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Abstract

The capacity of multi-service Code-Division Multiple Access (CDMA) systems has
been extensively studied in the literature. However, few studies address the funda-
mental issue of how the stochastic properties of non-Poisson data traffic affect the
system capacity. This paper studies a CDMA system supporting voice and data
traffic. Results show that increased variability in the data call arrival process de-
creases the system capacity, while increased variability in data call holding times
increases the system capacity. The extent of these effects depends on other system
parameters, such as transmission rates and communication quality requirements.
These observations motivate a simple buffer-based resource management scheme
that enhances the system capacity in the presence of high-variability data traf-
fic, providing controllable performance tradeoffs between voice and data calls. This
study uses both simulation and theoretical analysis, which is based on a Markov
Regenerative Process (MRGP) model.

Key words: CDMA, Capacity Planning, Loss System, Markov Regenerative
Process, Variability of Stochastic Processes

1 Introduction

Mobile service providers have recently made substantial investments to deploy
3G CDMA networks in North America. For example, CDMA2000 1xRTT net-
works have been available for several years, while data-optimized CDMA2000
1xEV-DO networks are being rolled out now.
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Despite the large-scale and rapid deployment of these networks, capacity
planning for CDMA data networks is not well understood. Current planning
only supports the availability of high-speed data services. However, given the
growth trends in data traffic volume and the inherent scarcity of radio spec-
trum resources, better capacity planning tools are required.

In voice-only 2G cellular networks, the Erlang B formula has been used for
capacity planning for many years. The success of this simple tool lies in the
fact that voice traffic is well-modeled by a Poisson process. Internet-like data
traffic, however, exhibits high variability over many timescales, which is not
conducive to Poisson-based modeling [12]. This makes capacity planning in
3G networks a challenging task.

Current research on multi-service CDMA network capacity falls into two main
categories. The first category is the analytical approach [1,2,5,6,8]. In most of
these models, data traffic differs from voice traffic only in the transmission rate
and quality of service (QoS) requirements, not in the stochastic traffic behav-
ior. The Poisson assumption is still made for the data call arrival process. The
second category is the simulation approach. Traffic generators are integrated
into the simulation environment, which models the CDMA protocol stack and
the radio channel. Traffic models are used to emulate data applications, such
as WWW, email, and WAP. Simulation results show the relationship between
offered traffic load and required radio resources. These two types of stud-
ies, however, have not addressed the fundamental issue of how the stochastic
properties of non-Poisson data traffic affect the overall system capacity.

In this paper, we study a multi-service CDMA system supporting voice and
non-Poisson data traffic over dedicated channels. Our results show that the
variability of the data call arrival process adversely affects the system capacity,
while the variability of data call holding times increases the system capacity.
The extent of these effects depends on system configurations, such as traffic
mix, transmission rates, and QoS requirements. Based on these observations,
we propose and evaluate a simple buffer-based resource management scheme
that effectively increases the system capacity in the presence of high-variability
data traffic. Our study is carried out by simulation and theoretical analysis
based on a Markov Regenerative Process (MRGP) model.

The rest of the paper is structured as follows. Section 2 introduces the key
concepts of CDMA network capacity and the system model. Section 3 presents
the analytic study for a simple system. Section 4 is devoted to the simulation
study for a more general model. Section 5 presents and evaluates the data call
buffering scheme. Finally, Section 6 concludes the paper.



2 Capacity and System Model
2.1 CDMA Network Capacity

A CDMA network consists of base stations (BS) each providing service to
mobile stations (MS). Transmissions from the home BS to a MS traverse the
forward link, while transmissions from a MS to the home BS traverse the
reverse link.

One of the principal characteristics of a CDMA network is that the capacity
in each direction depends on the total interference experienced by an MS
or the BS. The interference level depends on the cell layout, the MS spatial
distribution, and the radio propagation characteristics. To facilitate capacity
analysis, an approximate model for the interference is often employed. The
approximation is based on the following assumptions: the network cells are
homogeneous; the MSs are uniformly placed within the cell; Rayleigh fading
is ignored; and shadow fading is modeled by the lognormal distribution.

This paper uses two types of capacity measures. The first one, referred to
as the capacity bound, is the maximum number of concurrent users that the
system can support at a specified transmission rate and communication quality
Ey/N, (the ratio of bit energy to noise plus interference density). The bound
is calculated assuming a fixed number of active MSs in each traffic class. The
second type of measure, referred to as Erlang capacity, is the average traffic
load that can be supported at a given communication quality and service
availability probability. The Erlang capacity is evaluated in a dynamic user
scenario, with calls initiated and terminated according to stochastic processes.
Next we summarize the capacity bounds for the reverse and forward links, and
then discuss the relationship between the Erlang capacity and a loss system.

We introduce common notation for the analysis of both link directions. Assume
that the system supports N > 1 traffic classes. For the ¢-th class, let n;
be the number of active users, r; be the transmission bit rate, «; be the
traffic activity factor, and n; be the required E,/N,. Let W be the spreading
bandwidth, and let Q~!(z) denote the inverse Q-function defined by Q(z) =

(1) V2me™v" ) dy.

The reverse-link capacity bound [2,8] is given by:
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where (ﬁ> is the average frequency reuse factor, o, is the standard devia-

tion of the received signal to noise power ratio (SIR) in dB, a is a constant



with typical value 0.012, and ( is the required system reliability such that
Pr((Ey/N,); > n;) = . The term 109 (97:/100-a0% yeflects the impact of
the power control error. The standard deviation o, has a typical value be-
tween 0.3 dB and 2 dB.

Next, we express the forward-link capacity bound based on the work by Lee
et al. [10]. Let P; represent the BS transmission power for a class ¢ MS at the
cell edge, and Py, be the total transmission power of the home BS. The E;,/N,
for a class ¢ MS at the edge of the cell must satisfy:
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where o, is the standard deviation of the lognormally distributed propaga-
tion loss in dB, (3 is the required system reliability and K is the ratio of
the received power at the edge MS from other cells and from the home cell.
Typically, Ky = 2.778. The transmission power at the home BS satisfies:
P, = K, Zfi‘ol n;o; Py, where the average forward-link power factor K; < 1
accounts for the fact that not all MSs are located at the cell boundary (i.e.,
closer MSs require less BS transmission power). We assume that Py, is not
larger than the BS power limit [10]. The maximum number of users are sup-
ported when constraint (2) achieves equality. The forward-link capacity bound
is given by:
N-1 %% .
n;riQu); < —1OQ (B)oy /10.0 . (3)
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The capacity bounds in each direction (1) and (3) have the common form:

where £ > 0, w; > 0, and n; > 0,Vi =0,..., N —1. The right hand side of (4)
can be viewed as the total system effective bandwidth and w; as the effective
bandwidth required by a call of the i-th class. The effective bandwidth depends
on the assigned transmission rate, traffic activity factor, and required E,/N,.
An admissible state (ng,...,ny_1) satisfies the bound (4). The admission
region 2 is the set of all admissible states. A call arrival that would move
the system state out of the admissible region is blocked and cleared from the
system. Otherwise, the call is accepted, and it consumes its effective bandwidth
for the holding time of the call. The maximum tolerable blocking probability
of the system determines the average traffic load that can be accommodated.
This probability can be a maximum aggregate blocking probability, or a vector
where the ith element is the maximum blocking probability for class i. Erlang
capacity can be expressed as an arrival rate vector producing the maximum
tolerable blocking probability.



By using the capacity bounds, we convert the capacity analysis in either direc-
tion of a CDMA system to the study of a loss system, where multiple traffic
classes completely share the resources subject to the admission requirement
(4). Modeling a CDMA cell as a loss system is not new. Several authors have
used this approach especially for the reverse-link capacity analysis [1,2,6,7].
Many of these studies assume that the call arrival process for each class is
Poisson, and then model the system as a multi-dimensional continuous time
Markov chain.

A Poisson arrival process may adequately model data traffic at the session
level [12]. However, CDMA data calls do not necessarily correspond to such
sessions. For example, consider Web browsing in a CDMA2000 1xRTT system.
A down-link data call may transmit a Web page or several successive Web
objects. The arrival process of data calls is not that of browsing sessions. Since
data traffic exhibits high variability over many timescales, it is questionable
to use the Poisson model for the traffic at levels other than the session level.
In this paper, we assess the impact of non-Poisson data traffic on the CDMA
system capacity.

2.2 System Model

There is a correspondence between the Erlang capacity of a multi-service
CDMA system and a loss system. As a consequence, we study a loss sys-
tem whose parameters are configured based on the capacity bounds of the
CDMA system. Specifically, the system is characterized as follows:

e The system supports two types of calls: data (class 0) and voice (class 1).
They have different transmission rates r; and E,/N, requirements 7;.

e Data calls are generated as a renewal process with rate A\g. The inter-arrival
time X, has a general cumulative distribution function G(x). The number
of bits Y, transmitted by a data call, referred to as the workload size, is an
i.i.d. random variable with a general distribution.

e Voice calls are generated according to a Poisson process with rate A;, and
have exponentially distributed workload sizes Y.

e Once a call is accepted into the system, it remains in the system for duration
Y:/(r;a;), where ; is the traffic activity factor. The mean service rate for
class i calls is p;, where pu; = ;0 / E[Y].

Table 1 lists the model parameters for the forward link. Substituting the corre-
sponding values into (3), the capacity bound is obtained. All simulations and
numerical studies use the values listed in Table 1 unless otherwise specified.
The mean workload size of voice calls is based on a mean call holding time of
120 seconds, a typical value in cellular networks. The mean workload size of



Table 1
Model Parameters

System parameters Value
Spreading bandwidth W 1.2288 MHz
K/ 2.778
K 0.35
oy 0
Traffic parameters Data calls (Class 0) | Voice calls (Class 1)
Transmission rate r; (kbps) 100 9.6
Traffic activity factor «; 1.0 0.5
Ey/N, requirement 7; (dB) 3 4
Arrival rate ratio ﬁ 20% 80%
Mean workload size E[Y;] (bits) 440,000 576,000
Target blocking (case I) aggregate blocking 2%
Target blocking (case 1) 5% 2%

data calls is based on a mean Web page size of about 50 KB. We assume that
80% of the calls offered to the system are voice calls, and 20% are data calls.
Since this ratio is fixed, the maximum aggregate arrival rate denoted by A de-
termines the Erlang capacity as [0.2A,0.8A]. We use this maximum aggregate
rate to indicate the system capacity, and all the following studies are based on
this performance measure. We consider two different blocking requirements as
indicated in Table 1. The first case concerns the overall blocking rate while
the second case considers class-specific blocking rates.

Our study focuses on the impact of the variability of inter-arrival times X
and workload sizes Y; of data calls. Coefficient of Variation (CV) is a measure
of variability for a random variable. CV is defined as the ratio of the standard
deviation to the mean. Let ¢, (arrival) and ¢, (size) denote the CV of X, and
Yo, respectively. Our studies illustrate the relationship between the system
capacity A and these two parameters. We use second-order hyperexponential
distributions to model interarrival times and workload sizes with CV > 1.

3 Theoretical Analysis via MRGP

We use a Markov Regenerative Process (MRGP) to study the system described
in Section 2.2. However, there is a restriction on the data call model: the



holding time must be exponentially distributed. We leave the study of a more
general system to Section 4, where simulation is used.

Trivedi et al. [3] developed solution methods for MRGPs, and applied them
to the performance and reliability analysis of various computer systems. Our
study is another effort along this line. For the details of MRGP theory and
solution techniques, the reader may refer to [4,9]. We briefly introduce the
MRGP technical background here, and then describe the MRGP model for a
simple CDMA system.

3.1  Introduction to MRGP

In a MRGP, there exist time points where the process satisfies the Markov
property [3]. These time points are referred to as regeneration points. The
stochastic evolution between two successive regeneration points depends only
on the state at regeneration, not on the evolution before regeneration. Further-
more, due to the time homogeneity of the embedded Markov renewal process,
the evolution of the MRGP becomes a probabilistic replica after each regener-
ation. The key concepts of MRGP are given in the following two definitions [3].

Definition 3.1 A sequence of bivariate random variables {(uy,t,),n > 0} is
called a Markov renewal sequence if: (I) to = 0,t,11 > tn; uy, € ¥ C Q, where
Q is a countable set represented by {0,1,2,...}; and (I1I) ¥n > 0,

P{un+1 = j, tn+1 — tn S t\un = ’i, tn, ..., Up, t(]}
= P{ups1 = j, tne1 — tn < tu, =i} (Markov property) (5)
= P{uy = j,t; < tlug =1} (time homogeneity).

Definition 3.2 A stochastic process {z(t),t > 0} on Q is called a Markov
regenerative process if there exists a Markov renewal sequence {(u,;t,),n > 0}
of random variables such that all conditional finite-dimensional distributions
of {z(t, +t);t > 0} given {z(v);0 < v < t,;u, =i} are the same as those of
{z(t),t > 0} given ug =1, i € ¥ C Q.

The above definition implies that {z(¢}),n > 0} or {z(¢;),n > 0} is an
embedded Markov chain (EMC), and that ¢, is a regeneration point of z(¢).

The global kernel K () and the local kernel E(t) determine the evolution of a
MRGP. Kernel K (t) describes the behavior of z(t) at the regeneration instants
while kernel E(t) describes it between two consecutive regeneration instants.
Entries of matrix K(t) = [K;,;(t)], 1,7 € U, are given by (5). Matrix K (o)
is the one-step transition probability matrix of the EMC. Entries of matrix
E(t) = [Ei;(t)], i € ¥, j € Q, are given by E;;(t) = P{z(t) = j,t1 > tlug =



i} . If local state transitions (between two consecutive regeneration points)
are governed by a homogenous continuous time Markov chain (CTMC), the
MRGP has a subordinate CTMC.

Knowledge of the kernels allows us to obtain three new variables, which lead to
the solution of the steady state probabilities of the MRGP. The first variable
a;.; is given by
Oéi;j = / Ei;j(T)dT y Z - \I/,] - Q . (6)
0

This variable is the mean time that z(t) spends in state j between two suc-
cessive regeneration instants, given that it started in state ¢ after the last
regeneration. The second one is defined as 3; = E[t1|ug = i], i € ¥ . It is the
mean duration of the next state of the renewal sequence given that the current
state is ¢. The third variable is the steady state probability vector v/ = () of
the EMC, which satisfies:

vV =UK(00), > =1 (7)

kew

Theorem 1 in the book by Kulkarni [9] gives the steady state probabilities of
the MRGP based on «;.;, 3; and .

3.2 MRGP Analysis of a CDMA System

3.2.1 MRGP Model

Denote by (7,7) a state with ¢ data calls and j voice calls in the system.
According to (4), the admission region is given by i X w + j < [, where w
and [ are the data call bandwidth and total system bandwidth normalized to
the voice call bandwidth, respectively. Figure 1 depicts the state transition
diagram. A dotted arc represents a transition triggered by a data call arrival.

Let [-] and |- | denote the floor of a number and the cardinality of a set,
respectively. Define wy = {0,1,..., [[/w]|} . We list important state sets:

e ) denotes the set of all feasible states. Q = {(i,j)|i € wq,j =0,1,..., [l —
iw|}.

e S; denotes the set of states with exactly ¢ data calls. S; = {(i,j)|7 =
0,1,..., U—Z’UJJ}, ’Sz| = U—’LU)J + 1, Vi € wy.

o ), denotes the set of states with at most ¢ data calls. Q; = ;":o Sj, 1| =

roll—mw| +i+1, Vi €wy .

e (po and Qp; denote the sets of states that block data and voice calls,

respectively. For example, Qp = {(7,7)|i € wa,j = [ —iw]}.

Let {z(t),t > 0} denote the two-dimensional state process on 2. Let ¢y = 0 and
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Fig. 1. MRGP state transition diagram

define t,, (n > 0) as the arriving instant of the n-th data call. By Definition 3.1,
{(2(t),tn),n > 0} is a Markov renewal sequence since it satisfies the time
homogeneous Markovian properties. Furthermore, {z(t),t > 0} is a MRGP
associated with this sequence by Definition 3.2. The state space of the Markov
renewal sequence is ¥ = Q — {(0,4)|7 =0,1,..., |l —w]} . The MRGP has a
subordinate CTMC since local state transitions are caused by exponentially
distributed events (voice call arrivals/departures, data call departures).

3.2.2  Solution Method

We first obtain the transient probabilities of the subordinate CTMC. We then
derive the MRGP kernels, and finally calculate the MRGP stationary proba-
bilities.

3.2.2.1 Subordinate CTMC: Assume that the state is (i,7) € ¥ just
after a data call arrives. Before the arrival of the next data call, the state



evolves as a CTMC on (); with the infinitesimal matrix ); given by

By
Al Bl
Qi = A2 BQ ’ vll € Wd ) (8)

where Ay (k € wg—{0}), a |Sk| x|Sk—-1| block matrix, refers to the departure of
a data call when there are k data calls in the system; By, (k € wy), a |Sk| % |Sk|
matrix, refers to no change in the number of data calls when there are k data
calls in the system.

Entry Ag(m,n) of Ay is the transition rate from state (k, m) to state (k—1,n)
before the arrival of the next data call. The transition is due to exponentially
distributed events. Therefore, Ax(m,n) = kug if m = n; otherwise Ay (m,n) =
0. Then Vk € wg — {0},
Ak = [/{Z,LL()Ik O] y

where I is a |Sg| x | S| identity matrix and 0 is a |Sk| X (|Sk—1| — |Sk|) block
matrix with all zeros. Entry By(m,n) of matrix By, is the transition rate from
state (k,m) to (k,n) before the arrival of the next data call. When m # n,
the transition is due to the arrival and departure of voice calls. The rate can
be easily determined. When m = n, Bi(m,n) is the rate of staying in state
(k,m), which needs to be calculated. Note that matrix @); has the property
Qe = 0, where e is a column vector with all ones. Utilizing this property
and the expression for Ay, we get B}, as follows: Vk € wy,

Bk = 2,[11 —>\1 — 2,LL1 )\1 — k‘,u():[k . (9)

L= kw]p —[1 = kw]p |

With @Q; known, we can obtain the transient probabilities of the subordinate
CTMC. Let P )59 (t), (7, 7') € 4, be the probability that the CTMC will

3

be in state (7', j') at time ¢ given that it was in state (7, j) initially. Define

—

Pijy(®) = [Puajpso®) Pajsi(t) - Pajs(t)] (10)

where Pio.(t) = [Py @) Papon® o Pajeu-rp(t)] - We
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have, V(7,7) € U:

d = _,
g L (t) = Pay ()@ (11)
with the initial condition: P(i,j);(i’,j’)(o) =1if (i/,j/) = (Z,j), P(i,j);(i’,j’) (0) =0

if (', 5') # (i, ) . The transient solution is P j)(t) = P ;) (0) x e@t .

3.2.2.2 Kernels and Performance Measures: Entries of global kernel
K (t) are defined by (5). In this specific system, the entry K ;) ;) (t) is the
probability that the system will be in state (i, j') immediately after the next
data call arrives at time ¢, given that the system was in state (i, 7) just after
the previous data call arrived at time 0. Depending on the new state, the
probability has different expressions as follows: V(i,5) € ¥, V(i', j') € ¥,

K gyir.gn (1) =
Jo P jstirjn (T)dG(7) =0,
Jo Pajyt—15(1)dG(7)
I3 [Pagytr—100(7) + Pagyrn(1)] dG(7)
Jo Pigy-15)(7)dG(7) | =i+l

0, otherwise .

The entry Ei; j), ) (t) of local kernel E(t) is the probability that the system
will be in state (i, j') at time ¢ and the next data call will arrive after ¢, given

that the system was in state (7, j) just after the previous data call arrived at
time 0. Thus, V(i,j) € ¥ and V(¢/, j) € Q,

P gy gn®) (1= G(t)) , (7',5) € Qi
Ei gy (1) = e . (13)
0, otherwise .

We are ready to obtain the performance measures. Let s = (i,7) € ¥ and
s' = (¢,j") € Q. Variable o,y and the EMC steady state probability vector
U = (v) are calculated according to (6) and (7), respectively. By Theorem 1 in
9], the steady state probabilities (at an arbitrary time point) follow: Vs’ € €,

sWg: s/ )\ s stls: s’
P{at) = o'} = 2een V0 _ 20 2usew Vil (14)
>osew VsBs > scw Vs

The latter step is due to Gs = 1/Ao.
The arrival process for voice calls is Poisson. By PASTA (Poisson Arrivals See

Time Average), the blocking probability for voice calls is PB, = > cq,, P{2(t) =
s} . The blocking probability for data calls PB, is the probability that the

11



Normalized Capacity versus Variability of Data Call Arrival Process
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Fig. 2. Normalized capacity AA,, versus CV of data call inter-arrival times (2% ag-
gregate blocking)

system is in the data call blocking set 2pg just before a data call arrives.
PBy = Zs’eQBo Dsew Vs X Joo PS;S’(T)dG(T) .

We summarize the procedure to calculate the blocking probabilities.

1. Obtain Ps.y, K(00) and E(t) according to (11), (12) and (13), respectively;
2. Obtain o,y based on (6) and solve (7) for 7/ ;

3. Obtain the steady state probability based on (14);

4. Obtain the blocking probabilities of voice and data calls, respectively.

Once the blocking probabilities are calculated, the Erlang capacity or the
maximum aggregate arrival rate A (given the traffic mix ratio) can be obtained
numerically.

3.8 Impact of Data Call Arrival Variability

We numerically study the impact of data call arrival variability on the system
capacity A. The workload size of data calls is exponentially distributed. A
hyperexponential distribution is used for the call inter-arrival times with CV>
1. The aggregate blocking probability is 2%. The other parameters are listed in
Table 1. Let A, represent the maximum aggregate arrival rate when data calls
arrive according to a Poisson process. We compare the difference between A,
and A. Figure 2 plots the normalized capacity AA,, versus CV of data call inter-
arrival times. As the variability of inter-arrival times increases, the system
capacity decreases. For example, the capacity for CV ¢, = 3.0 is about two-
thirds of that for CV ¢, = 1.0.

The extent of the capacity reduction caused by the variability of data call
arrivals depends on other system parameters, such as the transmission rate
and Ej,/N,. Figure 3(a) shows that the normalized capacity AA,, decreases as the

transmission rate rq for data calls increases. Similarly, Figure 3(b) shows that

12



Relative System Capacity versus Data Call Transmission Rate Relative System Capacity versus Eb/No for Data Call
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Fig. 3. Factors affecting the capacity reduction: (a) transmission rate; (b) Ey/N, .

the normalized capacity decreases when the FEj/N, requirement 7 increases.
These results demonstrate that modeling non-Poisson data traffic as Poisson
generates large errors in capacity estimation, particularly for high transmission
rates and high E,/N,. It is easy to understand these phenomena by checking
the previous capacity bounds. As shown in (3) and (1), the effective bandwidth
of data traffic is proportional to ry and ng. Deviation from the Poisson process
affects the capacity to a larger extent when the weight given to data calls is
larger.

Network service providers may specify different blocking rates for different
traffic classes. For instance, suppose that the maximum blocking probability
for voice calls is 2% while that for data calls is 5%. Let A® denote the max-
imum aggregate arrival rate with respect to the requirement of class i calls.
To meet the requirements of all traffic classes, clearly A = mini€{071}A(") . Fig-
ure 4(a) plots the per-class blocking probability versus the aggregate arrival
rate. The maximum aggregate arrival rate meeting the voice traffic require-
ment is about 1.4 calls/sec, while it is around 0.55 calls/sec for the data traffic.
It is important to balance A® in order to enhance the system capacity A.

We measure capacity imbalance between data and voice traffic using AA =
max;e (o1} A —mine(o1; A . The larger AA indicates that the capacities with
respect to individual traffic classes differ more widely; that is, the total system
capacity is more severely limited by the restricting class. In our scenarios, the
data traffic constricts the total capacity due to its larger effective bandwidth
per call. The variability of the data call arrival process exacerbates this issue.
Figure 4(b) plots AA = Ay — Ay versus ¢,. Increasing the variability of the
data call arrival process causes greater imbalance between voice and data
capacities.

The foregoing numerical results clearly show that the variability of the data

call arrival process degrades the system performance, decreasing the maximum
traffic load that can be accommodated, and making capacities unbalanced
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Fig. 4. (a) Capacity imbalance illustration (¢, = 3.0, ¢s = 1.0); (b) effect of data
call arrival variability on AA.

among different traffic classes. These results are consistent with our intuition.

The main limitation of the above MRGP-based analysis is that the holding
time of data calls must be exponentially distributed. It is a natural extension to
study a system without this restriction. The state diagram of the generalized
system has at most two generally distributed timed transitions enabled at
any state. According to [13], the state process is still a Markov regenerative
process. The difficulty, however, arises from the calculation of the local and
global kernels. Studying the generalized system analytically requires further
investigation. In the rest of the paper, we use simulation to understand the
performance of the generalized system.

4 Simulation Study

We simulate a system where the distribution of data call workload sizes is not
necessarily exponential. Three distributions are considered: Constant (c; = 0),
Exponential (¢; = 1), and Hyperexponential (¢; > 1). Similar to Fig. 2, Fig. 5
plots the normalized capacity AAP versus CV of data call inter-arrival times.
Variable A, represents the maximum aggregate arrival rate when data calls
arrive according to a Poisson process. It is the same for the different workload
size distribution according to the insensitivity property of the loss system. The
simulation results match the analytical results for the case of exponentially
distributed workload sizes. As the variability of inter-arrival times increases,
the system capacity decreases in all three cases. This is consistent with the
observations made from the numerical study. The further simulations also
verified the other results based on the previous analysis: the variability of the
data call arrival process makes capacity more unbalanced between data and
voice traffic, and the transmission rate and Ej,/N, requirement influence the
extent of capacity reduction.
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Normalized Capacity versus Variability of Data Call Arrival Process
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Fig. 5. Normalized capacity AA,, versus CV of data call inter-arrival times (2% overall
blocking)

The simulations also illustrate a counter-intuitive phenomena, which could
not be observed in the numerical analysis. As shown in Fig. 5, the capacity
decrease is more pronounced for Constant workload sizes, and less pronounced
for Hyperexponential workload sizes. The variability of the workload size (ser-
vice time) of data calls decreases the aggregate blocking probability. This is
contrary to intuition. It is generally believed that the more variable the arrival
or service time process is, the worse any of the usual queueing performance
measures will be. Our counter-intuitive result motivates further exploration of
the relationship between the service time variability and the blocking probabil-
ity in a G/GI/s/s loss system. We seek a systematic view that can corroborate
our simulation findings.

To the best of our knowledge, Wolff [17] was the first to study counter-intuitive
behaviors in queueing systems. Other simulation and numeric results [11,14—
16] also show similar phenomena. As far as we know, no one has rigorously
proved the relationship between the service time variability and the blocking
probability for the G/GI/s/s system. Thus we pursue this study based on an
approximation formula provided by Srikant and Whitt [14].

For the G/GI/s/s queue, let A denote the mean arrival rate, 1 the mean ser-
vice rate, G(x) the service time cumulative distribution function, and p the
system utilization, where p = \/(us). Next we characterize the variability of
the arrival and service-time processes. For the arrival process, we use normal-
ized arrival asymptotic variance® denoted by ¢? to partially characterize the
variability. For a deterministically evenly spaced process, ¢2 = 0; for a Poisson
process, ¢2 = 1. For a renewal process, ¢2 coincides with the Squared Coeffi-

cient of Variation (SCV) of the interarrival times. For a non-renewal process,
¢? captures correlations between different inter-arrival times. The larger ¢? is,

12 Var(A(t))

2 = limy_oo ——7—, where A(t) is the cumulative arrival count up to time ¢,
and A is the mean arrival rate.
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the more variable the arrival process is. The service times are independent,
and thus we use SCV (¢?) to measure service time variability.

Since it is difficult to study the G/GI/s/s system directly, the loss system
is often associated with the G/GI /oo model with the same arrival and ser-
vice time processes. The system variability is partially characterized by the
peakedness parameter z, which is defined as the ratio of the variance to the
mean number of busy servers in the associated G/GI/oco. The heavy-traffic
approximation [14] for the peakedness is:

2= 1+u(c§—1)/0°° - G@)] de . (15)

The value of [{°[1 — G(z)]? dz decreases as the service time distribution gets
more variable.

According to [14], the blocking probability can be approximated by:

2z ¢(—/V?)
ps ®(v/V/z)’

where v = /s(1 — p)/\/p, and ¢(-) and ®(-) are the density and cumulative
distribution functions of the standard normal distribution. Formula (16) is
asymptotically correct under the constraint \/s(1 — p)/\/p — v as s — 00 .
When this constraint is satisfied, the system must be in the heavy traffic
region. Peakedness z expressed by (15) can be used as an approximation. This
approximation is reasonable if z is not very large.

(16)

~

We combine (15) and (16) to study the qualitative behavior of the blocking
probability as a function of the service-time variability. Use T for ‘increases’, |
for ‘decreases’ and = for ‘results in’. From (15), we have: ¢2 1= 2 |, if ¢Z > 1;
Al=z2=1,ifE =1 1= 21, if & < 1. Also from (16), we have 2 7=
B 1 since ¢(—v/+/z) and ®(/+/z) are increasing and decreasing functions of
z, respectively. Combining the relationships among ¢?, z, and B, we have:

2 1=B], if 2 > 1, (17)
¢ 1= B no change, if ¢ =1, (18)
2 1=BT, if 2 < 1. (19)

Expression (17) is consistent with our simulations and (18) is consistent with
the insensitivity property of the M/GI/s/s system. As shown by (19), the
counter-intuitive phenomenon does not occur when the arrival process is less
variable than a Poisson process.

This analysis corroborates our simulation results, and enhances our under-
standing of the fundamental issues. It is generally believed that data traffic
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is much variable than voice traffic. We conclude that increased variability in
data call holding times decreases the blocking probability and increases the
effective system capacity.

5 Data Call Buffering

Our previous results show that increased variability in the data call arrival pro-
cess reduces the system capacity and exacerbates capacity imbalance among
traffic classes. These observations motivate a simple buffer-based resource
management scheme for data calls. The rationale for the data call buffer-
ing scheme is three-fold. First, data traffic is generally more tolerant to delay
than voice traffic. Second, buffering can effectively mitigate the variability in
the data call arrival process. Third, buffering data calls temporarily rather
than immediately blocking them provides these calls a better opportunity to
enter the system later. In other words, buffering can provide a controllable
performance tradeoff between voice and data calls.

The buffering scheme works as follows. Arriving data calls that encounter a
full system must enter a FIFO queue. The buffer size is infinite, so no data
call is blocked due to insufficient buffer space. Each of the buffered calls has
an associated timer set to a maximum delay tg. The timer starts when the
call enters the queue. When a call releases a channel from the system, the
system checks whether it has room for buffered data calls. If there are M,
data calls in the buffer, and there is room for M; calls, then min(M;, Ms)
data calls are removed from the buffer to access channels. Otherwise, no data
call is accepted at that moment. A call is cleared from the buffer once its
timer expires. Thus, data call blocking can occur tg seconds after arriving.
Furthermore, only unexpired data calls can access channels. For voice calls,
the system works as an ordinary loss system. If there are available resources
at the time of arrival, the call is accepted. Otherwise, the call is blocked right
away. Voice calls have priority over buffered data calls to access channels.

Buffering reduces the aggregate blocking rate by slightly increasing the data
call delay. We measure its efficiency by the relative capacity increase A(bj\_[‘,
where A® is the maximum aggregate arrival rate when data call buffering is
applied. Simulation is employed to study the impact of the stochastic proper-

ties of data calls on the efficiency of the buffering strategy.

Figure 6(a) shows the relationship between the relative capacity increase and
the variability of the data call arrival process, for three different workload size
distributions. The maximum buffer delay is 2 seconds and the overall blocking
requirement is 2%. For Poisson arrivals, the capacity improvement is marginal
(about 5%). When the data call arrival process is more variable, buffering
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Fig. 6. Effect of data call buffering (2s maximum delay) on (a) relative capacity

increase A(b;x_A; (b) capacity imbalance AA = A; — Ag .

offers capacity improvements of 10-25%. The greatest capacity improvement
is observed for the Constant workload size distribution.

The buffering scheme also provides control over the tradeoff between block-
ing rates for different traffic classes. In our earlier results, capacity imbalance
between voice and data traffic is inherent due to the higher effective band-
width of data calls. This imbalance is further aggravated by data call arrival
variability. However, the buffering scheme gives data calls more chances to en-
ter the system. The blocking probability of data traffic is thus reduced, while
that of voice traffic increases. As a result, this scheme balances the capacity
restrictions from different traffic class requirements. Figure 6(b) compares the
capacity imbalance, AA, for cases with and without buffering. In all cases,
buffering mitigates the capacity imbalance between data and voice traffic, and
thus enhances the overall capacity of the CDMA system.

In Section 4, we observed a counter-intuitive phenomenon with respect to
the variability of data call workload sizes. The phenomenon still exists when
data call buffering is applied. However, this effect is less pronounced when the
maximum buffer delay increases.

Though simple, the data call buffering scheme can effectively enhance the
system capacity when the data traffic arrival process is highly variable. Ad-
justing the maximum buffer delay provides controllable performance tradeoffs
between blocking probability and delay, and between voice and data traffic.

6 Conclusions

This paper studies a multi-service CDMA system supporting voice and data
traffic. The main emphasis in our work is on understanding the impacts of
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non-Poisson data traffic on overall CDMA system capacity.

We first study the system based on a Markov Regenerative Process (MRGP)
model, and then explore a more general system using simulation. Our results
show that increased variability in the data call arrival process decreases the
system capacity, while increased variability in data call holding times increases
the capacity. The extent of the phenomena observed depends on other system
parameters, such as transmission rates and Ej, /N, requirements. We also study
a buffer-based resource management scheme that enhances the system capacity
in the presence of high-variability data traffic.

Ongoing work is exploring the impact of correlated data call interarrival times
and workload sizes on the capacity. We also plan to investigate the capacity
of the CDMA2000-1xEVDO system using more realistic traffic models.
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