An Analysis of TCP Reset Behaviour on the Internet

Martin Arlitt Carey Williamson
Department of Computer Science
University of Calgary
Calgary, AB, Canada, T2N 1N4
E-mail: {arlitt,carey}@cpsc.ucalgary.ca

October 30, 2004

Abstract

This paper presents a one-year study of Internet packet traffic from a large campus network, showing that
15-25% of TCP connections have at least one TCP RST (reset). Similar results have also been observed from
measurements of other Internet links. The results in this paper show that reset connections arise from local
events such as network outages, attacks, or reconfigurations, as well as from global trends in TCP usage. In
particular, we identify application-level Web behaviour as the primary contributor to the global trend in reset
TCP connections. The most prevalent anomaly is the absence of the normal FIN handshake for connection
termination. Instead, connections are often reset by the client. We believe that particular implementations of
HTTP/TCP connection management cause this global trend.

1 Introduction

The Transmission Control Protocol (TCP) is a connection-oriented transport-layer protocol that provides reliable
byte-stream delivery between two hosts on a network [8]. TCP is the dominant transport-layer protocol on the
Internet today, carrying more than 90% of all data traversing backbone links [4, 9, 10].

A normal TCP connection passes through several distinct states, from the connection establishment phase to
connection termination. All TCP implementations should follow this behaviour, to ensure reliable data transfer
to any other TCP-enabled host on the network.

Recent Internet traffic measurements suggest that many TCP connections are not following the rules. For
example, in a recent study of Internet-bound traffic from a large campus network, 20-80% of TCP connections
observed are abnormal, in that they experience at least one TCP reset. Similar results were observed in our
measurements of backbone links operated by a commercial network service provider. This phenomenon has been
observed on other networks as well, including Lawrence Berkeley Labs (LBL) [7].

In this paper we show how local events and global trends are responsible for this behaviour. One of the global
trends is the absence of the normal FIN handshake for connection termination. Instead, many connections are
reset by the client (i.e., the originator of the connection), and others by the server. While there are many possible
reasons for this, including user behaviours, erroneous TCP implementations, and misbehaving network devices,
evidence suggests that network applications (e.g., Web browsers) are the real cause.

Our goal in this paper is to identify the different causes of abnormal TCP connections, quantify their frequency
of occurrence, and determine whether they are intentional or unintentional.

The remainder of the paper is organized as follows. Section 2 provides some background information on TCP
and the terminology used in this paper. Section 3 describes the experimental methodology for our measurements.
Section 4 presents the results from our study. Finally, Section 5 concludes the paper.

2 TCP Background

TCP is a connection-oriented, end-to-end reliable-byte-stream transport-layer protocol [8]. It is widely used on
the Internet and in the Web. This section defines TCP terminology relevant for understanding this paper. More
detail on HTTP TCP behaviour appears in [2].

The fundamental unit of data transfer in TCP is a byte (i.e., for sequence numbering, flow control, and error
control purposes). However, TCP implementations generally work with a larger logical unit size called a segment
when transmitting packets across an IP internetwork. The Maximum Segment Size (MSS) is a settable parameter
for a TCP transfer. The choice of the MSS typically depends on the Maximum Transmission Unit (MTU) size
supported by the underlying network layer. In most instances, each TCP segment is carried in one IP packet;
hence we use the terms segment and packet interchangeably throughout the paper.

The task of TCP is to divide the application-layer data into one or more segments, transmit them across the
network, and deliver them reliably (and in order) to the receiving TCP. Each segment carries an explicit sequence
number, for the purposes of ordering and reliability.

TCP uses a three-way handshake for reliable connection management. The opening handshake uses the SYN
flag bit in the TCP packet header. The purpose of this handshake is to ensure that the other endpoint exists
and is willing to establish a connection, and that the request is genuine (i.e., not a delayed duplicate, or a replay
attack). During this handshake, the two endpoints establish the starting sequence numbers for data transfers in
each direction, set connection parameters (e.g., MSS), and negotiate desired options (e.g., timestamps, SACK, or
the window scale option for high bandwidth-delay product networks).

The closing handshake uses the FIN flag bit in the TCP packet header. The purpose of this handshake is to
ensure that each endpoint has received, delivered, and acknowledged all application-layer data that was sent while
the connection was open. Either endpoint can initiate the close of the connection. Once each endpoint has sent a
FIN and acknowledged the other endpoint’s FIN, the connection is marked as CLOSED. The connection record
then remains in a TIME_WAIT state for a few minutes before being recycled for use as another TCP connection
state record.

The RST (reset) bit in the TCP packet header is used to signal error conditions detected by TCP. For example,
the arrival of a data packet for which no connection is open would generate a TCP reset. Similarly, the arrival of
a TCP segment with an inappropriate sequence number, or the arrival of a SYN ACK packet for which no SYN
had been initiated, would also trigger a TCP reset.

The TCP RST provides the means for a TCP endpoint to indicate that something seriously wrong has
happened within the network, and that a new TCP connection needs to be established, if reliable communication
is to continue. In normal operation, TCP resets are a relatively rare event, analogous to MAC-layer collisions on
a CSMA/CD Ethernet LAN (i.e., the exception, rather than the rule).

Our recent measurements indicate that a disproportionately large number of TCP connections experience
TCP resets. Our measurement experiments seek the cause(s) of this anomalous behaviour.

3 Experimental Methodology

There are two main parts to our study: passive measurements from a campus network, and active measurements
with different client and server platforms. This section describes the methodology for each part of the study.

3.1 Passive Measurements

The primary data set in our paper comes from passive network traffic measurements of the campus network at the
University of Calgary. In cooperation with staff from University of Calgary Information Technologies (UCIT), the
administrators of the campus network, we installed a network monitoring machine at the main campus router.

The monitoring machine is a dual-processor Dell (two 1.4 GHz Pentium III processors) with 2 GB RAM and
140 GB of disk. The campus network backbone is currently connected to the commercial Internet via a 100 Mb/s
full-duplex Ethernet link. The traffic on that network link is forwarded (via port mirroring) to our monitor via
a 1 Gb/s half-duplex Ethernet link.

Table 1: Application Software and Operating Systems Tested
| Software | Versions |
Client Web Browser Mozilla 5.0, Internet Explorer 6.0
Local HTTP Server Apache 1.3.27
Remote HTTP Server Apache 2.0.52, Microsoft IIS 6.0, Zeus 4.4, SunONE 6.0

| Client Operating System | RedHat Linux 9.0, Windows 2000 |

We use tepdump! for our network measurements. It allows collection of TCP /IP packet headers, and (option-
ally) packet payloads as well. For the primary measurements in this paper, we configured the software to collect
all TCP SYNs, FINs, and RSTs traversing the University’s commercial Internet backbone link. These packets
are recorded to a file, with a new file created for each 1 hour of network traffic. The recorded files are then
moved off the monitoring machine to an analysis machine. The 24 files for each day are concatenated together
(in timestamp order), and processed using Bro?. Bro was originally designed for network intrusion detection, and
thus is a very powerful tool for analyzing network traffic. We have written a number of scripts in Bro’s scripting
language which we use to specify our analyses.

The measurement results in this paper focus on two traces. The first covers the year-long period spanning Oc-
tober 1, 2003 through September 30, 2004. This trace contains 26,839,809,058 packets, comprising 7,893,035,860
TCP connections. Later in the paper we examine a day-long trace from August 31, 2004. The second trace
records all packets sent via the commercial Internet link between non-university clients and the campus Web
server. There are 361,420 connections and 14,393,799 packets in this trace. This trace is used to examine causes
of the global trend. The passive measurement results appear in Section 4.1.

3.2 Active Measurements

The passive measurements identified a large number of reset TCP connections on the campus network. Further
investigation (described in Section 4.1) identified that many of these reset connections were for Web transactions.
Because of this anomaly, we conducted isolated tests with several different Web browsers, Web servers, and
operating systems in an attempt to discern the sources of the TCP resets.

These tests used active measurement techniques to initiate HT'TP/TCP connections from a client to a server.
The tcpdump software was run simultaneously on the network to record packet traces of the resulting activity.

Table 1 summarizes the software configurations used in our manual testing of Web clients and Web servers.
According to a Netcraft survey [5] in October 2004, the four most prevalent Web servers on the Internet are
Apache (67.92%), Microsoft Internet Information Server (IIS) (21.09%), SunONE (3.04%), and Zeus (1.35%). All
four of these are tested in our study.

On the client side, we initiate HT'TP connections in two different ways: from a browser (e.g., Mozilla, Internet
Explorer), and from the command line using telnet to port 80 on the server. The use of these two techniques
allows us to assess application-layer HTTP/TCP behaviour separately from the TCP protocol stack embedded
in the operating system kernel. We consider one version of Linux (RedHat 9.0), and one version of Windows
(Windows 2000). The active measurement results appear in Section 4.2.

4 Results

4.1 Passive Measurements

Figure 1 provides a graphical representation of the TCP connection activity between the University of Calgary
and the commercial Internet for the period spanning October 1, 2003 through September 30, 2004. The top

Thttp://www.tcpdump.org/
2http://www.icir.org/vern/bro-info.html

1000
100

o=y T

S =V AN N - CNN O T S T VT
[RTAT] l:i",' ATV AR TR TRV VAT
LR O A Y1

TCP Connections/Day
(Millions)
H
o

1 3 -
0.1 I | | | | 'I | | | | | |

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

2003 2004

Figure 1: Total Daily TCP and HTTP Connection Activity (U. Calgary)

Table 2: Summary of Selected TCP Connection States Reported by Bro
| State | Description |
| SF | Normal SYN handshake for initiation and FIN handshake for completion |

REJ | Connection rejected. Initial SYN elicited a RST in reply.
RSTO | Connection reset by originator.
RSTR | Connection reset by responder.
S0 Initial SYN seen, but no reply.
S1 Connection established (SYNs exchanged), but nothing further seen.

line represents the total number of TCP connections each day, while the bottom line represents HTTP TCP
connections (to or from well-known TCP port 80).

Several observations are evident from Figure 1. First, the number of TCP connections sampled in our study
is on the order of tens of millions per day, large enough to provide reasonable estimates of the TCP connection
states on which we focus. Second, a significant fraction of the TCP connections, approximately 35%, are for
HTTP (Web) traffic. Third, the HTTP proportion of the total TCP traffic is relatively consistent across the one-
year period studied. There are noticeable weekly patterns, and longer-term trends consistent with the academic
calendar. These behaviours are very pronounced in the HTTP data, since most Web traffic is human-initiated.
The patterns are less pronounced in the TCP data, since many TCP connections are machine-generated.

Figure 1 shows that there are three obvious anomalies in this data set. The first occurred February 27, 2004.
A brief power outage corrupted the file system on our monitor, which had to be manually repaired. The second
occurred in mid-May, and the third on July 10, 2004. Both of these involved machine-generated (local) events.
We provide more details on these two events later in the paper.

The next step in our analysis was to classify each observed TCP connection based on the state reported by
Bro. This state indicates whether the connection was “normal” or “abnormal”. Among the abnormal states, Bro
classifies each connection according to the packet patterns observed.

Table 2 provides a description of the most relevant TCP connection states. A “normal” TCP connection has
a proper SYN handshake and FIN handshake (SF). Abnormal connections can take many possible states. The
most common of these abnormal states are REJ, RSTO, and RSTR.

Figure 2 shows the results from classifying all of the TCP connections from our measurement data. The graph
shows the daily percentages observed for each of the five most prevalent TCP connection states. The name of
each state appears to the right of its associated band in the graph.

Figure 2 shows that the “normal” SF case (middle of the graph) is the most common state observed in the
overall TCP traffic. However, the SF percentage is a lot lower than expected: it ranges between 20% and 60%,
with an overall average of about 40%.

The SO (SYN only) and REJ (reject) states combined are the next most common. These are the bottom two

8 STATE
oS 100 e -

Sg% 80

o C

8o 60

c0O

On 40

= O

S 20
g 0 - T T T T T T T T T T J 'SO
= Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct

2003 2004

Figure 2: TCP Connection Status (All TCP Connections)

bands in Figure 2. These values are inflated due to several local events. Between October 1 and December 19,
2003, approximately 40% of connections were in the REJ state. A local service moved to a new server (with a
new IP address), but numerous remote clients were either configured with the TP address rather than the fully
qualified domain name, or had a stale entry in their DNS caches. As a result, these remote client machines
continuously attempted to establish a TCP connection to a now closed port on the old server. On December
19, 2003 a router on the campus network was configured to drop these SYN packets before they reached the old
server. As a result, Figure 2 shows a dramatic drop in the REJ connections, and a corresponding increase in the
S0 connections (as our monitor still saw the incoming SYN packets).

In mid May and again on July 10, there were significant spikes in the percentage of TCP connections in
the SO state. The spikes in mid May were caused by a single client trying to reach a non-existent Web server.
The rate at which these connection requests were issued indicates that the underlying HTTP requests were not
human-generated. The large spike in July was an attempted scan of a single machine.

Even if these local events are ignored, there are still many connections with SO or REJ states. We attribute
much of this to hosts scanning other hosts or networks, and expect that this is a global trend. There are likely
other local events hidden within Figure 2, since the percentage of SO connections is currently much higher than
it was a year ago. However, we defer a more detailed analysis of these states for future work.

The next two most common TCP states are RSTO and RSTR. These correspond to connections that actually
transferred data between the client and server (in one or both directions), but that were then reset by either
the client (RSTO) or the server (RSTR), rather than terminated with a FIN handshake. Figure 2 shows that
approximately 15% of TCP connections fall into one of these two categories. These percentages are relatively
stable throughout the trace, suggesting this is likely a global trend.

Figure 3 provides a further breakdown of the data, by focusing on the TCP states observed for HT'TP TCP
connections (a subset of the total TCP activity). The normal SF state is the most prevalent, accounting for
approximately 70% of all HTTP connections throughout the year. The percentages are quite stable, with the
exception of the anomaly in May mentioned earlier. Figure 3 shows that the local anomaly persisted much longer
than was evident in Figure 2. With the exception of this anomaly, the proportion of REJ and SO states has
dropped significantly, suggesting that most of the failed connection attempts in the overall TCP traffic are not
HTTP-related.

The main observation in Figure 3 is that the proportion of TCP RST states has increased significantly,
particularly for resets by the originating client. Across the entire duration of the trace, the RSTO state accounted
for about 22% of the HTTP TCP traffic, while the RSTR state averaged around 3%. These behaviours occur
consistently, on a daily basis, suggesting that they are a stable part of the Internet traffic.

Percentage of
Total HTTP Connections

Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
2003 2004

Figure 3: TCP Connection Status (HTTP TCP Connections)

4.2 Active Measurements

In an attempt to pinpoint the sources of the TCP reset behaviours, we manually conducted isolated experiments
with selected Web client and Web browser software. Using tcpdumyp packet traces, we then classified the connection
state that resulted from each test scenario.

The first set of tests involved remote Web servers hosting commercial Web sites. In particular, we chose the
Apache, Microsoft, Zeus, and Sun Web sites, since these sites all run a recent version of their corresponding
Web server software. Each of these sites supports persistent connections. We expect that each server has a
management procedure to close idle TCP connections. The most common management approaches are likely
timeout-based (e.g., close a connection if it has been idle for more than N seconds) and threshold-based (e.g., if
more than X persistent connections are open, then close the connection that has been idle the longest).

To study the TCP connection behaviour, we telnet to port 80 on each server and issue an HTTP request, and
keep the connection open. From tcpdump, we can see how the server closes the connection. Note that we are
only interested in the TCP behaviour when the connection is closed, not in determining the management policy
(e.g., timeout, threshold) in use by the server. (The aggressiveness of connection closing likely depends on Web
workload and TCP resource usage, both at the server and the client.) We also initiate requests from common
Web browser platforms to see if there are any differences in TCP behaviour.

Table 3 summarizes the results from these active measurement tests. The first column indicates the technique
used to initiate client connections, along with additional relevant information about the human client behaviour.
All tests used HTTP/1.1, with persistent connections.

The results in Table 3 illustrate two main points. First, among the four different Web servers tested, three
used the proper FIN handshake to terminate an idle persistent connection, while one (Microsoft IIS) used a TCP
RST. This type of server behaviour is likely responsible for many of the responder RSTs (RSTR) observed in the
campus TCP traffic. This feature of IIS is used to reduce the number of connections that enter the TIME_WAIT
state on the server [6].

Second, one of the client browsers tested (Microsoft Internet Explorer on Windows 2000) used TCP RST to
terminate connections. The Internet Explorer (IE) browser on Windows 2000 consistently used TCP RSTs to
close persistent connections, regardless of the server with which it was communicating. Since telnet on Windows
2000 also used the proper FIN handshake to close TCP connections, we expect that the version of IE 6.0 we are
using on Windows 2000 is shutting down the connection in a non-graceful manner 2.

Given the widespread use of Internet Explorer, and its apparent non-standard use of TCP for some versions
(we previously observed similar behaviour with IE 5.5 on Windows 2000), we hypothesize that it accounts for the
bulk of the RSTO states in our traffic measurements.

A second set of tests was conducted with a local Web client and a local Web server, to demonstrate that
the foregoing behaviours are repeatable. By using a local Web server (Apache 1.3.27), we can control the server

3http://msdn.microsoft.com/library/en-us/winsock/winsock/shutdown_2.asp

Table 3: Summary of Active Measurement Test Scenarios

| Client | Server [State | Comments (times are approximate)
telnet to port 80, Apache | SF Server initiates FIN handshake after 5-second timeout.
issue “HEAD / HTTP/1.1 I1S RSTR | Server closes with TCP RST after 1 minute.
Host: <server>" and wait Zeus SF Server initiates FIN handshake after 10 seconds.
(RedHat Linux 9.0) SunONE | SF Server closes with FIN handshake after 1 minute.
telnet to port 80, Apache | SF Server initiates FIN handshake after 5-second timeout.
issue “HEAD / HTTP/1.1 I1S RSTR | Server closes with TCP RST after 1 minute.
Host: <server>" and wait Zeus SF Server initiates FIN handshake after 10 seconds.
(Windows 2000) SunONE | SF Server initiates FIN handshake after 2 minutes.
telnet to port 80, Apache | SF Server initiates FIN handshake after 5-second timeout.
issue “HEAD / HTTP/1.1 IIS RSTR | Server closes with TCP RST after 1 minutes.
Host: <server>" and wait Zeus SF Server initiates FIN handshake after 10 seconds.
(Windows XP) SunONE | SF Server initiates FIN handshake after 1 minute.
Apache | SF Server initiates FIN handshake after 5-second timeout.
Mozilla 5.0 IS RSTR | Server closes with TCP RST after 1 minute.
browser Zeus SF Server initiates FIN handshake after 10 seconds.
(RedHat Linux 9.0) SunONE | SF Server initiates FIN handshake after 2 minutes.
Microsoft Apache | RSTO | Browser closes persistent connection with TCP RST.
Internet IS RSTO | Browser closes persistent connection with TCP RST.
Explorer 6.0 Zeus RSTO | Browser closes persistent connection with TCP RST.
(Windows 2000) SunONE | RSTO | Browser closes persistent connection with TCP RST.

configuration, including the server mechanisms (e.g., timeout setting) for closing persistent connections.

The results from the local tests were consistent with those observed with the remote Web servers. In addition,
the local tests showed that IE closes idle connections after 60 seconds, if resource demands do not require
reclaiming connections sooner. In all tests, Mozilla closes TCP connections properly (SF), as did telnet on Linux
and Windows.

In the tests reported here, the browsers do not have a large number of persistent connections open at one
time. In actual usage, browsers may need to close persistent connections more aggressively (e.g., if a client
visits a new site different from what they are currently viewing). We have observed cases where IE does in fact
close connections more aggressively. Again, it used TCP RSTs rather than FINs. IE also used RSTs to close
connections that were still open when the user exited the browser application. Mozilla used FINs to handle this
case.

4.3 Browser-Level Analysis

To close our measurement study, we present in Table 4 a more detailed breakdown by browser type of the TCP
connection states observed for clients visiting our campus web server. We use a trace involving a single server so
that we can focus on the behaviour of the browsers.

We used Bro to analyze the relationship between the browser used (indicated by the HTTP User-Agent
request header) and the TCP connection state.

Table 4 shows the ten most common user-agents in the trace. These agents account for 81.5% of all connections
in the trace. The most common browser seen was IE 6.0 on Windows XP. This type of browser established 39.8%
of all the TCP connections in the trace. Among this subset of connections, 36% ended with the proper FIN
handshake, while 60% were reset by the client.

Table 4 shows that all of the IE browsers had roughly similar behaviour. The single Gecko browser on the list,
as well as the “Crawlers” group typically used the FIN handshake to terminate their connections. This suggests
that there is not a problem with the server.

Table 4: Browser-Level Analysis of TCP Behaviour

| User-Agent | 0S | Connections (%) || SF (%) | RSTO (%) | RSTR (%) |
IE 6.0 Windows XP 39.8 36.3 60.4 1.2
IE 6.0 Windows 2000 14.3 46.4 51.3 1.1
IE 6.0 Windows 98/ME 9.1 30.6 65.0 3.3
crawlers 8.2 98.4 1.4 0.0
IE 5.x MacOS 2.3 5.2 93.3 0.5
IE 5.5 Windows 2000 1.8 54.0 43.4 1.3
IE 5.0 Windows 98/ME 1.7 47.8 43.6 6.4
IE 5.5 Windows 98 /ME 1.6 38.9 55.5 4.6
IE 5.0 Windows 2000 1.4 53.9 39.4 2.7
Gecko 2004 | Windows XP 1.3 85.7 13.3 0.5

The percentage of reset connections seen in this trace is higher than what we have seen in the overall network
trace. We believe that this is primarily due to the aggressive closing of persistent connections by the server. The
particular server that we monitored actively closed connections if they were idle for a mere two seconds. On
connections using IE as the browser, the client typically responded with a RST, rather than completing the FIN
handshake.

The aggressive closing of persistent connections is also responsible for some of the RSTR connections. The
shorter the idle timeout, the greater the probability that another request from the client is in transit when the
server sends its FIN packet to initiate the active closing of the connection. If a request arrives after the server
has sent a FIN packet, the server issues a RST, resulting in a RSTR state for that connection.

One possible reason that a browser may reset a connection (other than to abort a transfer when a problem
has occurred) is to reduce the number of TIME_WAIT states on the server [6]. However, it is in the client’s
best interest to ensure that a connection does not get reused too quickly (the role of TIME_WAIT). Specifically,
when problems occur with TCP connections, the user’s Web browsing experience is degraded. A better approach
for reducing TIME_WAIT overhead on Web servers is for clients to be more proactive, judiciously closing server
connections using the proper FIN handshake. The TIME_WAIT state is then maintained at the client, rather
than the server.

There is another side effect of resetting TCP connections. We have observed situations where a client has
received a complete response on a connection that it reset, and then seen the client immediately request the same
file again on a different connection. This not only degrades the user’s Web experience, but leads to redundant
transfers across the Internet.

The overhead of managing TCP connections in a TIME_WAIT state can be significant [1, 3]. Thus it is
understandable why some servers choose to RST connections that have been idle for a long period of time.
However, we believe that this should only be done if absolutely necessary (e.g., if the server is actually busy and
needs to reduce its overhead), and not as a general practise.

5 Conclusions

This paper describes the different causes of abnormal TCP connections. Our measurement results show that
application-level browser behaviour is the primary contributor to the global trend of abnormal TCP behaviours.
Specifically, irregularities in the implementation and management of persistent HT'TP connections are the cause
of this problem. Correcting the TCP behaviour of a popular Web browser would likely eliminate most of these
TCP RST anomalies.

Our short-term future work involves creating more sophisticated Bro scripts to analyze the HI'TP transactions
more rigourously. Our longer-term plans include a longitudinal study of TCP behaviour, digging deeper into
anomalies and trends that arise.

Acknowledgments

Financial support for this research was provided by iCORE (Informatics Circle of Research Excellence) in the
Province of Alberta and by the Natural Sciences and Engineering Research Council (NSERC) of Canada. The
authors are grateful to Dan Clark, David Jager, and Tom Seto from University of Calgary Information Technologies
(UCIT) for providing access to the campus Internet traffic, to Rob Simmonds and Nayden Markatchev for their
assistance with deploying and operating the network monitor, to Vern Paxson for his assistance with Bro, and to
Venkat Padmanadhan for providing information about Internet Explorer and IIS.

References

[1] M. Aron and P. Druschel, “TCP Implementation Enhancements for Improving Webserver Performance”,
Proceedings of IEEE Infocom, March 1999.

[2] P. Barford and M. Crovella, “Critical Path Analysis of TCP Transactions”, Proceedings of ACM SIGCOMM,
September 2000.

[3] T.Faber, J. Touch, and W. Yue, “The TIME-WAIT state in TCP and Its Effects on Busy Servers”, Proceedings
of IEEE Infocom, March 1999.

[4] C. Fraleigh et al., “Packet-Level Traffic Measurements from the Sprint IP Backbone”, IEEE Network, 2003.

[5] Netcraft Web Server Survey,
http://news.netcraft.com/archives/web_server_survey.html

[6] V. Padmanabhan, personal communication (email), September 22, 2003.
[7] V. Paxson, personal communication (email), May 11, 2003.
[8] W. Stevens. TCP/IP Illustrated, Volume 1, Addison-Wesley, New York, 1994.

[9] K. Thompson, G. Miller, and R. Wilder, “Wide-area Internet Traffic Patterns and Characteristics”, IEEFE
Network, Vol. 11, No. 6, pp. 10-23, November/December 1997.

[10] C. Williamson, “Internet Traffic Measurement”, IEEE Internet Computing, Vol. 5, No. 6, pp. 70-74, Novem-
ber/December 2001.

