
A Longitudinal Study of P2P Traffic Classification

Alok Madhukar Carey Williamson
Department of Computer Science

 University of Calgary
Email: {madhukar,carey}@cpsc.ucalgary.ca

Abstract

This paper focuses on network traffic measurement of Peer-to-
Peer (P2P) applications on the Internet. P2P applications
supposedly constitute a substantial proportion of today's Internet
traffic. However, current P2P applications use several
obfuscation techniques, including dynamic port numbers, port
hopping, HTTP masquerading, chunked file transfers, and
encrypted payloads. As P2P applications continue to evolve,
robust and effective methods are needed for P2P traffic
identification. The paper compares three methods to classify
P2P applications: port-based classification, application-layer
signatures, and transport-layer analysis. The study uses
empirical network traces collected from the University of
Calgary Internet connection for the past 2 years. The results
show that port-based analysis is ineffective, being unable to
identify 30%-70% of today's Internet traffic. Application
signatures are accurate, but may not be possible for legal or
technical reasons. The transport-layer method seems promising,
providing a robust means to assess aggregate P2P traffic. The
latter method suggests that 30%-70% of the campus Internet
traffic for the past year was P2P.

Keywords: Network Traffic Measurement, Peer-to-Peer, Traffic
Analysis

1. Introduction
Recent measurement studies [1, 7, 10, 17, 18, 19] indicate

that Peer-to-Peer (P2P) applications generate a substantial
volume of Internet traffic. Understanding the Internet traffic
profile is important for several reasons, including traffic
engineering, network service pricing, and capacity planning.
Internet traffic cannot be managed properly if it cannot be
measured properly.

P2P traffic measurement is especially important for Internet
Service Providers (ISPs), for several reasons. First, many P2P
applications are bandwidth-intensive. Excessive network
congestion could lead to dissatisfied customers and possible
customer churn. Second, increasing the network capacity is
expensive, and only effective on a short-term basis. P2P
application traffic may soon expand to occupy the increased
capacity as well, making network congestion inevitable. Third,
some current Internet access technologies have asymmetric
upstream and downstream bandwidths, to exploit existing
access technologies while limiting operating costs for the
ISPs. The underlying assumption is that Internet users
download much more than they upload, as they do with the
Web. However, in P2P applications, users may upload as
much as they download. If a large proportion of the Internet
traffic is P2P, then the underlying assumption of traffic
asymmetry may be invalid.

ISPs can formulate traffic management policies based on
knowledge of P2P traffic. ISPs might differentiate the services
into premium and ordinary classes, applying differentiated
charges based on traffic type instead of the flat pricing charges
that are currently prevalent. Another possibility is for an ISP
to provide a file sharing proxy [7] to reduce Internet backbone
traffic and operational costs. For traffic-specific network
engineering, the ISP must be able to classify Internet traffic,
which highlights the need for P2P traffic detection.

There is also an important legal issue since some content
found in file sharing systems (e.g., music, films, eBooks,
games) may violate copyright laws. Some recent trials have
held ISPs responsible for those copyright infringements; this
precedent strongly encourages ISPs to detect and pursue
abusing users.

Identifying P2P traffic on today's Internet is challenging,
since P2P applications are evolving rapidly. Many P2P
applications use one or more techniques to conceal their
presence on the network. These techniques include dynamic
assignment of random port numbers, the use of multiple
transport-layer connections, chunked file transfers, HTTP
masquerading, and encrypted payloads.

This paper provides a comparative evaluation of the
effectiveness of three different P2P traffic classification
techniques: port-based analysis, application-layer signatures,
and transport-layer heuristics. The port-based analysis method
is a classical approach based on well-known port numbers
assigned by IANA (Internet Assigned Numbers Authority)
[10]. Since current P2P applications transmit data on
randomly assigned ports, this method is no longer accurate.

The novelty in our work is the use of a 2-year dataset to
provide a longitudinal assessment of the effectiveness of P2P
traffic classification techniques. We use empirical network
traces from the University of Calgary Internet connection. The
network traces were collected using tcpdump [10] over a
period of two years since September 2003.

Our results show that port-based analysis is ineffective for
classifying P2P applications: 30-70% of the Internet traffic is
classified as "unknown". While the application-layer signature
approach is accurate for classifying P2P applications, many
reasons (e.g., legal and technical) preclude its use in practice.
A modified version of the transport-layer method [10] is also
tested. The results show that the transport-layer method
provides a promising way to measure aggregate P2P traffic.

The rest of the paper is organized as follows. Section 2
provides background on P2P applications, and a brief
summary of related work. Section 3 describes the data
collection method and infrastructure. Section 4 describes the
port-based analysis. Section 5 discusses the application-layer

method. Section 6 discusses the transport-layer method for
P2P traffic classification. Section 7 concludes the paper.

2. Background and Related Work

2.1 Background
P2P applications have been evolving at a very rapid rate.

Within a span of six years (since 1999), P2P applications have
evolved from first generation to second generation to third
generation. One reason for the rapid evolution of these
applications has been the desire to avoid detection.

The first generation [15] of P2P systems consisted of
centralized systems like Napster. A centralized server was
used to index files, making it relatively easy to locate the
server and block it. Also, P2P applications used well-known
ports to transfer data, so that it was easy for network operators
to identify the P2P traffic, and consequently block the
corresponding ports to discourage P2P traffic.

The second generation [15] of P2P systems includes
protocols like Gnutella [5]. Gnutella was a completely
distributed system, where queries were flooded to neighbors.
Peers also used dynamically assigned ports to transfer data, so
that it was difficult to classify P2P traffic.

Third generation [15] P2P systems are quite sophisticated.
These are hybrid systems that combine ideas from centralized
systems and distributed systems. There is a notion of
supernodes as in KaZaA or ultrapeers as in Gnutella2. The
supernodes/ultrapeers have comparatively more computing
resources than other neighboring peers and are responsible for
handling index files for a subset of peers. They often transmit
data using randomly chosen ports. Sometimes, they disguise
their traffic by using ports of other well-known applications.
Also, a single large file can be downloaded simultaneously in
smaller pieces from several other peers. Furthermore, a few
protocols like FastTrack have started encrypting the
application-layer data in the packets. These techniques make
it harder to detect P2P traffic.

2.2 Related Work
Sen et al. [19] developed an approach for finding P2P traffic

through application-layer signatures. They examine available
documentation and packet-level traces to identify application-
layer signatures, and then utilize these signatures to develop
filters that can track P2P traffic on high-speed network links.

Their study analyzes TCP packets in the download phase of
file transfer. They decomposed P2P signatures into fixed
pattern matches at fixed offsets within a TCP payload, and
variable pattern matches with variable offset within a TCP
payload [19].

Their study used two packet traces from different network
vantage points for the experiments. The first trace of Internet
backbone traffic was collected on an access network for two
days in November 2003. The second trace was collected on a
45 Mbps link connecting a Virtual Private Network (VPN)
with 500 employees to the Internet. The trace spanned six
days of November 2003. P2P traffic was supposedly blocked
on this network.

The authors evaluated the accuracy and scalability of the
application-layer signature technique. The accuracy was
evaluated by determining measures for false positives and
false negatives. False positives measure the amount of traffic
that the classifier erroneously classified as P2P. False
negatives measure the amount of P2P traffic that the classifier
failed to identify as a P2P application.

The results show that their technique has less than 5% false
positives and false negatives, indicating that the technique is
accurate most of the time. They also contend that the
technique is scalable based on the number of packets
examined before the application was classified. In a
subsequent study, Haffner et al. [8] proposed a technique to
determine application signatures automatically using machine
learning algorithms. The error rate is shown to be below 1%.

Karagiannis et al. [10] provide a novel approach to identify
P2P flows at the transport layer (i.e., based on connection
patterns), without relying on packet payloads. The study
examines packet-level traces collected on three different days
(May 5, 2003, as well as January 22 and February 25, 2004)
on an OC-48 Tier-1 ISP link. The first trace contained the first
44 bytes of each TCP packet, containing 0 or 4 bytes of
payload, while the remaining two traces contained 16 bytes of
payload for each packet.

The transport-layer method relies primarily on two
heuristics. The first heuristic identifies source-destination IP
pairs that concurrently use both TCP and UDP. If such IP
pairs exist and they do not use specific well-known ports, then
these flows are considered P2P. The second heuristic
considers the structural pattern of transport-layer connections
between hosts. In particular, for P2P applications, the number
of distinct ports connected to a host often matches the number
of distinct IP hosts connected to it.

3. Datasets

3.1 Data Collection Infrastructure and Methodology
The primary datasets used in our study come from passive

network traffic measurements of the University of Calgary
campus network. Our data collection infrastructure was
deployed at the main campus router with the help of staff from
University of Calgary Information Technologies (UCIT), the
administrators of the campus network.

Since September 2003, the campus has been connected to
the Internet via a 100 Mbps full-duplex Ethernet link. The
traffic on that link is currently forwarded (using port
mirroring) to our monitor via a 1 Gbps half-duplex Ethernet
link. See Figure 1. The monitoring machine is a dual-
processor Dell (1.4 GHz Pentium III processors) with 2 GB
RAM and 119 GB of disk.

We use tcpdump [20] for data collection on the monitoring
machine. We record the headers of all TCP/IP packets with
the SYN, FIN, or RST flags set. These headers are recorded to
a file, with a new file created for each 1 hour of network
traffic, thus creating 24 files for each day. The recorded files
are then moved off the monitoring machine to a server in the
ELISA (Experimental Laboratory for Internet Systems and

Applications) laboratory in the Department of Computer
Science at the University of Calgary. The files are then
analyzed offline using custom analysis tools.

Figure 1: Data Collection Infrastructure.

Recording only TCP SYN, FIN, and RST packets is a well-
known technique, and justified as follows. First, TCP has been
the dominant transport-layer protocol on the Internet for over
a decade, carrying over 95% of Internet traffic [21]. Second,
this technique reduces trace storage requirements
significantly, enabling long-term traffic studies, while still
facilitating connection-level analysis [16].

3.2 Overview of Datasets
This section provides an overview of data sets that were

examined for this paper. Data was collected for 2 years, with
24 trace files per day, totaling over 17,500 files. Each trace
file represents 1 hour of network activity. Only TCP SYN,
FIN, and RST headers are recorded.

The aggregate network traffic volumes are represented in
the next three graphs, for time scales ranging from 1 day to 1
year. Traffic byte counts are determined from TCP
connection-level analysis by subtracting starting (SYN)
sequence numbers from ending (FIN) sequence numbers. Byte
volumes are then converted into average data rates based on
the trace interval analyzed.

Figure 2 shows network activity for a typical 24-hour
period. Inbound traffic and outbound traffic are plotted
separately. Each point represents the average data rate for a 5-
minute interval. The horizontal axis shows the number of
hours since midnight (0h) on Thursday, October 20, 2005.

The inbound traffic (destined to the University of Calgary)
shows the expected diurnal traffic patterns, consistent with the
working day. There is little traffic prior to 8am. The traffic
volume increases from 8am onwards, peaking in late morning
and remaining steady for most of the afternoon. The traffic

gradually decreases after 4pm. The inbound traffic varies
significantly during the day, ranging from 4 Mbps to 76 Mbps,
and is most pronounced from 9am to 6pm.

Figure 2: Network Activity for One Day (Oct 20-21, 2005).

The outbound traffic (destined to the Internet) shows

different characteristics. This traffic is steadier, ranging from
12 Mbps to 38 Mbps. During the working hours, the inbound
traffic exceeds the outbound traffic, implying that the campus
is a net consumer of data during this period. During non-
working hours, the outbound traffic exceeds the inbound
traffic, so that the campus is a net producer of data during this
period. Overall, during a day, the U of C campus is a net
consumer of data.

Figure 3 shows a similar plot of the aggregate traffic
volume, though for a longer time period (just over 1 week).
Each point represents an hourly average.

Figure 3 shows that traffic volume is more pronounced on
weekdays than on weekends (as expected). Inbound traffic
dominates outbound traffic on weekdays, while outbound
traffic dominates inbound traffic on weekends. The campus is
a net consumer of data on weekdays and a net producer of data
on weekends.

Figure 3: Network Activity for One Week (Oct 19-27, 2005).

Figure 4 represents the network activity for a one-year
period (September 2004 to October 2005). Each point
represents the daily average data transfer rate. At this time
scale, the structure of the university academic year is evident.
Network activity was most prominent during the months of
Fall 2004 and the Winter 2005 semester. The average data rate
ranged from 18 Mbps to 54 Mbps during these months. For

Internet

University of Calgary

100 Mbps Full Duplex

Two 1.4 GHz PIII, 2 GB
RAM, 119 GB Hard Disk

Campus
Router

Monitor

1 Gbps Half
Duplex

most days, the inbound traffic exceeds the outbound traffic,
meaning that the campus is a net consumer of data.

Figure 4: Network Activity for One Year (Sept 2004-Oct
2005).

Traffic volume decreased dramatically during the Christmas

holidays (late December 2004). The network activity is also
lower during the spring and summer months of 2005, before
ramping up again in Fall 2005.

4. Port Analysis
This section presents results for the traditional approach to

Internet traffic analysis, namely the use of well-known ports
for traffic classification.

4.1 Port Analysis Tool
A simple tool for port analysis was developed in the C

programming language. The program iterates through all the
packets in the trace and creates a flow table. For each packet,
the total number of packets is incremented by 1, and the total
number of bytes is incremented by the IP packet length.
Within the IP header, the protocol number of the packet is
examined. If the protocol number is 6 (TCP), then the TCP
header of the packet is examined. The TCP port numbers are
extracted, and the packet is classified accordingly. Well-
known TCP ports are hard-coded in the analysis tool based on
the ports identified on the IANA Web site [10].

4.2 Results from Port Analysis
Figure 5 shows the results from port classification for the

two-year period from September 2003 to August 2005. The
horizontal axis of the plot represents time, while the vertical
axis represents the percentage of TCP flows for certain
popular applications, such as Web, electronic mail, and
Gnutella. Each point represents the daily average, computed
from 24 trace files.

Figure 5 shows that SMTP was the most dominant traffic
port for the first few months of the trace, accounting for 30-
70% of the TCP flows during that period. This traffic
represents a local anomaly at the University of Calgary. From
the IT technical support staff, we learned that this traffic
anomaly resulted from misconfiguration of a campus-level
mail server. The problem was rectified in January 2004.

Figure 5: Port Analysis Results for a Two-Year Period (Sept

2003-Aug 2005).

Another prominent network application in Figure 5 is the
Web. The line denoted HTTP(c) represents the inbound HTTP
client traffic from the external Internet to University of
Calgary Web servers. HTTP(s) represents traffic from the
University of Calgary to external Web servers. The graph
shows that, on average, HTTP traffic ranged between 10% and
30% of the total traffic volume. It is the dominant traffic type
in early 2004, but less prominent thereafter.

The bold black line in Figure 5 shows the "unknown"
traffic: traffic that could not be classified into any known
application based on port analysis. The unknown traffic was
relatively low from Sept 2003-Jan 2004 (when the SMTP
anomaly was present), but increased sharply in February 2004.
It then remained between 10%-30% until April 2004.
Unknown traffic became the most dominant traffic during the
period from September 2004 to July 2005. During the
academic year, 40-65% of the flows are unknown traffic.

Figure 5 also shows significant traffic on the Microsoft SQL
Server port (TCP port 1433). There are two possible reasons
for this. First, the traffic on this port is known to represent
worm traffic [12]. Second, the IT division at the University of
Calgary is building a data warehouse based on the Microsoft
SQL Server, so it might be legitimate network traffic.

Figure 6: Port Analysis Results for One Day (Wed March 16,

2005).

Figure 6 provides a finer-grain look at the port analysis
results for a typical day (Wednesday, March 16, 2005). Each
point represents the percentage of TCP flows in each category,
from a one hour trace. There are 24 traces for a day. The
figure shows that unknown traffic is more pronounced at night
than during the day. The primary reason is the strong presence
of HTTP traffic during the working day from 10am to 6pm.

Figure 7 shows the port analysis results for one week of data
from March 16 to 22, 2005. As in Figure 6, each point
represents the percentage of flows for an hour of trace. Similar
to Figure 6, Figure 7 shows that unknown traffic is more
pronounced at night, whereas HTTP traffic is more
pronounced during weekdays. On weekends, the proportion of
HTTP traffic decreases, and the proportion of unknown traffic
increases.

Figure 7: Port Analysis Results for One Week (March 16-22,

2005).

The foregoing graphs show that the application mix seen on
the network varies with the time of day. Figure 8 and Figure 9
provide a summary of this behavior.

Figure 8 shows a noon-hour view of the total traffic,
classified into ten categories, for the period March 16-31,
2005. It can be seen that unknown traffic and HTTP traffic are
the most dominant, followed by Gnutella.

Figure 8: Noon View of Traffic Profile from Port Analysis

(Mar 16-31, 2005).

Figure 9: Midnight View of Traffic Profile from Port
Analysis (Mar 16-31, 2005).

Figure 9 shows a view of the midnight-hour traffic,

classified into the same ten categories for the same period
(March 16-31, 2005). Unknown traffic is the most dominant,
followed by HTTP and Gnutella.

In summary, the results from port analysis show that the
unknown traffic has increased from 10%-30% in Fall 2003 to
30%-70% in Spring 2005. The port method is obviously
ineffective for classifying current Internet traffic. Other
methods are needed for Internet traffic classification.

5. Application Signatures
This section discusses the application-layer signature

method for P2P traffic classification. This approach can be
used to establish "ground truth" for other traffic classification
techniques. Separate traffic traces with full packet payloads
are used for the testing and validation of the signature method.

5.1 Design Issues for Signature Method
The application-layer signature method requires access to

the user data payload in the transmitted IP packets. Each P2P
application has a specific signature associated with the
protocol, in terms of keywords, commands, options, or other
identifiable content in the packets exchanged.

The signatures can be determined based on observation of
well-known P2P applications. The payload analysis scheme
searches for specified strings in the payload of the packet; if
found, the packet is classified accordingly.

In our work, the signature method was implemented for
three widely used P2P file sharing applications: Gnutella2,
KaZaA, and BitTorrent. The signature method was proposed
by Sen et al. [19]. In this method, we examine available
documentation and packet-level traces to identify appropriate
application-level signatures, and then use these signatures to
classify packets in the trace file.

There are two important design issues related to the
signature technique. First, P2P traffic can flow over UDP and
TCP, so one must decide whether TCP packets or UDP
packets (or both) are subjected to payload analysis. Since most

current P2P protocols transmit their data via TCP, we focus
only on signatures found within TCP traffic. Second, P2P
application-layer signatures can be applied to individual TCP
packets (segments) or to fully reassembled TCP data streams.

Analysis at the TCP data stream level is more robust, in that
it can detect signatures that straddle packet boundaries.
Furthermore, signature matching need only be done once per
connection rather than once per packet, reducing analysis
overhead. Since we are performing offline analyses, TCP
segments are reassembled into data streams before being
analyzed. That is, we apply the signatures to TCP data
streams, instead of individual TCP segments. Sen et al. [19]
looked for signatures in individual TCP segments.

5.2 Signatures for Popular P2P Applications
This section discusses application signatures for three

popular P2P applications: Gnutella2, KaZaA, and BitTorrent.

5.2.1 Gnutella2
The Gnutella2 protocol uses TCP to establish a highly

interconnected hub network topology serving dense clusters of
leaf nodes. TCP connections are established between
Gnutella2 nodes when they form a link. Upon the
establishment of a TCP connection between two Gnutella2
nodes, a handshaking phase must be completed to negotiate
the link and exchange other necessary information.

The Gnutella handshake process consists of three header
blocks. The node that initiated the connection sends an initial
header block, as shown in Figure 10.

GNUTELLA CONNECT/0.6
Listen-IP: 1.2.3.4:6346
Remote-IP: 6.7.8.9
User-Agent: Shareaza 1.8.2.0
Accept: application/x-gnutella2
X-Ultrapeer: False

Figure 10: Initiator Header Block in Gnutella2.

The receiver then responds with its own header block as

shown in Figure 11.

GNUTELLA/0.6 200 OK
Listen-IP: 6.7.8.9:6346
Remote-IP: 1.2.3.4
User-Agent: Shareaza 1.8.2.0
Content-Type: application/x-gnutella2
Accept: application/x-gnutella2
X-Ultrapeer: True
X-Ultrapeer-Needed: False

Figure 11: Receiver Header Block in Gnutella2.

Finally, the initiator accepts the receiver's header block, and

provides any final information as shown in Figure 12.

GNUTELLA/0.6 200 OK
Content-Type: application/x-gnutella2
X-Ultrapeer: False

Figure 12: Final Handshake Information by Initiator in
Gnutella2.

Two important header fields sent on all connections are

"Remote-IP" and "Listen-IP". The Remote-IP header contains
the IP address from which the remote host is connecting. The
Listen-IP header contains the IP address and port number on
which the local host is listening for inbound TCP connections.
It should be listening for UDP datagrams on the same port.
The format of this header is "IP:PORT", eg "1.2.3.4:6346".

The User-Agent header is used to identify the client
software operating on the sending node. It is sent on the first
transmission, i.e., the first and second header blocks in the
three block exchange.

Based on our observations, we use the simple signature
string "GNUTELLA" to identify the Gnutella2 application.
The Gnutella2 protocol was not studied by Sen et al. [19].

5.2.2 KaZaA

Since KaZaA is proprietary and uses encryption, little is
known about KaZaA's protocol, architecture, and signalling
traffic. KaZaA's signalling traffic is always encrypted. In
older versions of KaZaA, the file transfer traffic is not
encrypted, but newer versions of KaZaA now use encryption
for the file transfer traffic as well. Files are typically sent
using HTTP-like messages. A sample request is shown in
Figure 13, and a sample response in Figure 14.

GIVE 287496918
GET HTTP/1.1
Host: *
UserAgent: KazaaClient Jul 27 2004 21:14:16
X-Kazaa-Username: *
X-Kazaa-Network: KaZaA
X-Kazaa-IP: *
X-Kazaa-SupernodeIP: *
Connection: close
Kazaa-XferUid: *

Figure 13: Sample Request in KaZaA.

HTTP/1.1 206 Partial Content
Content-Range: bytes 2255918-3908061/3908062
Content-Length: 1652126
Accept-Ranges: bytes
Date: Tue, 16 Aug 2005 14:57:45 GMT
Server: KazaaClient Nov 3 2002 20:29:03
Connection: close
Last-Mo dified: Fri, 10 Dec 2004 23:28:10 GMT
X-Kazaa-Username: *
X-Kazaa-Network: KaZaA

Figure 14: Sample Response in KaZaA.

Based on our observations, the simple signature string "X-
Kazaa" was used for identifying KaZaa traffic.

5.2.3 BitTorrent

BitTorrent is a popular file-downloading protocol. The
BitTorrent handshake message contains the string ".BitTorrent
protocol" in the beginning of the message.

A sample BitTorrent header is shown in Figure 15. Based
on our observations, the simple signature string ".BitTorrent"
was used for identifying BitTorrent traffic.

.BitTorrent protocol..........V-
S................s.e.H.I.C.N....X.f.BitTorrent
protocolex........V-S...............exbc..LORD....

Figure 15: Sample Header in BitTorrent.

5.2 Validation of Signature Method
The purpose of our application-layer signature analysis is to

establish "ground truth" for P2P traffic classification. The
hope is that the signature method will produce traffic
classification results that are consistent with (or very close to)
the results determined from manual trace analysis.

Testing and validation of the signature method was done
using a separate traffic trace with complete packet payloads.
The signature method was tested on the validation trace only,
since the 2-year trace from the University of Calgary network
did not contain packet payloads.

The validation trace was collected using a local machine in
the Department of Computer Science at the University of
Calgary. From this workstation, a variety of Internet
applications were launched. In particular, the trace traffic was
generated by running three P2P applications (Gnutella2,
KaZaA, and BitTorrent), while also accessing several Web
sites and running an email client. The packets in the trace file
were captured using Ethereal [3].

Table 1 provides summary information about the validation
trace. The trace file was collected on Wednesday, August 17,
2005. The validation trace contained 25,585 packets,
generated from 450 TCP flows and 513 UDP flows. The top
100 flows based on byte traffic volume were examined
manually as well as using the signature method. The top 100
flows accounted for 17,462 packets (68.25% of total packets)
and 12,800,611 bytes (90.52% of total bytes). Among these
100 flows, 95 were TCP flows and 5 were UDP flows.

Table 1: Description of Validation Trace

Trace Period 900 seconds
Total Packets 25,585
Total Bytes 14,141,494
Avg. packets/sec 28.4
Avg. packet size 553 bytes
Avg. Bytes/sec 15,715
Avg. Mbit/sec 0.126

The results from manual examination of the validation trace
are shown in Table 2. Manual analysis identified 43 TCP
flows and 2 UDP flows as P2P (denoted with ‘*’ in the table).

Table 2: Results from Manual Analysis of Validation Trace

Application Num TCP Flows
HTTP 47
Gnutella 36 * (plus 2 UDP) *
KaZaA 7 *
HTTPS 3
DNS 2
SSH 1
Microsoft –DS 1
Netbios 1

The signature method identified as P2P 42 of the 43 P2P

TCP flows. The signature method missed classifying one
Gnutella TCP flow, since no signature was found. Manual
examination showed a pair of IP hosts communicating on port
6346 via TCP and UDP. It was obvious that the flow was
Gnutella. The signature method did not classify any non-P2P
flow as P2P. Thus, the signature method was quite accurate.

Although the signature method is quite accurate, there are
obvious limitations to its usage in practice. First, privacy
regulations may make it illegal to access the user payload for
signature analysis. Second, signature analysis is only possible
when you know in advance what you are looking for. Since
new P2P protocols arise frequently, the signature analysis tool
needs to be updated regularly. Third, some protocols like
KaZaA and BitTorrent now use encryption, which renders
payload analysis useless. These issues limit the applicability
of signature analysis, and motivate the need for other methods
of P2P traffic classification.

6. Transport-Layer Method
This section describes the transport-layer approach to P2P

traffic classification, developed by Karagiannis et al [10].

6.1 Overview of Transport-Layer Method
Karagiannis et al. [10] proposed a novel method for

identifying P2P traffic, based on transport-level connection
patterns. The method does not require payload analysis.
Rather, the analysis is flow-based, focusing on the connection-
level patterns of P2P applications, which are a distinctive and
persistent feature. While P2P applications might use random
ports, or encrypt the application layer data, the connection-
level patterns at the transport layer remain the same.

The transport-layer method relies on two heuristics for P2P
traffic identification. These heuristics are effective in
measuring aggregate P2P traffic, and can even detect new
emerging P2P applications [10].

The first heuristic involves the simultaneous use of TCP and
UDP by a pair of communicating hosts. If a pair of hosts is
using TCP and UDP simultaneously, then most likely the

traffic is P2P. UDP is prevalent in P2P systems because it
provides a low-overhead method of sending queries or status
messages to many peers. There are some applications like
online gaming, DNS, and NFS that exhibit similar behavior,
but this known traffic can be explicitly removed from
consideration using a checklist for well-known ports.

The second heuristic is based on connection patterns for
{IP, port} pairs. The reasoning is that if each P2P host chooses
its dynamic port number at random, then it is highly unlikely
for multiple P2P hosts to use the same port number. Expressed
another way, for a P2P application on a given host, the
number of distinct ports communicating with it will likely
match the number of distinct IP addresses communicating.

During the analysis, each flow is marked either as P2P or
non-P2P based on these heuristics. The classification method
suggested in [10] is summarized as follows:

1. Look for source-destination IP pairs that concurrently
use both TCP and UDP. If such IP pairs exist and they
do not use any well-known standard ports for non-P2P
applications, then consider them P2P.

2. Examine all source {srcIP, srcport} and destination
{dstIP, dstport} pairs. Look for pairs for which the
number of distinct connected ports matches the number
of distinct connected IPs. All pairs for which this
equality holds are considered P2P. If the difference
between connected IPs and ports for a certain pair is
large (say larger than 10), regard this pair as non-P2P.

3. Remove traffic from known applications with similar
behaviour. Use packet size information to help remove
false positives and false negatives.

6.2 Our Transport-Layer Method
The dataset used for our study has several limitations when

codifying the techniques proposed in [10]. First, the trace does
not contain UDP packets, so the effectiveness of the
TCP/UDP heuristic cannot be evaluated. Second, the trace
only contains TCP SYN, FIN, and RST packets, so data
packet size information cannot be utilized.

Fortunately, the TCP SYN, FIN, and RST headers are
sufficient to provide information regarding connection-level
patterns, so that the IP-port pair heuristic can be evaluated.
The design of our transport-layer method differs from the
original method suggested in [10], for the reasons stated
previously. The description of our approach follows.

For each day of traffic to be analyzed, do the following:
1. Concatenate in order the 24 trace files for the day.
2. Build a CompleteFlowTable (all flows) for all packets

observed in a 15-minute sliding time window.
3. Scan the CompleteFlowTable and remove all flows that

are using standard ports of known non-P2P
applications. Set the P2P flag for flows using standard
ports for known P2P applications. Call the resulting
table the OtherFlowTable.

4. Create a table for all {IP, port} pairs in
OtherFlowTable.

5. Scan the trace file and count the number of distinct
destination IP hosts and the number of distinct

destination ports for each {IP, port} pair. If the number
of distinct ports and IP hosts match, then flag the {IP,
port} pair as P2P. Call such pairs P2Ppairs.

6. Flag all the flows in OtherFlowTable corresponding to
P2Ppairs as P2P. Create a new table containing all of
the flows flagged as P2P in OtherFlowTable. Call this
table the P2PFlowTable.

7. Calculate the percentage of P2P flows for the given
time window from the number of flows in
P2PFlowTable and CompleteFlowTable.

6.3 Validation of Transport-Layer Method
The transport-layer method was tested using the same

validation trace described in Section 5.3. The purpose is to
show that the transport-layer method is as effective as (or
almost as effective as) the application-layer signature method.
Recall that manual analysis of the validation trace identified
43 TCP flows and 2 UDP flows (among the top 100 flows) as
P2P. The transport-layer method processed all flows in the
validation trace, though the results presented here are just for
the top 100 flows, for consistency.

On the validation trace, our transport-layer method
identified all 45 P2P flows. There were no false positives and
no false negatives, indicating that our method is reliable.

For completeness, we also evaluated separately the
effectiveness of the IP-port pair heuristic and the TCP/UDP
heuristic, using manual analysis of the top 100 flows in the
validation trace. On its own, the IP-port pair heuristic (without
knowledge of ports) identified 49 TCP flows and 2 UDP flows
as P2P. It identified as P2P 6 TCP flows that were not P2P.
This represents a false positive percentage of 13%. The
misidentified flows were 3 HTTP, 1 SSH, 1 Netbios, and 1
MS-DS (Microsoft Denial of Service). On its own, the
TCP/UDP heuristic identified only 6 flows as P2P. It missed
39 flows, for a false negative percentage of 87%. Manual
analysis showed that the IP host pairs participating in the
missed flows did not use UDP for any data transfers.

These results show the importance of considering multiple
aspects of the traffic characteristics, including known ports.
The results provide confidence in the effectiveness of our
modified transport-layer method for P2P traffic classification.

6.4 Results for Transport-Layer Method
Figure 16 shows the results from our transport-layer

analysis of the University of Calgary dataset. Each point
represents the daily average percentage of P2P flows in the
aggregate traffic.

Figure 16 shows that the proportion of P2P traffic flows
ranged from 10-30% between September 2003 and January
2004. Between July 2004 and July 2005, the aggregate P2P
traffic has ranged from 30-70%. On average, this traffic
accounts for 38% of the byte traffic volume seen on the
network.

The results in Figure 16 show a significant increase in P2P
traffic from 2003-2004 to 2004-2005. This trend is structurally
similar to that observed for the "unknown" traffic for port
classification in Figure 5. That is, the proportion of P2P flows

identified by transport-layer analysis seems to increase in a
manner similar to that for the proportion of unknown traffic in
the port-based analysis.

Figure 16: P2P Flows for Sept 2003-Jul 2005 (Daily
Average).

To explore this trend further, and quantify the relationship,

we use regression analysis. Figure 17 uses a scatter plot to
show the apparent linear relationship between the percentage
of unknown flows from port-based analysis (x axis) and the
percentage of P2P flows from transport-layer analysis (y axis).
There is one data point for each day of trace data analyzed.

Figure 17: Comparison of P2P Traffic and Unknown Traffic.

The relationship observed in Figure 17 is strongly linear, as
indicated by the least-squares regression line in the graph. The
R-squared value for the goodness of fit is 0.8536. We interpret

this result as strong statistical evidence that much of the
unknown traffic in our trace is P2P traffic.

Summarizing our results, a visual comparison of Figure 5
and Figure 16 provides strong circumstantial evidence that the
unknown traffic is P2P traffic. However, no definitive proof is
possible, since we do not have packet payloads in our campus-
level trace.

Our results, along with the validation tests, suggest that the
transport-layer method can reliably estimate the aggregate P2P
traffic. The validation results in Section 6.3 show that the
transport-layer method (applied to packet headers) produces
results consistent with the signature method (applied to
payloads). Furthermore, the validation results in Section 5.3
show that the signature method produces results consistent
with "ground truth" from manual analysis. This reasoning and
the statistical data in Figure 17 suggest that much of the
"unknown" traffic in our datasets is P2P traffic.

6.4 Limitations
Although the transport-layer method looks promising, there

are several limitations and caveats to bear in mind.
One limitation is that port masquerading cannot be detected.

The transport-layer method uses a checklist of standard ports
for filtering known traffic. If P2P traffic occupies a port that is
assigned to a different application (e.g., SMTP on port 25),
then those flows cannot be classified as P2P.

A second limitation is that the IP-port heuristic is ineffective
in the trivial case of one IP host communicating with another
IP host on a single port. Many network applications, P2P and
non-P2P, share this connection level pattern. Other heuristics
may be needed to remove false negatives.

Finally, P2P applications continue to evolve. While the
transport-layer method proposed in [10] has been effective in
the recent past, and might be effective currently, there is no
guarantee of its effectiveness on the next generation of P2P
applications. Other traffic classification techniques may be
required. For example, early work by Erman et al. [4] on
cluster-based analysis looks very promising.

7. Summary and Conclusions
This paper studies traffic classification of Peer-to-Peer

(P2P) applications. Accurate knowledge of P2P traffic is
desirable for several reasons, including traffic engineering and
network capacity planning. P2P applications on the Internet
have evolved rapidly, making identification of P2P traffic
challenging.

The paper compared three methods to classify P2P
applications: port-based analysis, application-layer signatures,
and transport-layer heuristics. The study used empirical
network traces from the University of Calgary Internet
connection for a two-year period. To the best of our
knowledge, this is the first longitudinal study of the
effectiveness of P2P traffic classification techniques.

Our results show that classic port-based analysis is
ineffective, and has been so for quite some time. The
proportion of "unknown" traffic increased from 10-30% in

2003 to 30-70% in 2004-2005. This result provides motivation
for other methods to classify P2P traffic.

While application-layer signatures are accurate, this
technique requires examination of user payload, which may
not always be possible. Furthermore, encryption may soon
render application-layer signature methods ineffective.

Transport-layer heuristics offer a novel method that
classifies the P2P traffic based on connection-level patterns.
Our results show that the transport-layer method can give
useful information regarding aggregate P2P traffic.

As P2P applications keep evolving, new challenges will
arise for P2P traffic classification. Since traditional methods
like port-based analysis are now obsolete, and application-
layer signatures are not always possible, transport-layer
analysis is perhaps one of the best-available current
approaches for P2P traffic classification. Even better methods
will likely be required in the near future.

8. Acknowledgements
Financial support for this research was provided by TRLabs
(Telecommunications Research Labs) in Calgary, iCORE
(Informatics Circle of Research Excellence) in the Province of
Alberta, as well as NSERC (Natural Sciences and Engineering
Research Council) and CFI (Canada Foundation for
Innovation) in Canada. The authors thank Martin Arlitt for his
assistance with trace collection and storage, and Gwen
Houtzager for assistance with trace processing in the ELISA
lab. The authors are very grateful to UCIT (University of
Calgary Information Technologies) for providing access to the
campus network traffic data. The authors thank the
anonymous MASCOTS 2006 reviewers for their constructive
comments on an earlier version of this paper.

9. References

[1] E. Adar and B. Huberman, “Free Riding on Gnutella,”
Technical Report, Xerox PARC, August 2000.

[2] BitTorrent, http://www.bittorrent.com, 2005.
[3] Ethereal, http://www.ethereal.com, 2005.
[4] J. Erman, M. Arlitt, and A. Mahanti, “Traffic Classification

Using Clustering Algorithms,” Proceedings of ACM SIGCOMM
Minenet Workshop, Pisa, Italy, September 2006.

[5] Gnutella, http://www.gnutella.com, 2005.
[6] Gnutella2, http://www.gnutella2.com, 2005.
[7] K. Gummadi, R. Dunn, S. Saroiu, S. Gribble, H. Levy, and J.

Zahorjan, “Measurement, Modeling, and Analysis of a Peer-to-
Peer File Sharing Workload,” Proceedings of the 10th ACM
Symposium on Operating Systems Principles (SOSP-10) 2003,
pp. 314-310, NY, USA, October 2003.

[8] P. Haffner, S. Sen, O. Spatscheck, and D. Wang, “ACAS:
Automated Construction of Application Signatures,” ACM
SIGCOMM Workshop on Mining Network Data (MineNet
2005), pp. 107-202, Philadelphia, PA, USA, August, 2005.

[9] Internet Assigned Numbers Authority, TCP/UDP Port Numbers,
http://www.iana.org/assignments/port-numbers, 2005.

[10] T. Karagiannis, A. Broido, M. Faloutsos, and K. Klaffy,
“Transport Layer Identification of P2P Traffic,” Proceedings of
the 4th ACM SIGCOMM Conference on Internet Measurement
(IMC 2004), pp. 121-134, Italy, October 2004.

[11] KaZaA, http://www.kazaa.com, 2005.
[12] B. McWilliams, 'SQLsnake' Worm Blamed for Spike in Port

1433 Scans, Newsbytes, May 21, 2002,
http://online.securityfocus.com/news/429, 2005.

[13] D. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer to Peer Computing,”
Technical Report, HP Labs, Palo Alto, March 2002.

[14] Napster, http://www.napster.com, 2005.
[15] A. Oram, Peer-To-Peer: Harnessing the Power of Disruptive

Technology, First Edition, O’Reilly, March 2001.
[16] V. Paxson, “Growth Trends in Wide-Area TCP Connections,”

IEEE Network, Vol. 8, No. 4, pp. 8-17, July 1994.
[17] S. Saroiu, K. Gummadi, and S. Gribble, “A Measurement Study

of Peer-to-Peer File Sharing Systems,” Proceedings of the
Multimedia Computing and Networking (MMCN 2002), pp. 18-
25, California, January 2002.

[18] S. Saroiu, K. Gummadi, and S. Gribble, “Measuring and
Analyzing the Characteristics of Napster and Gnutella Hosts,”
Springer-Verlag Multimedia Systems, Vol. 9, No. 2, pp. 170-
184, 2003.

[19] S. Sen, O. Spatscheck, and D. Wang, “Accurate, Scalable In-
Network Identification of P2P Traffic using Application
Signatures,” Proceedings of the 13th International World Wide
Web Conference, pp. 512-521, NY, USA, May 2004.

[20] tcpdump, http://www.tcpdump.org, 2005.
[21] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet

Traffic Patterns and Characteristics,” IEEE Network, Vol. 11,
No. 6, pp. 10-23, November/December 1997.

