Chapter 1

WEB WORKLOAD CHARACTERIZATION:
TEN YEARSLATER

Adepele Williams, Martin Arlitt, Carey Williamson, and Ken Barker

Department of Computer Science, University of Calgary
2500 University Drive NW, Calgary, AB, Canada T2N 1N4

{aWiIIiam,arlitt,carey,barker}@cpsc.ucalgary.ca

Abstract
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In 1996, Arlitt and Williamson [Arlitt et al. 1997] conducted a comprehensive
workload characterization study of Internet Web servers. By analyzing access
logs from 6 Web sites (3 academic, 2 research, and 1 industrial) in 1994 and
1995, the authors identified 10 invariants: workload characteristics common
to all the sites that are likely to persist over time. In this present work, we
revisit the 1996 work by Arlitt and Williamson, repeating many of the same
analyses on new data sets collected in 2004. In particular, we study access
logs from the same 3 academic sites used in the 1996 paper. Despite a 30-fold
increase in overall traffic volume from 1994 to 2004, our main conclusion is that
there are no dramatic changes in Web server workload characteristics in the last
10 years. Although there have been many changes in Web technologies (e.g.,
new protocols, scripting languages, caching infrastructures), most of the 1996
invariants still hold true today. We postulate that these invariants will continue
to hold in the future, because they represent fundamental characteristics of how
humans organize, store, and access information on the Web.

Web servers, workload characterization

1. Introduction

Internet traffic volume continues to grow rapidly, having almost doubled ev-
ery year since 1997 [Odlyzko 2003]. This trend, dubbed “Moore’s Law [Moore
1965] for data traffic”, is attributed to increased Web awareness and the advent
of sophisticated Internet networking technology [Odlyzko 2003]. Emerging
technologies such as Voice-over-Internet Protocol (MolP) telephony and Peer-
to-Peer (P2P) applications (especially for music and video file sharing) further
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contribute to this growth trend, amplifying concerns about scalable Web per-
formance.

Research on improving Web performance must be based on a solid under-
standing of Web workloads. The work described in this chapter is motivated
generally by the need to characterize the current workloads of Internet Web
servers, and specifically by the desire to see if the 1996 “invariants” identified
by Arlitt and Williamson [Arlitt et al. 1997] still hold true today. The chapter
addresses the question of whether Moore’s Law for data traffic has affected the
1996 invariants or not, and if so, in what ways.

The current study involves the analysis of access logs from three Internet Web
servers that were also used in the 1996 study. The selected Web servers (Univer-
sity of Waterloo, University of Calgary, and University of Saskatchewan) are all
from academic environments, and thus we expect that changes in their workload
characteristics will adequately reflect changes in the use of Web technology.
Since the data sets used in the 1996 study were obtained between October 1994
and January 1996, comparison of the 2004 server workloads with the servers
in the 1996 study represents a span of approximately ten years. This period
provides a suitable vantage point for a retrospective look at the evolution of
Web workload characteristics over time.

The most noticeable difference in the Web workload today is a dramatic
increase in Web traffic volume. For example, the University of Saskatchewan
Web server currently receives an average of 416,573 requests per day, about 32
times larger than the 11,255 requests per day observed in 1995. For this data
set, the doubling effect of Moore’s Law applies biennially rather than annually.

The goal of our research is to study the general impact of “Moore’s Law”
on the 1996 Web workload invariants. Our approach follows the methodology
in [Arlitt et al. 1997]. In particular, we focus on the document size distribution,
document type distribution, and document referencing behavior of Internet Web
servers. Unfortunately, we are not able to analyze the geographic distribution of
server requests, since the host names and IP addresses in the access logs were
anonymized for privacy and security reasons. Therefore, this work revisits
only 9 of the 10 invariants from the 1996 paper. While some invariants have
changed slightly due to changes in Web technologies, we find that most of the
invariants hold true today, despite the rapid growth in Internet traffic. The main
observations from our study are summarized in Table 1.1.

The rest of this chapter is organized as follows. Section 2 provides some
background on Moore’s Law, Web server workload characterization, and related
work tracking the evolution of Web workloads. Section 3 describes the data
sets used in this study, the data analysis process, and initial findings from this
research. Section 4 continues the workload characterization process, presenting
the main results and observations from our study. Section 5 summarizes the
chapter, presents conclusions, and provides suggestions for future work.
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Table1.1. Summary of Web Server Workload Characteristics

Workload Characteristic  Description Satus

1. Successful Requests About 65-70% of requests to a Lower than 1994
Web server result in the successful (Section 3.1)
transfer of a document.

2. Document Types HTML and image documents together Lower than 1994
account for 70-85% of the documents (Section 3.2)
transferred by Web servers.

3. Transfer Size The median transfer size is small Same
(e.g., <5KB). (Section 3.2)

4. Distinct Requests A small fraction (about 1%) of server Same
requests are for distinct documents. (Section 3.2)

5. One-time Referencing A significant percentage of files (15-26%)  Same
and bytes (6-21%) accessed in the log (Section 4.1)
are accessed only once in the log.

6. File Size Distribution  The file size distribution and transfer Same
size distribution are heavy-tailed (Section 4.2)
(e.g., Pareto with a = 1)

7. Concentration The busiest 10% of files account for Same
approximately 80-90% of requests and (Section 4.2)
80-90% of bytes transferred.

8. Inter-Reference Times  The times between successive requests Same
to the same file are exponentially (Section 4.2)
distributed and independent.

9. Remote Requests Remote sites account for 70% or more Same
of the accesses to the server, and 80% (Section 4.2)
or more of the bytes transferred.

10. Wide-Area Usage Web servers are accessed by hosts on Not studied

many networks, with 10% of the networks
generating 75% or more of the usage.

2. Background and Related Work
Moore'sLaw and the Web

In 1965, Gordon Moore, the co-founder of Intel, observed that new computer
chips released each year contained roughly twice as many transistors as their
predecessors [Moore 1965]. He predicted that this trend would continue for at
least the next decade, leading to a computing revolution. Ten years later, Moore
revised his prediction, stating that the number of transistors on a chip would
double every two years. This trend is referred to as Moore’s Law. It is often
generalized beyond the microchip industry to refer to any growth pattern that
produces a doubling in a period of 12-24 months [Schaller 1996].

Odlyzko [Odlyzko 2003] observed that the growth of Internet traffic follows
Moore’s Law. This growth continues today, with P2P applications currently
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the most prominent contributors to growth. Press [Press 2000] argues that the
economy, sophistication of use, new applications, and improved infrastructure
(e.g., high speed connectivity, mobile devices, affordable personal computers,
wired and wireless technologies) have a significant impact on the Internet today.
This observation suggests that the underlying trends in Internet usage could have
changed over the past ten years.

The 1996 study of Web server workloads involved 6 Web sites with sub-
stantially different levels of server activity. Nevertheless, all of the Web sites
exhibited similar workload characteristics. This observation implies that the
sheer volume of traffic is not the major determining factor in Web server work-
load characteristics. Rather, it is the behavioral characteristics of the Web users
that matters. However, the advent of new technology could change user behav-
ior with time, affecting Web workload characteristics. It is this issue that we
explore in this work.

Web Server Workload Char acterization

Most Web servers are configured to record an accesslog of all client requests
for Web site content. The typical syntax of an access log entry is:
hostname - - [dd/mm/yyy:hh:mm:ss tz] document status size
The hostname is the name or IP address of the machine that generated the
request for a document. The following fields (“~ -") are usually blank, but
some servers record user name information here. The next field indicates the
day and time that the request was made, including the timezone (tz). The URL
requested is recorded in the document field. The status field indicates the
response code (e.g., Successful, Not Found) for the request. The final field
indicates the size in bytes of the document returned to the client.

Characterizing Web server workloads involves the statistical analysis of log
entries and the identification of salient trends. The results of this analysis can
provide useful insights for several tasks: enhancing Web server performance,
network administration and maintenance, building workload models for net-
work simulation, and capacity planning for future Web site growth. In our
study, we characterize Web server workloads to assess how (or if) Web traffic
characteristics have changed over time.

Related Work

Our study is not the first to provide a longitudinal analysis of Web workload
characteristics. There are several prior studies providing a retrospective look at
Web traffic evolution, four of which are summarized here.

Hernandez et al. discuss the evolution of Web traffic from 1995 to 2003 [Her-
nandez et al. 2003]. In their study, they observe that the sizes of HTTP requests
have been increasing, while the sizes of HTTP responses have been decreas-
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ing. However, the sizes of the largest HTTP responses observed continue to
increase. They observe that Web usage by both content providers and Web
clients has significantly evolved. Technology improvements such as persistent
connections, server load balancing, and content distribution networks all have
an impact on this evolution. They provide a strong argument for continuous
monitoring of Internet traffic to track its evolutionary patterns.

In 2001, Cherkasova and Karlsson [Cherkasova et al. 2001] revisited the
1996 invariants, showing several new trends in modern Web server workloads.
Their work shows that 2-4% of files account for 90% of server requests. This
level of skew (called concentration) is even more pronounced than claimed
in 1996 [Arlitt et al. 1997], when 10% of the files accounted for 90% of the
activity. The authors speculate that the differences arise from Web server side
performance improvements, available Internet bandwidth, and a greater pro-
portion of graphical content on Web pages. However, their comparison uses a
completely different set of access logs than was used in the 1996 study, making
direct comparisons difficult.

Barford et al. [Barford et al. 1999] study changes in Web client access patterns
between 1995 and 1998. They compare measurements of Web client workloads
obtained from the same server at Boston University, separated in time by three
years. They conclude that document size distributions did not change over
time, though the distribution of file popularity did. While the objective of the
research in [Barford et al. 1999] is similar to ours, their analysis was only for
Web client workloads rather than Web server workloads.

For more general workloads, Harel et al. [Harel et al. 1999] characterize a
media-enhanced classroom server. They use the approach proposed in [Arlitt
et al. 1997] to obtain 10 invariants, which they then compare with the 1996
invariants. They observe that the inter-reference times of documents requested
from media-enhanced classroom servers are not exponentially distributed and
independent. Harel et al. suggest the observed differences are due to the frame-
based user interface of the Classroom 2000 system. The focus of their study
is to highlight the characteristics of media-enhanced classroom servers, which
are quite different from our study. However, their conclusions indicate that user
applications can significantly impact Web server workloads.

A detailed survey of Web workload characterization for Web clients, servers,
and proxies is provided in [Pitkow 1998].

3. Data Collection and Analysis

Three data sets are used in this study. These access logs are from the same
three academic sites used in the 1996 work by Arlitt and Williamson. The
access logs are from;

1 A small research lab Web server at the University of Waterloo.



2 A department-level Web server from the Department of Computer Sci-
ence at the University of Calgary.

3 A campus-level Web server at the University of Saskatchewan.

The access logs were all collected between May 2004 and August 2004. These
logs were then sanitized, prior to being made available to us. In particular, the
IP addresses/host names and URLS were anonymized in a manner that met the
individual site’s privacy/security concerns, while still allowing us to examine
9 of the 10 invariants. The following subsections provide an overview of these
anonymized data sets.

We were unable to obtain access logs from the other three Web sites that
were examined in the 1996 work. The ClarkNet site no longer exists, as the ISP
was acquired by another company. Due to current security policies at NASA
and NCSA, we could not obtain the access logs from those sites.

Comparison of Data Sets

Table 1.2 presents a statistical comparison of the three data sets studied in
this chapter. In the table, the data sets are ordered from left to right based on
average daily traffic volume, which varies by about an order of magnitude from
one site to the next. The Waterloo data set represents the least loaded server
studied. The Saskatchewan data set represents the busiest server studied. In
some of the analyses that follow, we will use one data set as a representative
example to illustrate selected Web server workload characteristics. Often, the
Saskatchewan server is used as the example. Important differences among data
sets are mentioned, when they occur.

Table1.2. Summary of Access Log Characteristics (Raw Data)

Item Waterloo Calgary Saskatchewan
Access Log Duration 41 days 4 months 3 months
Access Log Start Date July 18,2004 May 1,2004  June 1, 2004
Total Requests 176,492 6,046,663 38,325,644
Avg Requests/Day 4,294 51,243 416,572
Total Bytes Transfered (MB) 13,512 457,255 363,845
Avg Bytes/Day (MB) 328.7 3,875.0 3,954.7
Response Code Analysis

As in [Arlitt et al. 1997], we begin by analyzing the response codes of the
log entries, categorizing the results into 4 distinct groups. The “Successful”
category (code 200 and 206) represents requests for documents that were found
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and returned to the requesting host. The “Not Modified” category (code 304)
represents the result from a GET If-Modified-Since request. This conditional
GET request is used for validation of a cached document, for example between
a Web browser cache and a Web server. The 304 Not Modified response means
that the document has not changed since it was last retrieved, and so no document
transfer is required. The “Found” category (code 301 and 302) represents
requests for documents that reside in a different location from that specified in
the request, so the server returns the new URL, rather than the document. The
“Not Successful” category (code 4XX) represents error conditions, in which it
is impossible for the server to return the requested document to the client (e.g.,
Not Found, No Permission).

Table 1.3 summarizes the results from the response code analysis for the
Saskatchewan Web server. The main observation is that the Not Modified
responses are far more prevalent in 2004 (22.9%) than they were in 1994 (6.3%).
This change reflects an increase in the deployment (and effectiveness) of Web
caching mechanisms, not only in browser caches, but also in the Internet. The
percentage of Successful requests has correspondingly decreased from about
90% in 1994 to about 70% in 2004. This result is recorded in Table 1.1 as
a change in the first invariant from the 1996 paper. The number of Found
documents has increased somewhat from 1.7% to 4.2%, reflecting improved
techniques for redirecting document requests.

Table 1.3.  Server Response Code Analysis (U. Saskatchewan)

Response Group  Response Code 1995 2004

Successful 200,206 90.7% 68.7%
Not Modified 304 6.3% 22.9%
Found 301,302 1.7% 4.2%
Unsuccessful 4XX 1.3% 4.2%
Total - 100%  100%

In the rest of our study, results from both the Successful and the Not Mod-
ified categories are analyzed, since both satisfy user requests. The Found and
Unsuccessful categories are less prevalent, and thus are not analyzed further in
the rest of the study.

Table 1.4 provides a statistical summary of the reduced data sets.

Document Types

The next step in our analysis was to classify documents by type. Classifica-
tion was based on either the suffix in the file name (e.g., .html, .gif, .php,
and many more), or by the presence of special characters (e.g.,a ‘?” inthe URL,



Table 1.4. Summary of Access Log Characteristics (Reduced Data: 200, 206 and 304)

Item Waterloo Calgary Saskatchewan
Access Log Duration 41 days 4 months 3 months
Access Log Start Date July 18,2004 May 1,2004  June 1, 2004
Total Requests 155,021 5,038,976 35,116,868
Avg Requests/Day 3,772 42,703 381,695
Total Bytes Transfered (MB) 13,491 456,090 355,605
Avg Bytes/Day (MB) 328 3,865 3,865
Total Distinct Bytes (MB) 616 8,741 7,494
Distinct Bytes/Day (MB) 15.00 74.10 81.45
Mean Transfer Size (bytes) 91,257 94,909 10,618
Median Transfer Size (bytes) 3,717 1,385 2,162
Mean File Size (bytes) 257,789 397,458 28,313
Median File Size (bytes) 24,149 8,889 5,600
Maximum File Size (MB) 355 193.3 108.6

or a ‘/’ at the end of the URL). We calculated statistics on the types of docu-
ments found in each reduced data set. The results of this analysis are shown in
Table 1.5.

Table 1.5. Summary of Document Types (Reduced Data: 200, 206 and 304)

Waterloo Calgary Saskatchewan
Item Regs (%) Bytes (%) Regs (%) Bytes (%) Reqgs (%) Bytes (%)
HTML 23.18 6.02 8.09 1.13 12.46 11.98
Images 63.02 10.77 78.76 33.36 57.64 33.75
Directory 4.67 0.19 3.12 0.65 13.35 19.37
CSS 0.93 0.03 2.48 0.07 6.54 0.84
Dynamic 1.96 0.09 3.63 0.55 5.78 8.46
Audio 0.00 0.00 0.01 0.16 0.01 0.29
Video 0.00 0.00 0.40 54.02 0.06 5.25
Formatted 5.13 82.32 1.02 8.30 1.30 17.25
Other 111 0.58 2.49 1.76 2.86 2.81
Total 100.0 100.0 100.0 100.0 100.0 100.0

Table 1.5 shows the percentage of each document type seen based on the
percentage of requests or percentage of bytes transferred for each of the servers.
In the 1996 study, HTML and Image documents accounted for 90-100% of the
total requests to each server. In the current data, these two types account for
only 70-86% of the total requests. This reflects changes in the underlying Web
technologies, and differences in the way people use the Web.
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Table 1.5 illustrates two aspects of these workload changes. First, the *Di-
rectory’ URLSs are often used to shorten URLS, which makes it easier for people
to remember them. Many “Directory’ URLS are actually for HTML documents
(typically index.html), although they could be other types as well. Second,
Cascading Style Sheets (CSS)* are a simple mechanism for adding fonts, col-
ors, and spacing to a set of Web pages. If we collectively consider the HTML,
Images, Directory, and CSS types, which are the components of most Web
pages, we find that they account for over 90% of all references. In other words,
browsing Web pages (rather than downloading papers or videos) is still the most
common activity that Web servers support.

While browsing Web pages accounts for most of the requests to each of the
servers, Formatted and Video types are responsible for a significant fraction of
the total bytes transferred. These two types account for more than 50% of all
bytes transferred on the Waterloo and Calgary servers, and over 20% of all bytes
transferred on the Saskatchewan server, even though less than 5% of requests
are to these types. The larger average size of Formatted and Video files, the
increasing availability of these types, and the improvements in computing and
networking capabilities over the last 10 years are all reasons that these types
account for such a significant fraction of the bytes transferred.

Web Wor kload Evolution

Table 1.6 presents a comparison of the access log characteristics in 1994 and
2004 for the Saskatchewan Web server. The server has substantially higher
load in 2004. For example, the total number of requests observed in 3 months
in 2004 exceeds the total number of requests observed in 7 months in 1995,
doing so by over an order of magnitude. The rest of our analysis focuses
on understanding if this growth in traffic volume has altered the Web server’s
workload characteristics.

One observation is that the mean size of documents transferred is larger in
2004 (about 10 KB) than in 1994 (about 6 KB). However, the median size is
only slightly larger than in 1994, and still consistent with the third invariant
listed in Table 1.1.

Table 1.6 indicates that the maximum file sizes have grown over time. A
similar observation was made by Hernandez et al. [Hernandez et al. 2003].
The increase in the maximum file sizes is responsible for the increase in the
mean. The maximum file sizes will continue to grow over time, as increases in
computing, networking, and storage capacities enable new capabilities for Web
users and content providers.

Ihttp://www.w3.org/Style/CSS



10

Table 1.6. Comparative Summary of Web Server Workloads (U. Saskatchewan)

Item 1995 2004
Access Log Duration 7 months 3 months
Access Log Start Date June 1, 1995  June 1, 2004
Total Requests 2,408,625 35,116,868
Avg Requests/Day 11,255 381,695
Total Bytes Transfered (MB) 12,330 355,605
Avg Bytes/Day (MB) 57.6 3865.2
Total Distinct Bytes (MB) 249.2 7,494
Distinct Bytes/Day (MB) 1.16 81.46
Mean Transfer Size (bytes) 5,918 10,618
Median Transfer Size (bytes) 1,898 2,162
Mean File Size (bytes) 16,166 28,313
Median File Size (bytes) 1,442 5,600
Maximum File Size (MB) 28.8 108.6
Distinct Requests/Total Requests 0.9% 0.8%
Distinct Bytes/Total Bytes 2.0% 2.1%
Distinct Files Accessed Only Once 42.0% 26.1%
Distinct Bytes Accessed Only Once 39.1% 18.3%

Next, we analyze the access logs to obtain statistics on distinct documents.
We observe that about 1% of the requests are for distinct documents. These
requests account for 2% of the bytes transferred. Table 1.6 shows that the
percentage of distinct requests is similar to that in 1994. This fact is recorded
in Table 1.1 as an unchanged invariant.

The next analysis studies “one-timer” documents: documents that are ac-
cessed exactly once in the log. One-timers are relevant because their pres-
ence limits the effectiveness of on-demand document caching policies [Arlitt
et al. 1997].

For the Saskatchewan data set, the percentage of one-timer documents has
decreased from 42.0% in 1994 to 26.1% in 2004. Similarly, the byte traffic
volume of one-timer documents has decreased from 39.1% to 18.3%. While
there are many one-timer files observed (26.2%), the lower value for one-timer
bytes (18.3%) implies that they tend to be small in size. Across all three servers,
15-26% of files and 6-21% of distinct bytes were accessed only a single time.
This is similar to the behavior observed in the 1994 data, so it is retained as an
invariant in Table 1.1.



Web Workload Characterization: Ten Years Later 11

1

0.8

0.6

04 -

Cumulative Frequency

02 ¢ Uofw —— |

UofC —---mmmer

‘ L UofS
1 10 100 1K 10K 100K 1M 10M 100M 1G
File Size in Bytes

0

Figure1.1. Cumulative Distribution (CDF) of File Sizes, by server

4, Wor kload Char acterization
Fileand Transfer Size Distributions

In the next stage of workload characterization, we analyze the file size dis-
tribution and the transfer size distribution.

Figure 1.1 shows the cumulative distribution function (CDF) for the sizes of
the distinct files observed in each server’s workload. Similar to the CDF plotted
in [Arlitt et al. 1997], most files range from 1 KB to 1 MB in size. Few files are
smaller than 100 bytes in size, and few exceed 10 MB. However, we note that
the size of the largest file observed has increased by an order of a magnitude
from 28 MB in 1994 to 193 MB in 2004.

Similar to the approach used in the 1996 study, we further analyze the file and
transfer size distributions to determine if they are heavy-tailed. In particular, we
study the tail of the distribution, using the scaling estimator approach [Crovella
et al. 1999] to estimate the tail index «.

Table 1.7 shows the « values obtained in our analysis. We find tail index
values ranging from 1.02 to to 1.31. The tails of the file size distributions for
our three data sets all fit well with the Pareto distribution, a relatively simple
heavy-tailed distribution. Since the file size and transfer size distributions are
heavy-tailed, we indicate this as an unchanged invariant in Table 1.1.

Figure 1.2 provides a graphical illustration of the heavy-tailed file and transfer
size distributions for the Saskatchewan workload, using a log-log complemen-
tary distribution (LLCD) plot. Recall that the cumulative distribution function
F(x) expresses the probability that a random variable X is less than z. By
definition, the complementary distribution is ' = 1 — F(x), which expresses
the probability that a random variable X exceeds x [Montgomery et al. 2001].
An LLCD plot shows the value of F'(x) versus z, using logarithmic scales on
both axes.
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In Figure 1.2, the bottom curve is the empirical data; each subsequent curve
is aggregated by a factor of 2. This is the recommended default aggregation
factor for use with the aest tool [Crovella et al. 1999].

On an LLCD plot, a heavy-tailed distribution typically manifests itself with
straight-line behavior (with slope «). In Figure 1.2, the straight-line behavior
is evident, starting from a (visually estimated) point at 10 KB that demarcates
the tail of the distribution. This plot provides graphical evidence for the heavy-
tailed distributions estimated previously.

Table 1.7. Comparison of Heavy-Tailed File and Transfer Size Distributions

Item Waterloo  Calgary  Saskatchewan

File Size Distribution a=110 «a=131 a = 1.02
Transfer Size Distribution o =0.86 o =1.05 oa=1.17

File Referencing Behavior

In the next set of workload studies, we focus on the file referencing pattern for
the Calgary Web server. In particular, we study the concentration of references,
the temporal locality properties, and the document inter-reference times. We
do not study the geographic distribution of references because this information
cannot be determined from the sanitized access logs provided.

Concentration of References. The term “concentration” of references
refers to the non-uniform distribution of requests across the Web documents
accessed in the log. Some Web documents receive hundreds or thousands of
requests, while others receive relatively few requests.

9
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Our first step is to assess the referencing pattern of documents using the
approach described in [Arlitt et al. 1997]. Similar to the 1996 results, a few
files account for most of the incoming requests, and most of the bytes trans-
ferred. Figure 1.4 shows a plot illustrating concentration of references. The
vertical axis represents the cumulative proportion of requests accounted for by
the cumulative fraction of files (sorted from most to least referenced) along the
horizontal axis. High concentration is indicated by a line near the upper left
corner of the graph. As a comparison, an equal number of requests for each
document would result in a diagonal line in this graph. Clearly, the data set in
Figure 1.4 shows high concentration.

Another approach to assess non-uniformity of file referencing is with a popu-
larity profile plot. Documents are ranked from most popular (1) to least popular
(N), and then the number of requests to each document is plotted versus its rank,
on a log-log scale. A straight-line behavior on such a graph is indicative of a
power-law relationship in the distribution of references, commonly referred to
as a Zipf (or Zipf-like) distribution [Zipf 1949].

Figure 1.5 provides a popularity profile plot for each workload. The general
trend across all three workloads is Zipf-like. There is some flattening in the
popularity profile for the most popular documents. This flattening is attributable
to Web caching effects [Williamson 2002].

Temporal Locality. In the next set of experiments, we analyze the ac-
cess logs to measure temporal locality. The term “temporal locality” refers to
time-based correlations in document referencing behavior. Simply expressed,
documents referenced in the recent past are likely to be referenced in the near
future. More formally stated, the probability of a future request to a document
is inversely related to the time since it was most recently referenced [Mahanti
et al. 2000].
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Note that temporal locality is not the same as concentration. High con-
centration does not necessarily imply high temporal locality, nor vice versa,
though the two concepts are somewhat related. For example, in a data set with
high concentration, it is likely that documents with many references are also
referenced in the recent past.

One widely used measure for temporal locality is the Least Recently Used
Stack Model (LRUSM). The LRUSM maintains a simple time-based relative
ordering of all recently-referenced items using a stack. The top of the stack
holds the most recently used document, while the bottom of the stack holds the
least recently used item. At any point in time, a re-referenced item D is pulled
out from its current position P, and placed on top of the stack, pushing other
items down as necessary. Statistics are recorded regarding which positions P
tend to be referenced (called the stack distance). An item being referenced for
the first time has an undefined stack distance, and is simply added to the top of
the stack. Thus the size of the stack increases only if a document that does not
exist already in the stack arrives.

Temporal locality is manifested by a tendency to reference documents at or
near the top of the stack. We perform an LRUSM analysis on the entire access
log and plot the reference probability versus the LRU stack distance.

Figure 1.6 is a plot of the relative referencing for the first 100 positions of
the LRUSM. In general, our analysis shows a low degree of temporal locality,
as was observed in the 1996 paper.

The temporal locality observed in 2004 is even weaker than that observed
in the 1994 data. We attribute this to two effects. The first effect is the in-
creased level of load for the Web servers. As load increases, so does the level
of “multiprogramming” (i.e., concurrent requests from different users for unre-
lated documents), which tends to reduce temporal locality. The second effect is
due to Web caching [Williamson 2002]. With effective Web caching, fewer re-
quests propagate through to the Web server. More importantly, only the cache
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Figure 1.7. Distribution of hourly request arrival rate, by server

misses in the request stream reach the server. Thus Web servers tend to see
lower temporal locality in the incoming request stream [Williamson 2002].

Inter-referenceTimes.  Next, we analyze the access logs to study the inter-
reference times of documents. Our aim is to determine whether the arrival
process can be modeled with a fixed-rate Poisson process. That is, we need
to know if the inter-reference times for document requests are exponentially
distributed and independent, with a rate that does not vary with time of day.

Figure 1.7 shows a time series representation of the number of requests
received by each server in each one hour period of their respective access logs.
The aggregate request stream follows a diurnal pattern with peaks and dips, and
thus cannot be modeled with a fixed-rate Poisson process. This observation is
consistent with the 1996 study, and is easily explained by time of day effects.
For instance, most people work between 9:00am and 6:00pm, and this is when
the number of requests is highest.

Similar to the approach in [Arlitt et al. 1997], we study the request arrival
process at a finer-grain time scale, namely within a one-hour period for which we
assume the arrival rate is stationary. The intent is to determine if the distribution
of request inter-arrival times is consistent with an exponential distribution, and
if s0, to assess the correlation (if any) between the inter-arrival times observed.

Figure 1.8 showsalog-log plot of the complementary distribution of observed
inter-arrival times within a selected hour, along with an exponential distribution
with the same mean inter-arrival time. The relative slopes suggest that the
empirical distribution differs from the exponential distribution, similar to the
1996 findings.

Finally, using the approach proposed by Paxson and Floyd [Paxsonetal. 1995],
we study the inter-arrival times of individual busy documents in detail. We use
the same threshold rules suggested in the 1996 study, namely that a “busy”
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document is one that is accessed at least 50 times in at least 25 different non-
overlapping one-hour intervals.

We study if the inter-arrival times for these busy documents are exponentially-
distributed and independent. The Anderson-Darling (A?) test [Romeu 2003] is
a goodness-of-fit test suitable for this purpose. It compares the sampled distri-
bution to standard distributions, like the exponential distribution. We express
our results as the proportion of sampled intervals for which the distribution is
statistically indistinguishable from an exponential distribution. The degree of
independence is measured by the amount of autocorrelation among inter-arrival
times.

Unfortunately, we do not have definitive results for this analysis. The dif-
ficulty is that Web access logs, as in 1996, record timestamps with 1-second
resolution. This resolution is inadequate for testing exponential distributions,
particularly when busy Web servers record multiple requests with the same
arrival time (i.e., an inter-arrival of 0, which is impossible in an exponential
distribution). We do not include our findings in this chapter because we could
not ascertain our A2 coefficient values for this test. However, since the doc-
ument inter-arrival times closely follow the 1996 results for the two previous
levels of analysis, we have no evidence to refute the invariant in Table 1.1. We
believe that the inter-reference times for a busy document are exponentially
distributed and independent.

RemoteRequests.  While we do not have actual IP addresses or host names
recorded in our logs, the sanitized host identifier included with each request
indicates whether the host was “local” or “remote”. For the Saskatchewan data
set, 76% of requests and 83% of bytes transferred were to remote hosts. For
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the Calgary data set, remote hosts issued 88% of requests and received 99% of
the bytes transferred.?

These proportions are even higher than in the 1994 workloads. We conclude
that remote requests still account for a majority of requests and bytes transferred.
This invariant is recorded Table 1.1.

Limitations. We could not analyze the geographic distribution of clients
as in [Arlitt et al. 1997] because of sanitized IP addresses in the access logs.
Also, we do not analyze the impact of user aborts and file modifications in this
study because we do not have the error logs associated with the Web access
logs. The error logs are required to accurately differentiate between user abort
and file modifications.

5. Summary and Conclusions

This chapter presented a comparison of Web server workload characteristics
across a time span of ten years. Recent research indicates that Web traffic
volume is increasing rapidly. We seek to understand if the underlying Web
server workload characteristics are changing or evolving as the volume of traffic
increases. Our research repeats the workload characterization study described
in a paper by Arlitt and Williamson, using 3 new data sets that represent a subset
of the sites in the 1996 study.

Despite a 30-fold increase in overall traffic volume from 1994 to 2004, our
main conclusion is that there are no dramatic changes in Web server work-
load characteristics in the last 10 years. Improved Web caching mechanisms
and other new technologies have changed some of the workload character-
istics (e.g., Successful request percentage) observed in the 1996 study, and
had subtle influences on others (e.g., mean file sizes, mean transfer sizes, and
weaker temporal locality). However, most of the 1996 invariants still hold true
today. These include one-time referencing behaviors, high concentration of
references, heavy-tailed file size distributions, non-Poisson aggregate request
streams, Poisson per-document request streams, and the dominance of remote
requests. We speculate that these invariants will continue to hold in the future,
because they represent fundamental characteristics of how humans organize,
store, and access information on the Webh.

In terms of future work, it would be useful to revisit the performance impli-
cations of Web server workload characteristics. For example, one could extend
this study to analyze caching design issues to understand if the changes ob-
served in these invariants can be exploited to improve Web server performance.
It will also be interesting to study other Web server access logs from commer-

2The Waterloo data set did not properly distinguish between local and remote users.
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cial and research organizations to see if they experienced similar changes in
Web server workloads. A final piece of future work is to formulate long-term
models of Web traffic evolution so that accurate predictions of Web workloads
can be made.
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