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ABSTRACT 

The demand for cellular data networks is expected to increase 
with 3G and beyond technologies accompanied by high-
bandwidth consumer services, such as wireless video and camera 
phones. User mobility affects quality of service, and makes 
capacity planning more difficult. This paper presents an analysis 
of user mobility patterns based on data traffic traces from a major 
regional CDMA2000 cellular network. We find low overall 
mobility in the network, power-law characteristics in user 
mobility profiles, and weak correlations between call activity and 
mobility levels for individual users. We also find that users 
concentrate their activity in a “home cell” with frequent shorter 
trips to other locations in the network. Based on the empirical 
findings, we develop and parameterize a model of cellular data 
user mobility and show its practical use in simulation. 

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement techniques, 
modeling techniques. 

General Terms 
Measurement  

Keywords 
Network traffic measurement, Wireless, Cellular data networks, 
CDMA2000, User mobility 

1. INTRODUCTION 
With wide deployment of 3rd generation cellular technology (3G), 
such as CDMA2000 [1], network providers can offer many 
Internet data services to their subscribers. Such services include 
Web browsing, electronic mail, simple text and multimedia 
messaging, camera phones and gaming. Even more complex and 
sophisticated services are also emerging, e.g. low-bandwidth 
wireless video streaming, home security monitoring, and peer-to-
peer file sharing.  
Provisioning the network for the increased bandwidth demand is 
complex, as the new data services can have a dramatic impact on 
the usage of the cellular network, particularly as emerging 

applications grow in popularity and the user base expands. User 
mobility adds to the problem as it can affect capacity and quality 
of service planning, especially in CDMA networks, where soft 
handoff increases the complexity of network traffic management 
[4]. 
In addition to understanding data traffic characteristics [7, 9], an 
understanding of user mobility is required for proper provisioning 
of 3G and future cellular networks. The goal of this paper is to 
characterize the cellular user mobility and formulate a mobility 
model based on actual data traffic traces from a large CDMA2000 
1x network. 
We present a detailed analysis of user mobility behaviour from the 
packet data traffic traces collected from an operational cellular 
data network. We are not aware of any other study that 
characterizes cellular data user mobility based on low-level packet 
traces. The analysis in this paper focuses on one week-long trace 
data set, representative of the total of four weeks of collected data. 
The most interesting results from our traffic analysis are heavy-tail 
characteristics in user mobility profiles, namely the frequency of 
location changes, roaming range, and number of calls per cell site. 
We find that many data users show little or no mobility. The 
roaming range is low, meaning that users generally visit a small 
portion of the network. It is further shown that both mobility level 
and roaming range are weakly correlated to the level of call 
activity. 
From the empirical findings, we develop a user mobility model, 
including statistical distributions for the main parameters. Most 
parameters do not strictly follow standard statistical distributions 
and we employ different methods to make the best 
approximations. We further introduce a notion of “home cell” that 
applies to both stationary and mobile users, and has an important 
role in our user mobility model. Simulation results for each 
element of the model closely match the observed trace data. 
We expect that the trace-based analysis and results presented in 
this paper will benefit research in user mobility, by providing 
empirical data for simulation models. Although the measurements 
are specific to this particular CDMA2000 1x cellular network, the 
results show that there are similarities to user behaviours in other 
wireless, and even wired networks. 
The rest of this paper is organized as follows. Section 2 presents 
the related work. The methodology for this study follows in 
Section 3 and the analysis of results in Section 4. The mobility 
model and simulation results are discussed in Section 5. Section 6 
concludes the paper. 
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2. RELATED WORK 
Most measurement studies of wireless networks are focused on 
traffic analysis rather than user mobility. WAP traffic is examined 
in several studies, as a popular protocol for wireless data 
communication. For example, WAP traffic is characterized and 
compared to Web browsing traffic in [10]. Both types of traffic 
exhibit self-similarity and daily/weekly usage periodicity, but 
WAP traffic sessions are shorter and data packets smaller than in 
Web traffic. Further studies show more differences between WAP 
and Web traffic, such as distinct look-up and browsing user 
scenarios, as well as different distributions for page inter-arrival 
times [11].  
Important findings in broadband Internet traffic include a heavy-
tail property [2, 3, 6, 12], and we show that the same behaviour 
also applies to wireless cellular traffic. Our results illustrate 
heavy-tail properties in user mobility level, roaming range, and 
number of calls per cell site.  
In the domain of cellular networks, Shankaranarayanan et al. [14] 
present measurements of cellular voice and data users in a TDMA 
network, and use this information to parameterize user workload 
simulation models for a capacity planning study. A similar study 
by Varga et al. [17] presents a comprehensive model of WAP 
traffic over GPRS, with statistical distributions for parameters 
based on a long-term IP traffic trace from a major network. Adya 
et al. explore user browsing behaviour and identify heavy-tail 
relationships in object popularities [2, 3]. 
Further cellular traffic characterization was done by Klemm et al 
[8]. Their synthetic model is based on an IP traffic trace, and 
involves bandwidth scaling of traffic classes to the levels found in 
UMTS (3G) networks [16]. We present a model based on the 
actual low-level packet trace that is not specific to traffic classes 
(Web, email, etc.).  
A study of a metropolitan radio wireless network by Tang and 
Baker [15] focuses on user mobility. This study employs an 
elaborate classification and clustering scheme to categorize users 
into activity, mobility, and daily usage groups. They find that 
most users have very little mobility, and that the number of 
location changes is inversely related to the roaming distance. We 
also find low overall mobility and categorize users by their overall 
activity and mobility levels. 
Scourias and Kunz propose a mobility model for cellular users 
based on a subscriber survey involving logs of daily usage [13]. 
The users are grouped into socioeconomic categories and 
corresponding activities used to derive their daily mobility 
patterns as parameters for simulation of location management 
algorithms.  
This paper complements earlier knowledge by studying user 
mobility in a large regional 3G cellular data network, using a low-
level data traffic trace (excluding voice traffic). We explore 
mobility events, roaming range, load across the cell sites, as well 
as other parameters and their correlations. 

3. METHODOLOGY 
The data traces analyzed in this paper were collected from an 
operational CDMA2000 1x cellular data network in March 2004, 
with the cooperation of a cellular network provider and assistance 
from the vendors of the equipment used in the network. The 
measurements were collected by instrumenting vendor equipment 

to report all packet-level cellular network events involving mobile 
stations, the base station, and the base station controller. Event 
timestamps are recorded with 20 ms granularity.  
The traces include low-level information about the events 
occurring between the mobile stations (i.e., cell phones), the base 
station (i.e., cell site), and the base station controller. The events 
indicate mobile station identifiers, as well as the start time, end 
time, cell site, sector id, and carrier frequency used for each 
packet data call. Within each packet data call, the trace also 
records information about fundamental channel and 
supplementary channel usage, including the data rate and duration 
for each supplementary channel data burst in the forward and 
reverse directions. Only packet data calls are recorded, not voice 
calls. 
A total of 43 traces were collected from the cellular network. The 
traces were collected from several different measurement points, 
over the time span of 4 weeks. The individual traces range in 
duration from about 1 to 24 hours, depending on the location and 
the time of day. The aggregate set of traces represents over 
480,000 packet data calls from over 10,000 cellular network 
users. The aggregate data set provides a large sample for the 
statistical analysis of network traffic characteristics and user 
mobility behaviour. 
In this paper, we restrict our attention to one continuous week-
long portion of the trace data from one measurement location, as a 
representative example of the cellular data network activity.  
We use a custom-written analysis program to process the traces 
and summarize the statistical properties of the traffic observed. An 
example of the trace format is shown in Figure 1. This example 
shows one packet data call. The call originated from mobile 
station identifier (555) 249-0623 in region 7846 of the provider's 
network, using a frequency of 384 MHz. The call was placed on 
Tuesday March 9, 2004 at 10:05pm (79,525 seconds after 
midnight). The call lasted 62 seconds. The intermediate reports 

        MSID    5552490623 

        ESN     0xe3ce7469ace 

        SITE    7846 

        FREQ    384 

        START   2004 03 09 79525.080 

        ACTIVE  2004 03 09 79525.760 

        CID     287 

        SID     3 

        ACTIVE  2004 03 09 79526.240 

        CID     287 

        SID     3 

        CID     602 

        SID     2 

            . 

            . 

            . 

        END     2004 03 09 79587.060 

Figure 1: Trace data format shows the details of 
packet calls recorded. 



(ACTIVE) show the active set of cell identifiers (CID) and sector 
identifiers (SID) with which the mobile station communicated 
during the call. Multiple entries in this set indicate a soft handoff 
state between sites or sectors during the call. We observed as 
many as 6 entries in the soft handoff events in our traces. 
The traces do not include information on the geographical 
location of the cell site, nor the amount of data transmitted. The 
high-level protocol events (UDP, TCP) cannot be determined 
from this type of trace. Nevertheless, the collected data provides 
useful information about user mobility. 
For the purpose of user mobility modeling, we summarize the 
packet call attributes per user and per cell site to obtain the 
following measurements: 

- Number of packet calls per user and per cell site, 
- Number of unique originating cell sites per user, 
- Number of originating cell site changes per user, and 
- Proportion of calls from each unique cell site per user. 

We use the collected measurements to determine parameters for 
the user mobility model, as discussed in the following sections. 

4. TRAFFIC DATA ANALYSIS 
This section presents the results obtained from the traffic traces, 
including the statistical distributions of parameters to be used in 
the user mobility model for simulation. 

4.1 High-Level Overview 
Our analysis uses a week-long trace collected between 5:54 am on 
25 March 2004 and 4:21 am on 1 April 2004. A total of 4,156 
users were active during this period, placing 171,318 packet data 
calls from 139 cell sites. The averages are 41 calls per user and 
1,232 calls per cell site. 

4.2 Network-Level Mobility Analysis 
To explore mobility for each user, we record the originating cell 
CID for each call in the trace, and count the number of changes in 
CID between successive packet calls by that user. The number of 
cell site (location) changes indicates the movement of the user 
between calls and thus represents their mobility level. Movement 
during a call is represented by soft-handoff states, but this data is 
inconclusive because most calls have short durations (5-12 

seconds). We thus limit our investigation to the originating cell 
changes. 
The number of cell site changes per user is plotted in Figure 2. 
The users are ranked according to their mobility level represented 
by the count of cell site changes. The skewed distribution 
indicates that a few users are very mobile, while many users have 
low mobility.  
The shape of the distribution suggests heavy-tail behaviour. A 
distribution is said to be heavy-tailed if the asymptotic shape of 
the distribution is hyperbolic. In mathematical terms: 

P[X > x] ~ x−α, as x→∞, where 0 < α < 2 

The parameter α, referred to as the tail index, determines the 
heaviness of the tail of the distribution. Smaller values of α 
represent heavier tails (i.e., more of the “mass" is present in the 
tail of the distribution). 
To illustrate the heavy-tailed property more clearly, Figure 3 
presents an analysis using the aest tool developed by Crovella et 
al [5]. The aest tool estimates the tail weight α for a heavy-tailed 
distribution. The graph shows a log-log complementary 
distribution (LLCD) plot of the cell site changes per user, with 
probability on the vertical axis, and users on the horizontal axis 
(each with log scale, and appropriately normalized [5]). The 
lowest curve in this plot shows the results for the raw data, while 
the successively higher curves show the results for the aggregated 
data, using a factor of 2 for each level of aggregation. The 
consistent slope of the plot over 5-6 levels of aggregation suggests 
the presence of a heavy-tailed distribution. The black dots on the 
curves indicate the points used to estimate the slope, which is α = 
1.022 in this case. This α value indicates a heavy-tailed 
distribution, since α < 2. 
Despite the tail to the distribution, the general level of mobility in 
the network is low. In fact, 55% of the users are stationary, and 
9.6% had only a single location change during the week. 
However, the top 10% mobile users account for over 63% of the 
total packet calls in the network; provisioning for their 
satisfactory mobile experience is important for a cellular provider.  
Although highly mobile users contribute much to the overall 
network activity, this does not imply that stationary users make 
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Figure 2: The distribution of number of cell 

changes among users is highly skewed. 
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Figure 3: Heavy-tail behaviour appears in user 

mobility level. 



few calls. Rather, the level of call activity varies widely for both 
stationary and mobile users. 
As shown in Figure 4, user mobility and call activity level are 
rather weakly correlated. The plots show the number of packet 
data calls made by each user (top line), and the number of cell site 
changes (bottom line) that occurred for that user during the trace, 
for the top 1,000 users sorted by activity level. The stationary 
users (i.e., those with 0 cell site changes) are scattered across the 
full range of call-level activity observed. This observation 
suggests that call activity level and cell site changes can be 
modeled as orthogonal characteristics in a user mobility model. 
Another indicator of user mobility is the roaming range. We 
define roaming range as the number of unique cell sites that a user 
visits during the trace. While many location changes indicate 
frequent movement between calls, the roaming range indicates the 
total area of the network that a user covers. This number does not 
directly represent geographic distance, but does provide an 
approximation thereof. 
Figure 5 uses a scatter plot to show the per-user roaming 
characteristics. Each point on the plot represents one user. The 
vertical axis shows the number of calls placed by the user, while 

the horizontal axis shows the number of distinct cell sites from 
which those calls occur.  
There is little structure to this distribution, suggesting that call 
activity level and the number of cell sites visited are weakly 
related. However, there are arguably several different types of 
roaming patterns that can be discerned. One group (the dark band) 
represents low-activity clients with moderate roaming range. 
Above this band is a set of high-activity users with moderate 
range. At the very right are users with extreme range and mobility 
(over 30 visited cells implies at least that many cell site changes, 
which puts the user among the top 5% movers). Near the origin 
are many low-activity users with no mobility at all.  
Figure 6 shows the empirically observed distribution for the 
number of cell sites from which packet data calls are placed, on a 
per-user basis. As indicated previously, about 55% of the users 
are stationary. That is, all of their observed calls are from the same 
cell site. The remaining 45% of the users are mobile, placing 
packet data calls from more than one site. One user placed calls 
from 53 different cell sites, suggesting a skewed tail to the 
distribution. 
Figure 7 presents an analysis of the tail of the roaming 
distribution, to check for a heavy-tailed property (e.g., Pareto). 
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Figure 4: User mobility is weakly correlated with 

user activity level. 
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Figure 5: Users can be categorized by roaming 

range and activity level. 
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Figure 6: User roaming range suggests heavy-tail 

distribution. 
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The results show that the aggregate distribution is not heavy-
tailed, both graphically and using the aest tool. Rather, a 
lognormal distribution captures the tail behaviour quite well. 

4.3 User-Level Mobility Analysis 
The next analysis studies the mobility pattern of one particular 
user, namely the busiest user in the trace. This user makes over 
3,000 packet data calls during the trace. Figure 8 shows a time 
series plot illustrating the originating cell site for each of this 
user's calls over a 12-hour period. Each X on the graph represents 
the arrival time of a packet data call.  
Several observations are evident from Figure 8. First, this user 
originates packet data calls from over a dozen different cell sites. 
Second, the packet call activity of the user is bursty, with spurts of 
on/off behaviour. Analysis over longer time scales (not shown 
here) also illustrates on/off behaviour (e.g., overnight). Third, as 
might be expected, many of the calls appear in “clumps" with 
respect to cell sites, representing continuity to the session activity 
and the physical location of the user. Fourth, there seems to be 
one or two dominant cell sites for this user, from which a majority 

of the calls are placed. We refer to the dominant cell site as the 
“home cell" for the user, though we do not know whether this 
represents the residence, workplace, or some other location 
frequented by the user. Finally, the close timing relationships seen 
occasionally between packet data calls placed at different cell sites 
implies physical proximity between the cell sites, which is often 
indicated as well by the soft handoff activity in the trace. These 
patterns provide some insight into the topological structure of the 
cellular network. 
Building upon the observation about the single user’s mobility 
patterns, we explore the “home cell” behaviour for users that 
made 10 or more calls in our trace (a total of 1,469 users). The 
notion of “home cell” refers to the cell from which a user makes a 
significant proportion of calls. We set this proportion at 0.5, 
although arguably it may be set to a lower value. 
Figure 9 shows the scatter plot of “home cell” ratios (proportion 
of calls from the most dominant cell). The most dominant band is 
for stationary users, who have a ratio of 1, by definition. Overall, 
70% of users have a ratio of 0.5 or higher. Users having a “home 
cell” are distributed across all levels of activity, again implying 
that the level of activity does not necessarily determine mobility 
or range. 
We explore the “home cell” phenomenon in more detail using a 
histogram (Figure 10), constructed by categorizing the users using 
bins of width 0.1 according to the ratio of calls from a “home 
cell”. About 30% of users lack the “home cell” behaviour, with 
less than 50% of their calls originating from the most dominant 
cell. However, the other 70% are either stationary (about 20% in 
“=1.0” bin) or have a dominant “home cell” (0.5 to <1.0 bins). 
The latter category of users indicates that although roaming, these 
users still concentrate their activity in one cell, which could be the 
actual home where they live, or the work site where landline 
phone is not available or convenient.  
Overall, we can conclude that this network has a small proportion 
of truly mobile users that make data calls, and that most users 
have a dominant “home cell” from which they originate most 
packet calls. We speculate that the “home cell” is in fact at home, 
since the peak of activity is in the evening hours, when people are 
generally at home rather than at work. 
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5. MOBILITY MODEL AND SIMULATION 
We use both network-level and user-level mobility parameters in 
the model to capture the overall characteristics of the network. 
Using the foregoing results, we formulate parameters for the 
model and use them as input to the simulation. 
A model for an event-driven simulation of the cellular network 
requires several basic parameters that capture single-user and 
overall network activity and mobility behaviour. In particular, we 
model the following: 

- Number of calls initiated per user, 
- Call inter-arrival time (IAT), 
- Number of cell sites visited per user (roaming range), 
- Number of user calls per cell site, and 
- Probability of location change for the next call. 

The number of calls initiated and the call IAT determine the 
user’s activity level in the network. These values are external to 
our mobility model and are merely used as initialization 
parameters for the simulation. We do not focus on their generation 
in this paper. 

5.1 User Mobility Model 
We focus on three parameters that are directly relevant to user 
mobility modeling. These parameters capture the dynamics of 
single user mobility, i.e. continuity to the session activity with 
occasional trips outside the current cell and the existence of one 
dominant cell, as well as limited roaming for the typical user. 
The distribution of roaming range (number of cells visited) per 
user is difficult to fit with a single distribution, as shown in Figure 
7. We model a hybrid distribution composed of Pareto body and 
lognormal tail. The tail index of 1.021 is used for the body of the 
hybrid distribution, as obtained from aest tool, using only data for 
mobile users (excluding the stationary users). The parameters for 
the lognormal part are obtained in the same manner. We achieve a 
reasonably good fit, with some inaccuracy near the lower tail. 
Figure 11 shows the empirical and the simulated roaming range 
distributions. 

Once the roaming range is assigned to the user, the next parameter 
is the distribution of calls to cell sites. We find that users 
distribute their calls over cell sites in a power-law fashion, based 
on the observed empirical data for a sample of busy users. The tail 
index is calculated as (1 + p), where p is the probability of calls 
being initiated from a user’s “home cell” (“home cell” 
probability). For each user, the pre-generated set of cells is biased 
in probability of call assignment and used throughout the 
simulated number of calls for that particular user. The Pareto(1+p) 
fitting of the distribution of calls per cell site to the empirical, as 
well as simulated curve for the busiest user is shown in Figure 12. 
The visual match to the distribution is good. 
The key component of our model is the “home cell” probability. 
The proportion of calls coming from the user’s “home cell” can be 
reasonably well modeled using the distribution shown in Figure 
10. We approximate this distribution by first separating the 
stationary users, using a constant probability of 0.55. For the other 
users we assign a “home cell” probability according to the 
Uniform distribution over the interval (0.2, 1.0). Users placing 
under 20% of the calls from the “home cell” are absorbed in other 
categories in the simulation, since they make up less than 5% of 
user population. 
Finally, we need to represent the mobility level of users (number 
of location changes) in a simulation. It is not practical to model 
the number of location changes directly because this value must 
not exceed the number of calls. For the modeling and simulation, 
we express mobility as a probability of location change (c), 
calculated as the ratio of number of cell changes and total number 
of calls initiated by the user. This way the stationary users will 
have 0 probability of cell change.  
Based on the distribution of c (Figure 13), we model the c value 
for each user as follows: 

- P[c = 0.0] = 0.55 (user is stationary), 
- P[c = Uniform(0.0, 0.1)] = 0.06, 
- P[c = Uniform(0.1, 0.5)] = 0.35, and 
- c = Uniform(0.5, 0.9) otherwise. 

This is the only component of our model where we do not use a 
known statistical distribution. The empirical and simulated values 
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of c are compared in Figure 14. The leftmost part of the model fits 
well for highly mobile users, while the rightmost half fits well for 
the stationary users. The middle piece shows a very close fit, but 
the model underestimates the number of users with c = 0.5. Many 
of these users in the empirical data had only two calls. 

5.2 Model Validation 
To validate the model for each parameter we run 10 single-user 
simulations and compare the parameter distribution plots, call 
time-series plot, number of location changes, and number of cell 
sites visited to the empirical results. We find that the call 
distribution across cells covers the roaming range accurately. The 
average number of cell changes over the simulations also matched 
well with the specified value.  
Finally, we show an example single-user call simulation in Figure 
15. The graph shows a time-series plot of calls for the busiest 
user, using the empirically obtained parameters as inputs to the 
simulation. The cell IDs are ordered by call count with 0 marking 
the “home cell”. The simulated user behaviour is representative of 
the empirical mobility behaviour (see Figure 8). The on/off 
periods are present and the dominant “home cell” is clearly seen, 
as well as session-like clumps of calls from cell sites. This 
simulated user visited 24 cell sites and made 736 location changes 
in the trace. These results represent a highly mobile user. 

6. SUMMARY AND CONCLUSIONS 
This paper presents the analysis of data call traces from a 
CDMA2000 1x cellular network, and building of a user mobility 
model suitable for simulation studies. The analysis focuses on a 
one-week portion of the trace during which 4,156 users initiated 
171,318 packet data calls from 139 cell sites of the network. 
The results from our traffic analysis indicate heavy-tail 
characteristics in user mobility profiles, as well as low overall 
mobility and low roaming range. Similar characteristics are found 
in earlier studies of wired and wireless data traffic, and we can 
now apply them to user mobility in cellular networks. We further 
find that both mobility level and roaming range are weakly 
correlated to the level of call activity. A notion of “home cell” is 
introduced, based on the observation that many users originate 
calls from one dominant cell site regardless of the level of call 
activity. 

We develop a user mobility model based on the empirical findings 
and use it for simulation of individual user mobility properties in 
the cellular network. Although several model parameters are not 
easily represented by standard distributions, we achieved a simple 
and practical model for our simulation purposes. The model is 
validated against our empirical data. 
We expect that the findings from this study will benefit 
researchers studying next generation cellular networks, as well as 
cellular providers provisioning networks for their users. Our 
further work will focus on refining the mobility model, as well as 
simulating the application-level protocols in cellular networks 
(WAP, WWW, email, etc.). 
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Figure 13: Distribution of cell change probability 

does not resemble any known distribution. 
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Figure 14: Simulated cell change probability closely 

follows the empirical data. 
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Figure 15: Simulated calls capture user mobility 

patterns. 
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