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Abstract 

This paper focuses on network traffic measurement of Peer-to-
Peer (P2P) applications on the Internet. P2P applications 
supposedly constitute a substantial proportion of today's Internet 
traffic. However, current P2P applications use several 
obfuscation techniques, including dynamic port numbers, port 
hopping, HTTP masquerading, chunked file transfers, and 
encrypted payloads. As P2P applications continue to evolve, 
robust and effective methods are needed for P2P traffic 
identification.  The paper compares three methods to classify 
P2P applications: port-based classification, application-layer 
signatures, and transport-layer analysis. The study uses 
empirical network traces collected from the University of 
Calgary Internet connection for the past 2 years. The results 
show that port-based analysis is ineffective, being unable to 
identify 30%-70% of today's Internet traffic. Application 
signatures are accurate, but may not be possible for legal or 
technical reasons. The transport-layer method seems promising, 
providing a robust means to assess aggregate P2P traffic. The 
latter method suggests that 30%-70% of the campus Internet 
traffic for the past year was P2P. 
 
Keywords: Network Traffic Measurement, Peer-to-Peer, Traffic 
Analysis 

1. Introduction 
Recent measurement studies [1, 7, 10, 17, 18, 19] indicate 

that Peer-to-Peer (P2P) applications generate a substantial 
volume of Internet traffic. Understanding the Internet traffic 
profile is important for several reasons, including traffic 
engineering, network service pricing, and capacity planning. 
Internet traffic cannot be managed properly if it cannot be 
measured properly. 

P2P traffic measurement is especially important for Internet 
Service Providers (ISPs), for several reasons.  First, many P2P 
applications are bandwidth-intensive.  Excessive network 
congestion could lead to dissatisfied customers and possible 
customer churn. Second, increasing the network capacity is 
expensive, and only effective on a short-term basis. P2P 
application traffic may soon expand to occupy the increased 
capacity as well, making network congestion inevitable. Third, 
some current Internet access technologies have asymmetric 
upstream and downstream bandwidths, to exploit existing 
access technologies while limiting operating costs for the 
ISPs.  The underlying assumption is that Internet users 
download much more than they upload, as they do with the 
Web. However, in P2P applications, users may upload as 
much as they download.  If a large proportion of the Internet 
traffic is P2P, then the underlying assumption of traffic 
asymmetry may be invalid. 

ISPs can formulate traffic management policies based on 
knowledge of P2P traffic. ISPs might differentiate the services 
into premium and ordinary classes, applying differentiated 
charges based on traffic type instead of the flat pricing charges 
that are currently prevalent. Another possibility is for an ISP 
to provide a file sharing proxy [7] to reduce Internet backbone 
traffic and operational costs. For traffic-specific network 
engineering, the ISP must be able to classify Internet traffic, 
which highlights the need for P2P traffic detection. 

There is also an important legal issue since some content 
found in file sharing systems (e.g., music, films, eBooks, 
games) may violate copyright laws. Some recent trials have 
held ISPs responsible for those copyright infringements; this 
precedent strongly encourages ISPs to detect and pursue 
abusing users.  

Identifying P2P traffic on today's Internet is challenging, 
since P2P applications are evolving rapidly. Many P2P 
applications use one or more techniques to conceal their 
presence on the network. These techniques include dynamic 
assignment of random port numbers, the use of multiple 
transport-layer connections, chunked file transfers, HTTP 
masquerading, and encrypted payloads. 

This paper provides a comparative evaluation of the 
effectiveness of three different P2P traffic classification 
techniques: port-based analysis, application-layer signatures, 
and transport-layer heuristics. The port-based analysis method 
is a classical approach based on well-known port numbers 
assigned by IANA (Internet Assigned Numbers Authority) 
[10]. Since current P2P applications transmit data on 
randomly assigned ports, this method is no longer accurate.  

The novelty in our work is the use of a 2-year dataset to 
provide a longitudinal assessment of the effectiveness of P2P 
traffic classification techniques. We use empirical network 
traces from the University of Calgary Internet connection. The 
network traces were collected using tcpdump [10] over a 
period of two years since September 2003. 

Our results show that port-based analysis is ineffective for 
classifying P2P applications: 30-70% of the Internet traffic is 
classified as "unknown". While the application-layer signature 
approach is accurate for classifying P2P applications, many 
reasons (e.g., legal and technical) preclude its use in practice. 
A modified version of the transport-layer method [10] is also 
tested.  The results show that the transport-layer method 
provides a promising way to measure aggregate P2P traffic. 

The rest of the paper is organized as follows. Section 2 
provides background on P2P applications, and a brief 
summary of related work. Section 3 describes the data 
collection method and infrastructure. Section 4 describes the 
port-based analysis. Section 5 discusses the application-layer 



method. Section 6 discusses the transport-layer method for 
P2P traffic classification. Section 7 concludes the paper.  

2. Background and Related Work 

2.1 Background 
P2P applications have been evolving at a very rapid rate. 

Within a span of six years (since 1999), P2P applications have 
evolved from first generation to second generation to third 
generation. One reason for the rapid evolution of these 
applications has been the desire to avoid detection. 

The first generation [15] of P2P systems consisted of 
centralized systems like Napster. A centralized server was 
used to index files, making it relatively easy to locate the 
server and block it. Also, P2P applications used well-known 
ports to transfer data, so that it was easy for network operators 
to identify the P2P traffic, and consequently block the 
corresponding ports to discourage P2P traffic. 

The second generation [15] of P2P systems includes 
protocols like Gnutella [5]. Gnutella was a completely 
distributed system, where queries were flooded to neighbors. 
Peers also used dynamically assigned ports to transfer data, so 
that it was difficult to classify P2P traffic. 

Third generation [15] P2P systems are quite sophisticated. 
These are hybrid systems that combine ideas from centralized 
systems and distributed systems. There is a notion of 
supernodes as in KaZaA or ultrapeers as in Gnutella2. The 
supernodes/ultrapeers have comparatively more computing 
resources than other neighboring peers and are responsible for 
handling index files for a subset of peers.  They often transmit 
data using randomly chosen ports. Sometimes, they disguise 
their traffic by using ports of other well-known applications.  
Also, a single large file can be downloaded simultaneously in 
smaller pieces from several other peers. Furthermore, a few 
protocols like FastTrack have started encrypting the 
application-layer data in the packets.  These techniques make 
it harder to detect P2P traffic.  

2.2 Related Work 
Sen et al. [19] developed an approach for finding P2P traffic 

through application-layer signatures. They examine available 
documentation and packet-level traces to identify application-
layer signatures, and then utilize these signatures to develop 
filters that can track P2P traffic on high-speed network links.  

Their study analyzes TCP packets in the download phase of 
file transfer. They decomposed P2P signatures into fixed 
pattern matches at fixed offsets within a TCP payload, and 
variable pattern matches with variable offset within a TCP 
payload [19].  

Their study used two packet traces from different network 
vantage points for the experiments. The first trace of Internet 
backbone traffic was collected on an access network for two 
days in November 2003. The second trace was collected on a 
45 Mbps link connecting a Virtual Private Network (VPN) 
with 500 employees to the Internet. The trace spanned six 
days of November 2003.  P2P traffic was supposedly blocked 
on this network.  

The authors evaluated the accuracy and scalability of the 
application-layer signature technique. The accuracy was 
evaluated by determining measures for false positives and 
false negatives. False positives measure the amount of traffic 
that the classifier erroneously classified as P2P. False 
negatives measure the amount of P2P traffic that the classifier 
failed to identify as a P2P application.  

The results show that their technique has less than 5% false 
positives and false negatives, indicating that the technique is 
accurate most of the time. They also contend that the 
technique is scalable based on the number of packets 
examined before the application was classified. In a 
subsequent study, Haffner et al. [8] proposed a technique to 
determine application signatures automatically using machine 
learning algorithms. The error rate is shown to be below 1%. 

Karagiannis et al. [10] provide a novel approach to identify 
P2P flows at the transport layer (i.e., based on connection 
patterns), without relying on packet payloads. The study 
examines packet-level traces collected on three different days 
(May 5, 2003, as well as January 22 and February 25, 2004) 
on an OC-48 Tier-1 ISP link. The first trace contained the first 
44 bytes of each TCP packet, containing 0 or 4 bytes of 
payload, while the remaining two traces contained 16 bytes of 
payload for each packet.  

The transport-layer method relies primarily on two 
heuristics.  The first heuristic identifies source-destination IP 
pairs that concurrently use both TCP and UDP. If such IP 
pairs exist and they do not use specific well-known ports, then 
these flows are considered P2P. The second heuristic 
considers the structural pattern of transport-layer connections 
between hosts. In particular, for P2P applications, the number 
of distinct ports connected to a host often matches the number 
of distinct IP hosts connected to it. 

3. Datasets 

3.1 Data Collection Infrastructure and Methodology 
The primary datasets used in our study come from passive 

network traffic measurements of the University of Calgary 
campus network. Our data collection infrastructure was 
deployed at the main campus router with the help of staff from 
University of Calgary Information Technologies (UCIT), the 
administrators of the campus network.  

Since September 2003, the campus has been connected to 
the Internet via a 100 Mbps full-duplex Ethernet link. The 
traffic on that link is currently forwarded (using port 
mirroring) to our monitor via a 1 Gbps half-duplex Ethernet 
link. See Figure 1. The monitoring machine is a dual-
processor Dell (1.4 GHz Pentium III processors) with 2 GB 
RAM and 119 GB of disk. 

We use tcpdump [20] for data collection on the monitoring 
machine. We record the headers of all TCP/IP packets with 
the SYN, FIN, or RST flags set. These headers are recorded to 
a file, with a new file created for each 1 hour of network 
traffic, thus creating 24 files for each day. The recorded files 
are then moved off the monitoring machine to a server in the 
ELISA (Experimental Laboratory for Internet Systems and 



Applications) laboratory in the Department of Computer 
Science at the University of Calgary. The files are then 
analyzed offline using custom analysis tools. 

 
 

Figure 1:  Data Collection Infrastructure. 
 

Recording only TCP SYN, FIN, and RST packets is  a well-
known technique, and justified as follows. First, TCP has been 
the dominant transport-layer protocol on the Internet for over 
a decade, carrying over 95% of Internet traffic [21]. Second, 
this technique reduces trace storage requirements 
significantly, enabling long-term traffic studies, while still 
facilitating connection-level analysis [16]. 

3.2 Overview of Datasets 
This section provides an overview of data sets that were 

examined for this paper. Data was collected for 2 years, with 
24 trace files per day, totaling over 17,500 files. Each trace 
file represents 1 hour of network activity. Only TCP SYN, 
FIN, and RST headers are recorded. 

The aggregate network traffic volumes are represented in 
the next three graphs, for time scales ranging from 1 day to 1 
year. Traffic byte counts are determined from TCP 
connection-level analysis by subtracting starting (SYN) 
sequence numbers from ending (FIN) sequence numbers. Byte 
volumes are then converted into average data rates based on 
the trace interval analyzed. 

Figure 2 shows network activity for a typical 24-hour 
period. Inbound traffic and outbound traffic are plotted 
separately. Each point represents the average data rate for a 5-
minute interval. The horizontal axis shows the number of 
hours since midnight (0h) on Thursday, October 20, 2005. 

The inbound traffic (destined to the University of Calgary) 
shows the expected diurnal traffic patterns, consistent with the 
working day. There is little traffic prior to 8am. The traffic 
volume increases from 8am onwards, peaking in late morning 
and remaining steady for most of the afternoon. The traffic 

gradually decreases after 4pm. The inbound traffic varies 
significantly during the day, ranging from 4 Mbps to 76 Mbps, 
and is most pronounced from 9am to 6pm. 

 

Figure 2:  Network Activity for One Day (Oct 20-21, 2005). 
 
The outbound traffic (destined to the Internet) shows 

different characteristics. This traffic is steadier, ranging from 
12 Mbps to 38 Mbps. During the working hours, the inbound 
traffic exceeds the outbound traffic, implying that the campus 
is a net consumer of data during this period. During non-
working hours, the outbound traffic exceeds the inbound 
traffic, so that the campus is a net producer of data during this 
period. Overall, during a day, the U of C campus is a net 
consumer of data.  

Figure 3 shows a similar plot of the aggregate traffic 
volume, though for a longer time period (just over 1 week). 
Each point represents an hourly average.  

Figure 3 shows that traffic volume is more pronounced on 
weekdays than on weekends (as expected). Inbound traffic 
dominates outbound traffic on weekdays, while outbound 
traffic dominates inbound traffic on weekends. The campus is 
a net consumer of data on weekdays and a net producer of data 
on weekends. 

 

 
 

Figure 3:  Network Activity for One Week (Oct 19-27, 2005). 
  

Figure 4 represents the network activity for a one-year 
period (September 2004 to October 2005). Each point 
represents the daily average data transfer rate. At this time 
scale, the structure of the university academic year is evident. 
Network activity was most prominent during the months of 
Fall 2004 and the Winter 2005 semester. The average data rate 
ranged from 18 Mbps to 54 Mbps during these months. For 
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most days, the inbound traffic exceeds the outbound traffic, 
meaning that the campus is a net consumer of data. 

 

 
 

Figure 4:  Network Activity for One Year (Sept 2004-Oct 
2005). 

  
Traffic volume decreased dramatically during the Christmas 

holidays (late December 2004). The network activity is also 
lower during the spring and summer months of 2005, before 
ramping up again in Fall 2005. 

4. Port Analysis 
This section presents results for the traditional approach to 

Internet traffic analysis, namely the use of well-known ports 
for traffic classification. 

4.1 Port Analysis Tool 
A simple tool for port analysis was developed in the C 

programming language. The program iterates through all the 
packets in the trace and creates a flow table. For each packet, 
the total number of packets is incremented by 1, and the total 
number of bytes is incremented by the IP packet length. 
Within the IP header, the protocol number of the packet is 
examined. If the protocol number is 6 (TCP), then the TCP 
header of the packet is examined.  The TCP port numbers are 
extracted, and the packet is classified accordingly. Well-
known TCP ports are hard-coded in the analysis tool based on 
the ports identified on the IANA Web site [10]. 

4.2 Results from Port Analysis 
Figure 5 shows the results from port classification for the 

two-year period from September 2003 to August 2005. The 
horizontal axis of the plot represents time, while the vertical 
axis represents the percentage of TCP flows for certain 
popular applications, such as Web, electronic mail, and 
Gnutella. Each point represents the daily average,  computed 
from 24 trace files.  

Figure 5 shows that SMTP was the most dominant traffic 
port for the first few months of the trace, accounting for 30-
70% of the TCP flows during that period. This traffic 
represents a local anomaly at the University of Calgary. From 
the IT technical support staff, we learned that this traffic 
anomaly resulted from misconfiguration of a campus-level 
mail server. The problem was rectified in January 2004. 

 
Figure 5:  Port Analysis Results for a Two-Year Period (Sept 

2003-Aug 2005). 
  

Another prominent network application in Figure 5 is the 
Web. The line denoted HTTP(c) represents the inbound HTTP 
client traffic from the external Internet to University of 
Calgary Web servers. HTTP(s) represents traffic from the 
University of Calgary to external Web servers. The graph 
shows that, on average, HTTP traffic ranged between 10% and 
30% of the total traffic volume. It is the dominant traffic type 
in early 2004, but less prominent thereafter. 

The bold black line in Figure 5 shows the "unknown" 
traffic: traffic that could not be classified into any known 
application based on port analysis. The unknown traffic was 
relatively low from Sept 2003-Jan 2004 (when the SMTP 
anomaly was present), but increased sharply in February 2004. 
It then remained between 10%-30% until April 2004. 
Unknown traffic became the most dominant traffic during the 
period from September 2004 to July 2005. During the 
academic year, 40-65% of the flows are unknown traffic. 

Figure 5 also shows significant traffic on the Microsoft SQL 
Server port (TCP port 1433). There are two possible reasons 
for this. First, the traffic on this port is known to represent 
worm traffic [12]. Second, the IT division at the University of 
Calgary is building a data warehouse based on the Microsoft 
SQL Server, so it might be legitimate network traffic. 

 

 
Figure 6:  Port Analysis Results for One Day (Wed March 16, 

2005). 



Figure 6 provides a finer-grain look at the port analysis 
results for a typical day (Wednesday, March 16, 2005). Each 
point represents the percentage of TCP flows in each category, 
from a one hour trace. There are 24 traces for a day. The 
figure shows that unknown traffic is more pronounced at night 
than during the day. The primary reason is the strong presence 
of HTTP traffic during the working day from 10am to 6pm. 

Figure 7 shows the port analysis results for one week of data 
from March 16 to 22, 2005. As in Figure 6, each point 
represents the percentage of flows for an hour of trace. Similar 
to Figure 6, Figure 7 shows that unknown traffic is more 
pronounced at night, whereas HTTP traffic is more 
pronounced during weekdays. On weekends, the proportion of 
HTTP traffic decreases, and the proportion of unknown traffic 
increases. 

 

 
Figure 7:  Port Analysis Results for One Week (March 16-22, 

2005). 
  

The foregoing graphs show that the application mix seen on 
the network varies with the time of day. Figure 8 and Figure 9 
provide a summary of this behavior. 

Figure 8 shows a noon-hour view of the total traffic, 
classified into ten categories, for the period March 16-31, 
2005. It can be seen that unknown traffic and HTTP traffic are 
the most dominant, followed by Gnutella. 

 

 
 
Figure 8:  Noon View of Traffic Profile from Port Analysis 

(Mar 16-31, 2005). 

  

 
 

Figure 9:  Midnight View of Traffic Profile from Port 
Analysis (Mar 16-31, 2005). 

  
Figure 9 shows a view of the midnight-hour traffic, 

classified into the same ten categories for the same period 
(March 16-31, 2005). Unknown traffic is the most dominant, 
followed by HTTP and Gnutella. 

In summary, the results from port analysis show that the 
unknown traffic has increased from 10%-30% in Fall 2003 to 
30%-70% in Spring 2005. The port method is obviously 
ineffective for classifying current Internet traffic. Other 
methods are needed for Internet traffic classification.  

5. Application Signatures 
This section discusses the application-layer signature 

method for P2P traffic classification. This approach can be 
used to establish "ground truth" for other traffic classification 
techniques. Separate traffic traces with full packet payloads 
are used for the testing and validation of the signature method. 

5.1 Design Issues for Signature Method 
The application-layer signature method requires access to 

the user data payload in the transmitted IP packets. Each P2P 
application has a specific signature associated with the 
protocol, in terms of keywords, commands, options, or other 
identifiable content in the packets exchanged.  

The signatures can be determined based on observation of 
well-known P2P applications. The payload analysis scheme 
searches for specified strings in the payload of the packet; if 
found, the packet is classified accordingly. 

In our work, the signature method was implemented for 
three widely used P2P file sharing applications: Gnutella2, 
KaZaA, and BitTorrent. The signature method was proposed 
by Sen et al. [19]. In this method, we examine available 
documentation and packet-level traces to identify appropriate 
application-level signatures, and then use these signatures to 
classify packets in the trace file. 

There are two important design issues related to the 
signature technique. First, P2P traffic can flow over UDP and 
TCP, so one must decide whether TCP packets or UDP 
packets (or both) are subjected to payload analysis. Since most 



current P2P protocols transmit their data via TCP, we focus 
only on signatures found within TCP traffic. Second, P2P 
application-layer signatures can be applied to individual TCP 
packets (segments) or to fully reassembled TCP data streams. 

Analysis at the TCP data stream level is more robust, in that 
it can detect signatures that straddle packet boundaries. 
Furthermore, signature matching need only be done once per 
connection rather than once per packet, reducing analysis 
overhead. Since we are performing offline analyses, TCP 
segments are reassembled into data streams before being 
analyzed. That is, we apply the signatures to TCP data 
streams, instead of individual TCP segments. Sen et al. [19] 
looked for signatures in individual TCP segments.  

5.2 Signatures for Popular P2P Applications 
This section discusses application signatures for three 

popular P2P applications: Gnutella2, KaZaA, and BitTorrent.  
 

5.2.1 Gnutella2 
The Gnutella2 protocol uses TCP to establish a highly 

interconnected hub network topology serving dense clusters of 
leaf nodes. TCP connections are established between 
Gnutella2 nodes when they form a link. Upon the 
establishment of a TCP connection between two Gnutella2 
nodes, a handshaking phase must be completed to negotiate 
the link and exchange other necessary information. 

The Gnutella handshake process consists of three header 
blocks.  The node that initiated the connection sends an initial 
header block, as shown in Figure 10. 

 
GNUTELLA CONNECT/0.6 
Listen-IP: 1.2.3.4:6346 
Remote-IP: 6.7.8.9 
User-Agent: Shareaza 1.8.2.0 
Accept: application/x-gnutella2 
X-Ultrapeer: False 

 
Figure 10:  Initiator Header Block in Gnutella2. 

 
The receiver then responds with its own header block as 

shown in Figure 11. 
 

GNUTELLA/0.6 200 OK 
Listen-IP: 6.7.8.9:6346 
Remote-IP: 1.2.3.4 
User-Agent: Shareaza 1.8.2.0 
Content-Type: application/x-gnutella2 
Accept: application/x-gnutella2 
X-Ultrapeer: True 
X-Ultrapeer-Needed: False 

 
Figure 11:  Receiver Header Block in Gnutella2. 

 
Finally, the initiator accepts the receiver's header block, and 

provides any final information as shown in Figure 12. 
 

GNUTELLA/0.6 200 OK 
Content-Type: application/x-gnutella2 
X-Ultrapeer: False 

 

Figure 12:  Final Handshake Information by Initiator in 
Gnutella2. 

 
Two important header fields sent on all connections are 

"Remote-IP" and "Listen-IP". The Remote-IP header contains 
the IP address from which the remote host is connecting. The 
Listen-IP header contains the IP address and port number on 
which the local host is listening for inbound TCP connections. 
It should be listening for UDP datagrams on the same port. 
The format of this header is "IP:PORT", eg "1.2.3.4:6346".  

The User-Agent header is used to identify the client 
software operating on the sending node. It is sent on the first 
transmission, i.e., the first and second header blocks in the 
three block exchange.  

Based on our observations, we use the simple signature 
string "GNUTELLA" to identify the Gnutella2 application. 
The Gnutella2 protocol was not studied by Sen et al. [19]. 

 
5.2.2 KaZaA 

Since KaZaA is proprietary and uses encryption, little is 
known about KaZaA's protocol, architecture, and signalling 
traffic. KaZaA's signalling traffic is always encrypted.  In 
older versions of KaZaA, the file transfer traffic is not 
encrypted, but newer versions of KaZaA now use encryption 
for the file transfer traffic as well. Files are typically sent 
using HTTP-like messages. A sample request is shown in 
Figure 13, and a sample response in Figure 14. 

 
GIVE 287496918 
GET HTTP/1.1 
Host: * 
UserAgent: KazaaClient Jul 27 2004 21:14:16 
X-Kazaa-Username: * 
X-Kazaa-Network: KaZaA 
X-Kazaa-IP: * 
X-Kazaa-SupernodeIP: * 
Connection: close 
Kazaa-XferUid: * 

 
Figure 13:  Sample Request in KaZaA. 

 
HTTP/1.1 206 Partial Content 
Content-Range: bytes 2255918-3908061/3908062 
Content-Length: 1652126 
Accept-Ranges: bytes 
Date: Tue, 16 Aug 2005 14:57:45 GMT 
Server: KazaaClient Nov  3 2002 20:29:03 
Connection: close 
Last-Mo dified: Fri, 10 Dec 2004 23:28:10 GMT 
X-Kazaa-Username: * 
X-Kazaa-Network: KaZaA 

 
Figure 14:  Sample Response in KaZaA. 



Based on our observations, the simple signature string "X-
Kazaa" was used for identifying KaZaa traffic. 

 
5.2.3 BitTorrent 

BitTorrent is a popular file-downloading protocol. The 
BitTorrent handshake message contains the string ".BitTorrent 
protocol" in the beginning of the message. 

A sample BitTorrent header is shown in Figure 15. Based 
on our observations, the simple signature string ".BitTorrent" 
was used for identifying BitTorrent traffic. 

 

.BitTorrent protocol..........V- 
S................s.e.H.I.C.N....X.f.BitTorrent 
protocolex........V-S...............exbc..LORD.... 

 
Figure 15:  Sample Header in BitTorrent. 

 

5.2 Validation of Signature Method 
The purpose of our application-layer signature analysis is to 

establish "ground truth" for P2P traffic classification. The 
hope is that the signature method will produce traffic 
classification results that are consistent with (or very close to) 
the results determined from manual trace analysis. 

Testing and validation of the signature method was done 
using a separate traffic trace with complete packet payloads.  
The signature method was tested on the validation trace only, 
since the 2-year trace from the University of Calgary network 
did not contain packet payloads.  

The validation trace was collected using a local machine in 
the Department of  Computer Science at the University of 
Calgary. From this workstation, a variety of Internet 
applications were launched. In particular, the trace traffic was 
generated by running three P2P applications (Gnutella2, 
KaZaA, and BitTorrent), while also accessing several Web 
sites and running an email client. The packets in the trace file 
were captured using Ethereal [3].  

Table 1 provides summary information about the validation 
trace. The trace file was collected on Wednesday, August 17, 
2005. The validation trace contained 25,585 packets, 
generated from 450 TCP flows and 513 UDP flows. The top 
100 flows based on byte traffic volume were examined 
manually as well as using the signature method. The top 100 
flows accounted for 17,462 packets (68.25% of total packets) 
and 12,800,611 bytes (90.52% of total bytes). Among these 
100 flows, 95 were TCP flows and 5 were UDP flows.  
 

Table 1:  Description of Validation Trace 
 

Trace Period 900 seconds 
Total Packets 25,585 
Total Bytes 14,141,494 
Avg. packets/sec 28.4 
Avg. packet size 553 bytes 
Avg. Bytes/sec 15,715 
Avg. Mbit/sec 0.126 

The results from manual examination of the validation trace 
are shown in Table 2. Manual analysis identified 43 TCP 
flows and 2 UDP flows as P2P (denoted with ‘*’ in the table). 
 

Table 2:  Results from Manual Analysis of Validation Trace 
 

Application Num TCP Flows 
HTTP 47 
Gnutella 36 *  (plus 2 UDP) * 
KaZaA 7 * 
HTTPS 3 
DNS 2 
SSH 1 
Microsoft –DS 1 
Netbios 1 

 
The signature method identified as P2P 42 of the 43 P2P 

TCP flows. The signature method missed classifying one 
Gnutella TCP flow, since no signature was found. Manual 
examination showed a pair of IP hosts communicating on port 
6346 via TCP and UDP. It was obvious that the flow was 
Gnutella. The signature method did not classify any non-P2P 
flow as P2P. Thus, the signature method was quite accurate.  

Although the signature method is quite accurate, there are 
obvious limitations to its usage in practice. First, privacy 
regulations may make it illegal to access the user payload for 
signature analysis. Second, signature analysis is only possible 
when you know in advance what you are looking for. Since 
new P2P protocols arise frequently, the signature analysis tool 
needs to be updated regularly. Third, some protocols like  
KaZaA and BitTorrent now use encryption, which renders 
payload analysis useless. These issues limit the applicability 
of signature analysis, and motivate the need for other methods 
of P2P traffic classification. 

 

6. Transport-Layer Method 
This section describes the transport-layer approach to P2P 

traffic classification, developed by Karagiannis et al [10]. 

6.1 Overview of Transport-Layer Method 
Karagiannis et al. [10] proposed a novel method for 

identifying P2P traffic, based on transport-level connection 
patterns. The method does not require payload analysis. 
Rather, the analysis is flow-based, focusing on the connection-
level patterns of P2P applications, which are a distinctive and 
persistent feature. While P2P applications might use random 
ports, or encrypt the application layer data, the connection-
level patterns at the transport layer remain the same. 

The transport-layer method relies on two heuristics for P2P 
traffic identification.  These heuristics are effective in 
measuring aggregate P2P traffic, and can even detect new 
emerging P2P applications [10].  

The first heuristic involves the simultaneous use of TCP and 
UDP by a pair of communicating hosts. If a pair of hosts is 
using TCP and UDP simultaneously, then most likely the 



traffic is P2P. UDP is prevalent in P2P systems because it 
provides a low-overhead method of sending queries or status 
messages to many peers. There are some applications like 
online gaming, DNS, and NFS that exhibit similar behavior, 
but this known traffic can be explicitly removed from 
consideration using a checklist for well-known ports.  

The second heuristic is based on connection patterns for 
{IP, port} pairs. The reasoning is that if each P2P host chooses 
its dynamic port number at random, then it is highly unlikely 
for multiple P2P hosts to use the same port number. Expressed 
another way, for a P2P application on a given host, the 
number of distinct ports communicating with it will likely 
match the number of distinct IP addresses communicating. 

During the analysis, each flow is marked either as P2P or 
non-P2P based on these heuristics.  The classification method 
suggested in [10] is summarized as follows: 

1. Look for source-destination IP pairs that concurrently 
use both TCP and UDP. If such IP pairs exist and they 
do not use any well-known standard ports for non-P2P 
applications, then consider them P2P. 

2. Examine all source {srcIP, srcport} and destination 
{dstIP, dstport} pairs. Look for pairs for which the 
number of distinct connected ports matches the number 
of distinct connected IPs. All pairs for which this 
equality holds are considered P2P. If the difference 
between connected IPs and ports for a certain pair is 
large (say larger than 10), regard this pair as non-P2P. 

3. Remove traffic from known applications with similar 
behaviour. Use packet size information to help remove 
false positives and false negatives. 

6.2 Our Transport-Layer Method 
The dataset used for our study has several limitations when 

codifying the techniques proposed in [10]. First, the trace does 
not contain UDP packets, so the effectiveness of the 
TCP/UDP heuristic cannot be evaluated. Second, the trace 
only contains TCP SYN, FIN, and RST packets, so data 
packet size information cannot be utilized. 

Fortunately, the TCP SYN, FIN, and RST headers are 
sufficient to provide information regarding connection-level 
patterns, so that the IP-port pair heuristic can be evaluated. 
The design of our transport-layer method differs from the 
original method suggested in [10], for the reasons stated 
previously. The description of our approach follows. 

For each day of traffic to be analyzed, do the following:  
1. Concatenate in order the 24 trace files for the day. 
2. Build a CompleteFlowTable (all flows) for all packets 

observed in a 15-minute sliding time window. 
3. Scan the CompleteFlowTable and remove all flows that 

are using standard ports of known non-P2P 
applications. Set the P2P flag for flows using standard 
ports for known P2P applications. Call the resulting 
table the OtherFlowTable. 

4. Create a table for all {IP, port} pairs in 
OtherFlowTable. 

5. Scan the trace file and count the number of distinct 
destination IP hosts and the number of distinct 

destination ports for each {IP, port} pair. If the number 
of distinct ports and IP hosts match, then flag the {IP, 
port} pair as P2P. Call such pairs P2Ppairs. 

6. Flag all the flows in OtherFlowTable corresponding to 
P2Ppairs as P2P. Create a new table containing all of 
the flows flagged as P2P in OtherFlowTable. Call this 
table the P2PFlowTable. 

7. Calculate the percentage of P2P flows for the given 
time window from the number of flows in 
P2PFlowTable and CompleteFlowTable. 

6.3 Validation of Transport-Layer Method 
The transport-layer method was tested using the same 

validation trace described in Section 5.3. The purpose is to 
show that the transport-layer method is as effective as (or 
almost as effective as) the application-layer signature method. 
Recall that manual analysis of the validation trace identified 
43 TCP flows and 2 UDP flows (among the top 100 flows) as 
P2P. The transport-layer method processed all flows in the 
validation trace, though the results presented here are just for 
the top 100 flows, for consistency. 

On the validation trace, our transport-layer method 
identified all 45 P2P flows. There were no false positives and 
no false negatives, indicating that our method is reliable. 

For completeness, we also evaluated separately the 
effectiveness of the IP-port pair heuristic and the TCP/UDP 
heuristic, using manual analysis of the top 100 flows in the 
validation trace. On its own, the IP-port pair heuristic (without 
knowledge of ports) identified 49 TCP flows and 2 UDP flows 
as P2P. It identified as P2P 6 TCP flows that were not P2P. 
This represents a false positive percentage of 13%. The 
misidentified flows were 3 HTTP, 1 SSH, 1 Netbios, and 1 
MS-DS (Microsoft Denial of Service). On its own, the 
TCP/UDP heuristic identified only 6 flows as P2P. It missed 
39 flows, for a false negative percentage of 87%. Manual 
analysis showed that the IP host pairs participating in the 
missed flows did not use UDP for any data transfers. 

These results show the importance of considering multiple 
aspects of the traffic characteristics, including known ports. 
The results provide confidence in the effectiveness of our 
modified transport-layer method for P2P traffic classification.  

6.4 Results for Transport-Layer Method 
Figure 16 shows the results from our transport-layer 

analysis of the University of Calgary dataset. Each point 
represents the daily average percentage of P2P flows in the 
aggregate traffic. 

Figure 16 shows that the proportion of P2P traffic flows 
ranged from 10-30% between September 2003 and January 
2004. Between July 2004 and July 2005, the aggregate P2P 
traffic has ranged from 30-70%. On average, this traffic 
accounts for 38% of the byte traffic volume seen on the 
network. 

The results in Figure 16 show a significant increase in P2P 
traffic from 2003-2004 to 2004-2005. This trend is structurally 
similar to that observed for the "unknown" traffic for port 
classification in Figure 5. That is, the proportion of P2P flows 



identified by transport-layer analysis seems to increase in a 
manner similar to that for the proportion of unknown traffic in 
the port-based analysis. 

 

 
 

Figure 16:  P2P Flows for Sept 2003-Jul 2005 (Daily 
Average). 

  
To explore this trend further, and quantify the relationship, 

we use regression analysis. Figure 17 uses a scatter plot to 
show the apparent linear relationship between the percentage 
of unknown flows from port-based analysis (x axis) and the 
percentage of P2P flows from transport-layer analysis (y axis). 
There is one data point for each day of trace data analyzed.  

 

 
 

Figure 17:  Comparison of P2P Traffic and Unknown Traffic. 
 

The relationship observed in Figure 17 is strongly linear, as 
indicated by the least-squares regression line in the graph. The 
R-squared value for the goodness of fit is 0.8536. We interpret 

this result as strong statistical evidence that much of the 
unknown traffic in our trace is P2P traffic. 

Summarizing our results, a visual comparison of Figure 5 
and Figure 16 provides strong circumstantial evidence that the 
unknown traffic is P2P traffic. However, no definitive proof is 
possible, since we do not have packet payloads in our campus-
level trace. 

Our results, along with the validation tests, suggest that the 
transport-layer method can reliably estimate the aggregate P2P 
traffic. The validation results in Section 6.3 show that the 
transport-layer method (applied to packet headers) produces 
results consistent with the signature method (applied to 
payloads). Furthermore, the validation results in Section 5.3 
show that the signature method produces results consistent 
with "ground truth" from manual analysis. This reasoning and 
the statistical data in Figure 17 suggest that much of the 
"unknown" traffic in our datasets is P2P traffic. 

6.4 Limitations 
Although the transport-layer method looks promising, there 

are several limitations and caveats to bear in mind.  
One limitation is that port masquerading cannot be detected. 

The transport-layer method uses a checklist of standard ports 
for filtering known traffic. If P2P traffic occupies a port that is 
assigned to a different application (e.g., SMTP on port 25), 
then those flows cannot be classified as P2P.  

A second limitation is that the IP-port heuristic is ineffective 
in the trivial case of one IP host communicating with another 
IP host on a single port. Many network applications, P2P and 
non-P2P, share this connection level pattern. Other heuristics 
may be needed to remove false negatives. 

Finally, P2P applications continue to evolve. While the 
transport-layer method proposed in [10] has been effective in 
the recent past, and might be effective currently, there is no 
guarantee of its effectiveness on the next generation of P2P 
applications. Other traffic classification techniques may be 
required. For example, early work by Erman et al. [4] on 
cluster-based analysis looks very promising. 

7. Summary and Conclusions 
This paper studies traffic classification of Peer-to-Peer 

(P2P) applications. Accurate knowledge of P2P traffic is 
desirable for several reasons, including traffic engineering and 
network capacity planning. P2P applications on the Internet 
have evolved rapidly, making identification of P2P traffic 
challenging.  

The paper compared three methods to classify P2P 
applications: port-based analysis, application-layer signatures, 
and transport-layer heuristics. The study used empirical 
network traces from the University of Calgary Internet 
connection for a two-year period. To the best of our 
knowledge, this is the first longitudinal study of the 
effectiveness of P2P traffic classification techniques. 

Our results show that classic port-based analysis is 
ineffective, and has been so for quite some time. The 
proportion of "unknown" traffic increased from 10-30% in 



2003 to 30-70% in 2004-2005. This result provides motivation 
for other methods to classify P2P traffic. 

While application-layer signatures are accurate, this 
technique requires examination of user payload, which may 
not always be possible. Furthermore, encryption may soon 
render application-layer signature methods ineffective.  

Transport-layer heuristics offer a novel method that 
classifies the P2P traffic based on connection-level patterns. 
Our results show that the transport-layer method can give 
useful information regarding aggregate P2P traffic.  

As P2P applications keep evolving, new challenges will 
arise for P2P traffic classification. Since traditional methods 
like port-based analysis are now obsolete, and application-
layer signatures are not always possible, transport-layer 
analysis is perhaps one of the best-available current 
approaches for P2P traffic classification. Even better methods 
will likely be required in the near future. 
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