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Abstract— Unresponsive streaming media traffic can signifi-
cantly impede the performance of other networking applications
and even endanger the stability of the Internet. Therefore, with
increased deployment of high-bandwidth commercial streaming
video applications on the Internet, understanding the characteris-
tics of proprietary streaming formats is pertinent. In this paper,
we use an experimental testbed to characterize the behaviour
of RealVideo streams under different network conditions, with
special emphasis on understanding their “TCP friendliness”. In
many scenarios, our experimental results show that RealVideo
streams are not TCP friendly. The results also show that the
new TurboPlay feature fundamentally changes the behaviour of
RealVideo streams, making them more aggressive.

Keywords: RealVideo; Media streaming performance; Net-
work measurement; Network emulation; TCP friendliness

I. INTRODUCTION

Recent years have witnessed ever-increasing demand for
media-on-demand applications on the Internet. Typically, users
access online media clips by clicking on a hyperlink using
their Web browser, which results in the browser opening a
media player to play the selected media file. Usually, the server
delivers the selected media file to the player using a technique
known as streaming. With streaming, there is a brief buffer-
filling period for the initial portion of the media, and then the
remainder of the media is obtained across the network as the
media is being played.

Digitally encoded media consists of a sequence of au-
dio and video frames with precise timing relationships that
must be maintained as faithfully as possible during playback.
Streaming applications require sustained network bandwidth;
the media transmission rate must be no less than the rate at
which the media player consumes data.

Streaming media data can be delivered using either the
Transmission Control Protocol (TCP) or the User Datagram
Protocol (UDP) at the transport layer. However, TCP em-
ploys congestion control schemes that adapt dynamically to
network conditions, often yielding variable transmission rates
and packet delays. For this reason, many streaming media
applications use UDP as the transport protocol.

Regardless of the transport-layer protocol used, it is im-
portant to consider how media streaming flows interact with
other network applications. The performance of the Internet
depends largely on the flow and congestion control capabilities
built into TCP, which carries a vast majority of the traffic [5].
Depending on media quality, streaming bandwidth require-
ments can range from 56 kbps for modem users to 30 Mbps

for HDTV-quality video. Thus, unresponsive streaming media
traffic can potentially impede the performance of other appli-
cations that employ TCP, or worse, endanger the stability of
the Internet.

These considerations have prompted interest in TCP friendly
rate control protocols [6], [13]. The TCP friendly paradigm
recommends that the bandwidth usage of a UDP-based mul-
timedia flow should not, on average, exceed that of a TCP
flow under similar conditions [2]. Fairness concerns have
also motivated workload characterization studies of media
streaming applications [3], [9], [15], [16], and considerable
interest in the performance evaluation of commercial media
streaming products [4], [7], [8], [10], [17].

Since the growth in popularity of streaming media applica-
tions continues, the degree of their TCP-friendliness will have
a non-trivial impact on the stability and performance of the
Internet. While many TCP friendly rate control protocols have
been proposed, it is not clear if these, or related protocols, have
been incorporated into commercial streaming media products.
While there are some indications that UDP-based streaming
applications adjust the media streaming bit rate based on
available bandwidth [4], [10], [17], little is known about the
behavioural characteristics of these proprietary protocols.

The purpose of this paper is to characterize the behaviour
of RealVideo media streaming applications. Our work is
carried out experimentally, using a network emulator to vary
the network bottleneck bandwidth and cross-traffic conditions
between server and client. Our study focuses on the qualitative
and quantitative behaviour of RealVideo streams, as well as
on their interactions with TCP flows.

Our results illustrate three important behavioural properties
of RealVideo streams. First, the buffering behaviour of the
client varies according to the encoding rate of the media
stream. For lower-bandwidth streams, the buffering bit rate
is 2-4 times higher than the encoded rate, to a maximum
of approximately 600 kbps. For higher-bandwidth streams,
the buffering takes place at the encoding rate. Second, we
studied the “TurboPlay” option in RealNetwork’s media client.
The TurboPlay option is intended to reduce the buffering
time for media playback. Our experiments show that with
TurboPlay option enabled, the streaming rate to the client is
initially very high (almost equal to the available bottleneck link
bandwidth), regardless of the encoding rate or the presence of
competing traffic. With TurboPlay enabled, RealVideo Streams
are not TCP friendly. With the TurboPlay option disabled,
the TCP friendliness of RealVideo streams may increase.



Finally, we observe that SureStream technology provides some
compromises. It can dynamically reduce the media bit rate to
allow some TCP throughput, but is still not truly TCP friendly.
The remainder of this paper is organized as follows. Sec-
tion Il provides a brief discussion of related work on the
characterization of media streaming applications. Section IlI
describes the experimental methodology for our study. Sec-
tion IV presents the results from our study. Section V con-
cludes the paper and outlines our plans for future work.

Il. BACKGROUND AND RELATED WORK

RealSystem [11] is the Internet solution for audio and video
streaming proposed by RealNetworks. They provide tools such
as RealServer, RealPlayer, and RealProducer, corresponding to
the media server, the client, and codec, respectively. The Re-
alSystem architecture supports both real-time and on-demand
streaming. We only study on-demand streaming in this paper.

The RealAudio and RealVideo contents are created in
advance using RealProducer, and stored in RealMedia File
Format (RMFF [1]) files. Before encoding, a target bit rate is
chosen, based on the video quality desired for the intended
audience. The bandwidth for the audio stream is allocated
first, then that for the video stream. One way that RealVideo
achieves compression is by skipping frames when needed, so
as to achieve a high frame rate for action scenes, and a low
frame rate for low-activity scenes.

To enable dynamic and seamless bandwidth adjustments,
media is often encoded at multiple bit rates but stored as a
single media object. When a client requests this media object,
the server ascertains which encoding best suits the bandwidth
available to the client. If the transmission path between the
client and server changes during playback, the server can
dynamically choose another bit rate that best matches the
current network conditions.

This application-layer bandwidth adjustment technique is
available in several commercial products. For example, Re-
alNetworks calls this technology “SureStream” [17], while
Microsoft calls it “Intelligent Streaming” [10]. If only a single
bit rate is available, responding to congestion would entail
selectively dropping frames. This is also the case if the client
has reached the lowest bit rate offered in a combined media
object. For example, a server may respond to unfavourable
network conditions by first decreasing the frame rate of the
video, and if insufficient, it may (even) drop all video frames
and only transmit audio.

Prior work on performance of commercial streaming ap-
plications has evaluated RealVideo streaming in wireless
environments [7], studied congestion responsiveness of Re-
alPlayer [4], [17], and compared RealPlayer and Windows
Media Player performance [8]. Although prior work has stud-
ied the congestion responsiveness of RealVideo streams, most
have relied on accessing content from the Internet. Our work
is carried out experimentally using a network emulator. This
approach allows control of all parts of the utilized network,
including the clients, the servers, the cross traffic, as well as
the media content. Furthermore, we focus on the qualitative

and quantitative behaviour of RealVideo streams, as well as on
their interactions with TCP flows. This research complements
recent work by Nichols et al. [10] that characterized how
Windows Media responds to congestion by utilizing a similar
experimental testbed.

I1l. EXPERIMENTAL METHODOLOGY

Our experiments were conducted on an experimental testbed
in our laboratory. This testbed consists of five physical ma-
chines connected over a 10 Mbps private Ethernet LAN. In our
tests, two machines act as servers, two machines act as clients,
and one machine acts as a network emulator. The network
emulator was used to model an arbitrary internetwork between
the client and server machines.

A. Testbed Configuration

In the testbed, the streaming media server was run on a
2.4 GHz Intel Xeon machine with 1 GB of RAM. The media
client was run on a 2 GHz Intel Pentium 4m machine with
256 MB of RAM. We used RealNetworks Helix DNA Server
Basic® (version 10) as the media server. The media client in
the experiments was the RealPlayer? (version 10), which is
based upon the open-source HelixPlayer.

TCP cross-traffic was generated using net per f 3. This
software is freely available from Hewlett-Packard. It is a
tool for benchmarking network performance, with a primary
focus on bulk data transfer over TCP or UDP. By selecting
TCP_STREAM mode, network traffic representing a long-
duration FTP flow can be generated. A 2.4 GHz Intel Xeon
machine with 1 GB of RAM was used to run the net per f
server. The net per f client was running on a machine with
an identical configuration.

Our work uses the Internet Protocol and Traffic Network
Emulator (IP-TNE), a high-performance internetwork emu-
lator that provides a detailed simulation model of arbitrary
internetworks [14]. Using this emulator, hosts can send IP
packets to other hosts, whether real or virtual (simulated) via
the emulator. The conversion of packets between real and
simulated network environments is accomplished through a
technique similar to IP masquerading. IP-TNE was run on a
2 GHz Intel Xeon dual-processor machine with 4 GB of RAM.

All nodes employ Linux 2.6.8 as the operating system,
except for the media server node which runs Linux 2.4.2.

B. Emulated Network

The experiments whose results are reported here emulate a
simple dumbbell network topology with a common bottleneck
link between all sources and sinks. Each source/sink is con-
nected to the bottleneck link by a high bandwidth access link.
For all experiments, the bottleneck capacity was set to one of
four settings: 250 kbps, 750 kbps, 1500 kbps, and 100 Mbps.
The first three levels represent typical speeds for home Internet
access. The 100 Mbps setting is used to represent “unlimited”

Lhttp://www.realnetworks.com/products/discreteserver/index.html
2https://player.helixcommunity.org/
Sftp://ftp.cup.hp.com/dist/networking/benchmarks/netperf/
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Fig. 1. Emulated network configuration

network capacity. Figure 1 provides a graphical description of
the emulated network configuration.

The round trip propagation delay on the emulated network
is 105 ms which is representative of typical WAN delays on
the Internet. This round trip delay value includes a 50 ms one-
way delay on the bottleneck link and about 2 ms delays on
the emulated end networks. Note that the actual bandwidth
available to these end hosts is 10 Mbps, as that is the capacity
of the physical network.

The routers in the emulated network use FIFO queueing
with drop-tail queue management. In our experiments, the
bottleneck router can queue up to 51,200 bytes.

C. Experimental Design and Performance Metrics

Our experiments fall into two categories: those with no TCP
cross traffic, and those with TCP cross traffic. The former set
of experiments focuses on the dynamics of RealVideo streams,
while the latter set focuses on TCP friendliness.

The first set of experiments (ho TCP cross traffic) used
a combination of application-layer and network-layer perfor-
mance measurements. This measurement approach provides
multiple perspectives for data analysis, and enables cross-
validation of our results.

At the application layer, the RealPlayer client statistics were
recorded to a file every 0.5 seconds. This method of data
collection required modification to the statistics tracker in the
client. Other adjustments to the RealPlayer involved inserting
text markers in the statistics file to mark the beginning and
end of media playback. These markers were important for
the subsequent analysis of these data files, especially in
determining the duration of the buffering period.

The RealPlayer statistics were written to a RAM-disk in
order to minimize the delays for logging. From the client
statistics, we can determine characteristics such as encoded
bandwidth, actual network bandwidth, frame rate, packet
losses, packet retransmissions, late packets, and more.

At the network layer, we used t cpdunp? at the client side
to check the accuracy of the RealPlayer statistics. One UDP
trace was created per experiment. The collected information
was recorded to a RAM-disk, similar to the RealPlayer statis-
tics. After the playback of the selected media was complete,

“http://www.tcpdump.org

the UDP trace was copied from the RAM-disk to the physical
disk for analysis. From this trace we can determine charac-
teristics of the stream packets at the network layer, including
packet type, packet size, and timestamp.

For the second set of experiments (with TCP cross traffic),
an additional t cpdunp trace of TCP traffic was recorded as
well. The trace was collected on the net per f server machine
using the same RAM-disk method as for the UDP trace. From
this TCP trace we can determine information such as packet
type, packet size, TCP flags, timestamps, and more.

D. RealVideo Streams

The streams used in these experiments were produced with
RealProducer Plus 10.0 (based on Helix DNA Producer)®. This
tool takes a source video and encodes it in RealMedia File
Format [1]. The codec utilized by default with this software
is RealVideo (RV) 10, for which an overview is provided in
a white paper from RealNetworks [12]. RealVideo can be
encoded in either CBR or VBR. In this work, we focus on
CBR streams; we plan to study VBR streams in future work.

RealProducer encodes video streams according to different
target “audiences”. The “audience” setting allows one, for
instance, to create a stream with characteristics suitable for
a user on a 56 kbps dialup link. The actual bit rate of
the generated video stream is typically lower than the target
audience rate, leaving some bandwidth for control information
or other user tasks. The CBR streams used in this paper are
encoded at the following “audience” rates: 56 kbps, 128 kbps,
256 kbps, 384 kbps, 512 kbps, 768 kbps, 1000 kbps, and
1500 kbps. The “audience” rate, however, is not the true bit
rate of the stream. The true bit rates are 34 kbps, 90 kbps,
230 kbps, 350 kbps, 730 kbps, 1000 kbps®, and 1400 kbps,
respectively. In the rest of the paper, the stream bit rate refers
to the “audience” bit rate, unless explicitly stated otherwise.

RealProducer, in addition to single-rate streams, allows
the creation of SureStream (SS) streams with multiple bit
rates. Content encoded using SureStream is more amenable to
dynamic rate adaptation. One SureStream stream was created
from all of the foregoing CBR streams; this stream is used to
study the TCP friendliness of SureStream streaming’.

IV. RESULTS

This section presents the results from our two sets of
experiments. First, the behaviour of RealVideo is characterized
in the absence of cross traffic. These baseline experiments
focus on the buffering behaviour of the media client, the
effect of the encoded media bit rate, and the impact of
the TurboPlay option. Second, the behaviour of RealVideo
streams is analyzed in the presence of TCP cross traffic.
These experiments are used to evaluate the TCP friendliness

Shttp://www.realnetworks.com/products/producer/

SFor the 1000 kbps stream, the true bit rate is also 1000 kbps. This was a
configuration error when encoding the stream. This error has minimal impact
on our results.

"The 7-minute SureStream represents a full-length encoding of the original
AVI. The shorter videos used in other experiments were encoded from a
clipped version of the original.
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TABLE |
SUMMARY OF RESULTS FOR UNLIMITED BOTTLENECK CAPACITY
(TURBOPLAY DISABLED)

Encoded | Buffering | Avg. Buffering Avg. Playback Peak Bit
Bit Rate | Period (s) | Bit Rate (kbps) | Bit Rate (kbps) | Rate (kbps)
56 6.02 45 32 141
128 7.00 133 94 416
256 5.51 281 217 628
384 7.51 379 336 636
512 7.00 366 432 643
768 6.05 414 680 918
1000 5.50 562 976 1144
1500 5.51 817 1362 1558
SS 6.51 851 1336 1556

of the media streams. The results for the first and second
set of experiments appear in Section IV-A and Section 1V-B,
respectively.

A. Baseline Experiments (No Cross Traffic)

The first experiment studies the RealPlayer behaviour in a
simple scenario with unlimited bottleneck capacity and the
TurboPlay option disabled. We initially focus on the buffering
behaviour before playback begins.

Table | summarizes the measurement results from this
experiment. The table shows the buffering duration, the mean
bit rate during buffering, the mean bit rate during playback,
and the peak bit rate for different encoded streams over the
unlimited bottleneck link. The buffering period represents the
elapsed time between receiving the first packet from the server
and starting video playback. This time represents the filling of
the buffer before playback commences. Several observations
can be made from this summary of results. First, all streams
have a buffering period of 5-7 seconds, regardless of their
encoded bit rate. Second, for streams encoded at low bit rates
(i.e., 56 kbps to 384 kbps), the mean bit rate during the
buffering period is higher than the mean bit rate during the
playback period. Third, the mean bit rate during playback of
low bit rate streams tends to be about 80% of the encoded
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bit rate, while the peak bit rate can be as much as 2-4 times
higher than this.

Figure 2 shows a time series representation of the ob-
served bit rates for media streaming. This figure illustrates
the qualitatively different behaviours observed for streaming
media encoded at low or high bit rates. For streams encoded
with a low bit rate, there is a distinct initial period of higher
bandwidth consumption, in which the client receives data at
approximately 2-4 times the encoded bit rate. This behaviour
is illustrated in Figure 2(a) for the 56 kbps stream. The initial
portion shows observed bit rates near 140 kbps. The rest
of the stream uses about 32 kbps. For the media streams
encoded at higher bit rates (i.e., 512 kbps, 768 kbps, 1000
kbps, and 1500 kps), this dual-rate behaviour is not observed
(also see Table I). While the client still does buffering before
initiating playback, the buffering rate is indistinguishable from
the streaming bit rate, as illustrated in Figure 2(b).

The next experiment considers the impact of the bottleneck
link capacity on the streaming behaviour. We use the IP-TNE
network emulator to change the emulated network capacity
between the streaming server and the RealPlayer client.

When the bottleneck bandwidth is close to the encoded
media bit rate, the stream still achieves its target bandwidth.
This behaviour is illustrated in Figure 3 for the 256 kbps media
stream using a 250 kbps bottleneck link. Similar observations
apply for the 768 kbps stream on the 750 kbps bottleneck, and
the 1500 kbps stream on the 1500 kbps bottleneck.

Streaming still works well in these scenarios because the
actual bit rate is less than the bottleneck link capacity.
However, at close to capacity we observe increased packet
loss in the stream. Figure 4 presents the cumulative packet
loss for the three scenarios mentioned. Steady packet loss
is observed when the media encoding rate and bottleneck
capacity are similar. The loss is most notable for the 768 kbps
and 1500 kbps streams.

When the bit rate of the stream exceeds the bottleneck
link capacity, two distinct phenomena are observed. For the
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low-bit-rate media streams, the client application “gives up”
on retrieving video frames, and reverts to audio only. For
higher-bit-rate media streams, the streaming continues, but
with reduced quality.

The behaviour for low-rate streams is illustrated in Fig-
ures 5(a) and (b), for the 384 kbps stream over a 250 kbps bot-
tleneck. The throughput of the stream is erratic (Figure 5(a)),
as is the frame rate (Figure 5(b)). The spikes represent audio
data received from the server periodically.

The behaviour for high-rate streams is illustrated in Fig-
ures 5(c) and (d), for the 1000 kbps stream over a 750 kbps
bottleneck. In these graphs, the client first buffers some data,
starts playback, and then appears to encounter difficulties.
The limited bottleneck capacity constrains the throughput
(Figure 5(c)), as well as the frame rate (Figure 5(d)). The
surprising result is that the player continues to play the video
in this situation, at nearly 30 fps, but with noticeable quality
loss. To some users this may appear unacceptable. Near-
capacity utilization of the bottleneck is observed after the
initial instability.

Based upon the throughput/frame rate results and the play-
back quality, we hypothesize that the higher-bit-rate streams
contain multiple components contributing to the final video
quality, and that the player is able to play an appropriate
subset of these under poor network conditions. The lower-
bit-rate media streams must not have this feature.

The next experiment studies the TurboPlay client option.
This option is a relatively recent feature for RealMedia stream-
ing. RealNetworks claims that this option provides a better
streaming experience for users with broadband connections.
In particular, this feature reduces the user-perceived startup
delay for video streaming.

Figure 6 shows selected results from our experiments with
the TurboPlay feature. This experiment studies the transmis-
sion of the 512 kbps stream over a 1500 kbps bottleneck link.
With TurboPlay disabled, the streaming rate (see Figure 6(a))
of the 512 kbps media during the buffering period is approx-
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imately 600 kbps. This higher rate is maintained for about
72 seconds before reverting to a lower rate for the rest of the
streaming session. With TurboPlay enabled, the streaming rate
during the buffering period approaches 1500 kbps, utilizing
the full network capacity. This higher rate lasts for about
8 seconds before reverting to the steady streaming rate for
the rest of the session. Clearly, the TurboPlay mechanism
makes the buffering behaviour more aggressive. Consequently,
it reduces the buffering startup delay.

One side effect of the faster buffering rate is the risk of
packet loss. Figure 6(b) shows the cumulative packet loss
statistics from the foregoing experiment. With TurboPlay dis-
abled, there were no packet losses observed. With TurboPlay
enabled, there were about 60 packet losses observed. All the
packet losses occurred during the startup period, where the
buffering rate saturated the network capacity.

B. Experiments with TCP Cross Traffic

This section studies TCP friendliness by examining the
interaction between UDP RealVideo streams and TCP cross
traffic. The TCP variant used in these experiments is TCP
SACK. Unless stated otherwise, the RealVideo results reported
here are with the TurboPlay option enabled (as this option is
enabled, by default, for all broadband clients).

In these experiments, we study the interaction between
one RealVideo stream and a single bulk-transfer TCP flow.
Our main observation is that RealVideo streams are not
TCP friendly; they consume a disproportionate share of the
available network bandwidth.

To establish TCP steady state, the TCP traffic was started
approximately 10 seconds before the media stream. In the
time series graphs, time zero represents the time at which the
RealPlayer first requests data from the server. Negative time
values represent time before this event.

Figure 7 illustrates the TCP unfriendliness of the RealVideo
streams. This experiment uses the 1000 kbps media stream
on a 1500 kbps network link. Observe that before the media



1750

1500 | M

1250

TP —
stream

1000

750

Throughput (kbps)

500 -

250

-25 0 25 50 75 100 125 150 175 200 225
Time (s)

Fig. 7. Bandwidth competition between a 1000 kbps RealVideo stream and
TCP flow over a 1500 kbps bottleneck link

stream begins, the TCP traffic occupies the full link bandwidth,
attaining a peak throughput of 1500 kbps. After the streaming
starts, the RealVideo stream consumes about 1000 kbps,
leaving about 500 kbps of bandwidth for the TCP flow.

We also studied the influence of the TurboPlay option on the
TCP friendliness of the RealVideo streams. For illustration,
we consider the 512 kbps media stream and the 1500 kbps
bottleneck link. Figure 8 shows sample throughput versus time
plots from our experiments. Figure 8(a) shows results with
TurboPlay enabled. Figure 8(b) shows results with TurboPlay
disabled. Figure 8(c) shows the cumulative packet loss results
both with and without the TurboPlay feature.

When TurboPlay is enabled (Figure 8(a)), there is a higher
streaming rate during the initial buffering period. The TCP
flow suffers dramatically during this startup period. When the
media stream returns to its encoded bit rate, the TCP flow
soon recovers, consuming the remaining network bandwidth
(1000 kbps).

When the TurboPlay option is disabled, very different
behaviour is observed in several experiments. In particular,
the TCP cross traffic completely overruns the media stream, as
illustrated in Figure 8(b). The media player in this case reverts
to audio-only mode (note the periodic bandwidth spikes for the
stream).

These results show that the TurboPlay feature fundamen-
tally changes the behaviour of RealVideo streams. Based
on our experiments, we conjecture that when TurboPlay is
disabled, the media client uses packet losses as an indication of
congestion, and reduces bandwidth consumption accordingly
(and somewhat aggressively). Thus, the TCP cross traffic can
potentially monopolize the bottleneck link, as illustrated in
Figure 8(b). In many experiment runs, we observed that the
RealVideo stream reverts to audio-only mode (with no video
playback) and does not recover from this mode even when the
TCP flow ends.

With TurboPlay disabled, the streams can become overly
friendly to TCP, and essentially become non-functional. There-

fore, it is no surprise that TurboPlay is enabled in the default
configuration.

Enabling TurboPlay apparently suppresses the application-
layer congestion control mechanism implemented in the Re-
alPlayer client. While this configuration provides good quality
media playback, it is not TCP friendly. From these and many
other experiments, we conclude that single-bit-rate RealVideo
streams are not TCP friendly.

An alternative to single-bit-rate media streams is Sure-
Stream technology. A SureStream media object contains many
other media objects. The client and server can dynamically
determine the appropriate stream encoding rate based on the
client’s available bandwidth. Our final experiment studies the
TCP friendliness of SureStream streams.

Figure 9(a) and (b) illustrates the achieved throughput for
the RealVideo SureStream stream with TurboPlay enabled and
disabled, respectively. Figure 9(c) shows the cumulative packet
loss results versus time for these two cases.

Figure 9 shows that the SureStream stream is not TCP
friendly. When TurboPlay is enabled, the SureStream media
is able to effectively “shut down” the competing TCP flow, in
a manner similar to that of a single-bit-rate stream encoded
at 1500 kbps. However, using SureStream with TurboPlay
disabled does provide some compromise. In this setting, the
SureStream video initially starts at 1500 kbps, but soon drops
to 1200 kbps, and finally settles down to periodically oscillate
between 750 kbps and 1100 kbps. When the media stream
ends, the TCP flow reclaims the full network bandwidth. While
not perfectly fair, the SureStream behaviour with TurboPlay
disabled is certainly “friendlier” to TCP than a single-bit-rate
stream.

V. CONCLUSIONS

This paper presented a high-level characterization of Re-
alVideo streams using an emulated network. The central
bottleneck link, the media encoding rate, and the TurboPlay
option were the variables examined.

The main observations from this study are as follows:

« The buffering behaviour of the client player varies de-
pending on the encoding rate of the media stream. For
lower-bandwidth streams the buffering rate is approxi-
mately 2-4 times the encoded rate, to a maximum of
approximately 600 kbps. For higher-bandwidth streams,
the buffering takes place at the encoding rate.

o The TurboPlay option in the client player changes the
buffering behaviour. Regardless of stream encoding rate,
the buffering bit rate increases to the maximum rate that
the bottleneck allows.

« If the media encoding rate exceeds the bottleneck capac-
ity, the client behaviour observed depends on the media
bit rate. Lower-rate media streams resort to audio-only
playback, while higher-rate media streams continue to
play the video stream, but at a lower quality.

« With the TurboPlay option enabled, RealVideo streams
are not TCP friendly. The UDP media flows take as much
bandwidth as they need, to the detriment of TCP.
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Fig. 8. Effect of TurboPlay option on TCP friendliness of RealVideo streams Fig. 9.  Effect of TurboPlay option on TCP friendliness of SureStream
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« With the TurboPlay option disabled, RealVideo streams
can become TCP friendly; however, the playback perfor-
mance may degrade substantially.

o Real’s SureStream — an application-level feature to ad-
just the stream rate during playback — provides some
compromises, reducing the bit rate to allow some TCP
throughput, but is not strictly TCP friendly.

Ongoing work is expanding our experimental study to con-
sider other commercial media streaming products, and more
realistic network configurations. We are also investigating the
use of media streaming proxies to provide end-to-end TCP
friendliness on an application-independent basis.
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