morgan Kaufmann Publishers, 2001.

X. Jia, D. Li, X. Hu, H. Huang, and D. Du, “Optimal Placement
of Proxies of Replicated Web Servers in the Internet”, Proceedings of
15 Int'| Conference on Web Information Systems Engineering (W SE),
\ol. 1, pp. 55-59, 2000.

X. Jia, D. Li, and X. Hu, “Placement of Read-Write Web Proxies in
the Internet”, Proceedings of IEEE ICDCS pp. 687-690, April 2001.
P. Krishnan, D. Raz, and Y. Shavitt, “The Cache Location Problem”,
ACM Transactions on Networking, Vol. 8, No. 5, pp. 568-582, October
2000.

B. Li, M. Golin, X. Deng, and K. Sohraby, “On the Optimal Placement
of Web Proxies in the Internet: Linear Topology”, 8th IFIP Conference
on High Performance Networking, September 1998.

B. Li, M. Golin, G. Italiano, X. Deng, and K. Sohraby, “On the
Optimal Placement of Web Proxies in the Internet”, Proceedings of
IEEE INFOCOM, \ol. 3, pp. 1282-1290, March 1999.

Y. Li and C. Williamson, “A Hysteresis Model for Web/TCP Transfer
Latency”, Proceedings of IEEE MASCOTS pp. 167-174, October
2004.

A. Mahanti, C. Williamson, and D. Eager, “Traffic Analysis of a Web
Proxy Caching Hierarchy”, IEEE Network, Vol. 4, No. 3 pp. 16-23,
May/June 2000.

N. Markatchev and C. Williamson, “WebTraff: A GUI for Web
Proxy Cache Workload Modeling and Analysis”, Proceedings of IEEE
MASCOTS pp. 356-363, October 2002.

N. Markatchev and C. Williamson, “Network-Level Impacts on User-
Level Web Performance”, Proceedings of SCS SPECTS July 2003.
M. Rabinovich and O. Spatscheck, Web Caching and Replication.
Addison-Wesley Press, 2001.

I. Rechenberg, Evolutionsstrategie:Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Frommann-Holzboog,
1973.

P. Rodriguez, C. Spanner, and E. Biersack, “Web Caching Archi-
tectures: Hierarchical and Distributed Caching”, Proceedings of 4th
International WWeb Caching Workshop, pp. 37-48, April 1999.

C. Williamson, “On Filter Effects in Web Caching Hierarchies”, ACM
Transactions on Internet Technology, Vol. 2, No. 1, pp. 47-77, February
2002.

