
An FPGA-based Network Processor for IP Packet Compression

Dan Munteanu Carey Williamson

Department of Computer Science, University of Calgary

Calgary, AB, Canada T2N 1N4

Email: {munteanu,carey}@cpsc.ucalgary.ca

Abstract

This paper describes the design, implementation,
and experimental evaluation of a reconfigurable net-
work processor that can do on-the-fly content adap-
tation of IP packets for wired or wireless networks.
In our demonstration application, FPGA technology
is used in conjunction with traditional RISC micro-
processors to perform IP packet compression in hard-
ware, using a CAM-based hardware implementation of
the Lempel-Ziv (LZ) compression algorithm. The ex-
perimental evaluation considers HTTP Web browsing
traffic using the TCP/IP protocols. The measurement
results show that the proposed LZ compression archi-
tecture can reduce network byte traffic volume by 5-
38%. Furthermore, the hardware-based approach pro-
vides consistent throughput performance as the com-
pression buffer size is increased.

Keywords: Network processor, FPGA, Lempel-Ziv
compression, Measurement, Web performance

1 Introduction

Computer networking is one of the most dynamic
fields in computer science. Recent technological ad-
vances such as Digital Subscriber Line (DSL) and Gi-
gabit Ethernet have dramatically increased the data
rates for wired computer networks, which in turn have
enabled rich media content delivery to the users.

There is also growing user demand for mobile, small
form-factor computing devices that are connected to
the Internet using wireless technology. This technol-
ogy takes several forms, including cellular data net-
works, infrastructure-based wireless LANs, mobile ad
hoc networks, and hybrid wireless mesh networks. De-
spite wireless bandwidth limitations, the users of such
technology want Internet content delivery similar in
quality to that they experience on wired computer
networks.

An emerging solution for satisfying these user de-
mands is Web content adaptation. Nodes placed at
the edges of the network, or at boundary points be-
tween heterogenous networking technologies, are re-
sponsible for transforming Web content suitably to
meet constraints imposed by end-user devices regard-
ing transmission bandwidth, storage capacity, battery
power, or display capabilities. In this paper, we focus
primarily on the transmission bandwidth issue, in the
context of wireless LAN or wireless mesh networks.

Most methods for throughput enhancement on
wireless networks [8, 9, 10] focus on spectral band-
width and channel coding issues. Less attention is
paid to reducing the amount of data to be transferred
over the network. However, reducing the amount of
data to be transferred over the network can make more
efficient use of the limited bandwidth provided by the
wireless physical layer.

This paper presents the design, implementation,
and experimental evaluation of an IP packet com-
pression engine that uses a hardware-programmable
network processor. The engine uses a hardware
implementation of the Lempel-Ziv (LZ) compres-
sion/decompression algorithm [22]. The LZ algorithm
is implemented in the hardware-programmable fabric
as a coprocessor attached to a network processor sys-
tem created using FPGA technology. Such a network
processor could be deployed at the router nodes in
a wireless mesh network, or at an access point in a
wireless LAN.

The rest of the paper is organized as follows. Sec-
tion 2 briefly describes related work on packet com-
pression. Section 3 reviews the Lempel-Ziv compres-
sion algorithm. Section 4 presents the architecture of
our compression engine. Section 5 describes the exper-
imental setup for our tests, while Section 6 presents
the experimental results. Finally, Section 7 concludes
the paper.

2 Related Work

Our work is certainly not the first to consider
packet compression. Most of the prior work falls
into one of two main categories: header compression
strategies for TCP/IP, and efficient hardware designs
for LZ compression.

Early work by Jacobson [11] and others [1, 13]
proposed TCP/IP header compression algorithms.
Header compression is intended for low-bandwidth
links, such as dialup serial lines and wireless links.
In the common case, the predictability of a TCP/IP
header can be exploited to reduce the header size from
40 bytes to 3-5 bytes. For interactive telnet traffic,
which typically generates 41 byte packets, this is an
important optimization. For bulk data transfer, which
typically generates 1500 byte packets, this optimiza-
tion is less useful, offering only 3% overall reduction.
Torkelsson [19] reports that hardware header compres-
sion for RTP/UDP/IPv6 produces up to 65% band-
width savings for half-rate voice packets. In these
papers, the term compression refers only to packet
headers: only the header values that change from the
previous packet are sent.

Several architectures for the hardware implemen-
tation of the Lempel-Ziv compression algorithm [22]
have been devised. Ranganathan [18] proposes a sys-
tolic architecture that performs the string matching
function in linear time with respect to the number
of symbols contained in the search window. More
recently, Hwang [6] proposes a similar architecture,
with differences in the implementation of processing
elements and their interconnection. The proposed ar-
chitecture improves the hardware costs and the ease
of testing the proposed circuit.

Work by Lee and Yang [14, 21] proposes using a
Content Addressable Memory (CAM) for the string-
matching function. This approach performs string
matching by full parallel search. It is faster than the
implementation using systolic arrays, since only in the
worst case does the execution take n steps.

Saha [20] proposes a CAM-based approach for the
LZW compression algorithm. The proposed imple-
mentation offloads the main CPU by using a CAM-
based compression co-processor to compress data at
the application layer prior to sending it over the net-
work.

Work by Jung [12] explicitly considered on-the-fly
packet compression for wireless networks. Our ap-
proach differs by using FPGAs to implement LZ com-
pression on a network processor. A general discus-
sion of design issues for network processors is provided
in [2].

3 Lempel-Ziv Compression

This section provides a brief introduction to the
Lempel-Ziv compression algorithm [22]. The concept
behind LZ compression is the temporal locality of in-
formation. The compression process consists of keep-
ing track of repeating patterns, and replacing each
such occurrence with pointers to where they occurred
earlier in the input stream of data. At the time of
the decompression, each pointer is replaced with the
already decoded data stream to which it points. The
input stream is reconstructed exactly, since LZ pro-
vides lossless compression.

In the compression process, a buffer is used to store
the 2n most recently received data elements. The
buffer is separated into two sections, as shown in Fig-
ure 1. The Window part on the left has the already
processed data elements, while the Match part on the
right contains incoming data that needs to be com-
pressed.

Figure 1. LZ Compression Buffer

The Window part of the buffer is initially empty
(e.g., all nulls) at the beginning of the compression
phase. The Match part is filled with the first n charac-
ters to be compressed. The matching process follows
the algorithm presented in Figure 2.

The variables pointer and max length contain in-
formation about the start and the length of the re-
peating substring from the Window part of the buffer.
The two variables along with the M[max length + 1]
symbols from the Match part of the buffer form the
complete description of the matched substring.

For example, assume a compression buffer length
of 16 (n = 8), and an incoming string ‘aabbaab-
babbbb’. After the algorithm initialization, the com-
pression buffer is ‘00000000 aabbaabb’. The algo-
rithm in Figure 2 finds the longest match in the
Window part of the buffer for the string starting
at position 0 in the Match part of the buffer. In
our specific example, the algorithm executes the for

loops for i and j without finding any match between
W[index] and M[j]. Therefore the values of pointer
and max length remain unchanged (zero). The last
symbol (M[max length + 1] = ‘a’) is shifted into po-

Figure 2. LZ Compression Algorithm

sition W[7], and all the other symbols in the match
part of the buffer are shifted one position to the left.
The location M[7] receives the value ‘a’ from the data
section, so the compression buffer becomes ‘0000000a
abbaabba’. The next iteration finds a match for i = 7,
index = 7 and j = 0, so pointer is 7 and max length
is 1. The symbol that ends the matching (called the
last char) is ‘b’. All symbols in the processing buffer
are shifted two positions to the left. The compression
process continues step by step in this fashion until the
entire input string has been processed.

4 IP Packet Compression Engine

4.1 Architectural Overview

The implemented network processor is built around
a Memec 2pv7 development board. The network pro-
cessor was implemented on a XC2PV7 FPGA device.
The structure implemented in the FPGA circuit is pre-
sented in Figure 3.

The PowerPC processor and the SDRAM memory
are used to execute software and the FPGA fabric is
used to implement hardware blocks. Several IP cores
were used in building the hardware structure in the
FPGA. The Ethernet controller was an evaluation ver-
sion of the 10 Mbps Memec Ethernet Controller. The
CAM memories were generated using the Xilinx Core-
gen Utility. Also, the UART-lite serial controller from
Xilinx was used. Depending on the compression buffer
sizes used in the experiments, the FPGA usage ranged
from 3,970 to 4,774 logic slices. The operating fre-
quency of the system was 100 MHz.

A Linux operating system runs on the PowerPC
processor [15]. The Ethernet frames are intercepted

Figure 3. Network Processor Architecture

after the encapsulation of the IP packets and are sent
to the compression engine. This mechanism ensures
that only one IP packet at a time is compressed and
sent in an Ethernet frame. Batch processing of packets
could be considered in future work.

A byte stuffing method was devised to identify com-
pressed IP packets on the network. The discussion
here assumes Ethernet framing at the data link layer,
though the concept applies more generally to other
network technologies. The structure of the Ethernet
frame before and after compression is presented in Fig-
ure 4.

The first two bytes in the Ethernet data section are
both 0x00, and the compressed IP packet follows af-
terwards. The first two bytes in a normal IP packet
represent the version of the IP protocol used and the
length of the IP packet header. For the version byte,
the value 0x00 is reserved [7], and the length of an
IP header, represented in increments of 32-bit words,
has a minimum value of 5. Thus, a machine receiv-
ing an Ethernet frame for which the first two bytes in
the data section are 0x00 can determine that a com-
pressed IP packet follows, decompressing it to restore
the original packet. While we used this compression
method only for IP packets, it can be used for other
types of packets as well, as long as the compressed
packets can be uniquely identified.

The compression engine works as a coprocessor for
the PowerPC. It is accessed by the processor through
registers mapped in the memory space of the system.
The architecture of the Lempel-Ziv coder is presented
in Figure 5.

The architecture used is CAM-based, similar to the
one used by Lee and Yang [14, 21]. This architecture
was chosen because of its high throughput per MHz,
and low latency.

The processing steps implemented in the architec-

Figure 4. Byte Stuffing Method

Figure 5. Lempel-Ziv Coder Architecture

ture are as follows. Data to be compressed comes into
the shift register, which plays a role similar to the
match part of the compression buffer in the software
implementation. The CAM implements the window
part of the compression buffer. As characters enter
the shift register, they are compared with characters
contained in the CAM. Additional pipelined process-
ing verifies if consecutive matches occur in adjacent
positions in the CAM. If the matches occur at consec-
utive positions, then max length is incremented and
a new shift operation occurs. If the matches do not
occur at consecutive positions, or a match has not
been found, the process stops and a triple (pointer,
max length, last char) is generated and sent to the
output format block for encoding.

4.2 Design Issues

There are two important design issues in our IP
packet compression engine. The first is the compres-
sion buffer size, and the second is the encoding method
used to record triples in the compressed format. The
effectiveness of compression is affected by these de-
sign parameters, so our study considers them in some
detail.

The compression buffer size determines how large
a window of data the LZ algorithm has to work with
for string matching. An additional constraint in our
prototype implementation is that the LZ compression
engine handles only one IP packet at a time. Given the
limited length1 of the data to be compressed, several
values were investigated for the compression buffer
length. Experiments were run with n values of 64,
256, 512, and 1024 characters.

Three methods were explored for encoding the
triple (pointer, max length, last char):

• Fixed-Length Triples. The first method uses
a fixed-length representation for any triple. For a
binary encoding of the parameters pointer and
max length, at least log2n bits are needed to
store each of the two parameters. The number
of bytes needed to encode the triple is given by:

num bytes = 1 + d(2(log2n)/8)e

• Mixed-Length Triples. The second method
treats the “no match” condition as a special case.
That is, it checks if the max length parameter
is zero in the triple. If max length > 0, then
the whole triple is encoded using the same ap-
proach as the first method. If max length = 0,
then rather than encoding the entire triple, only
the last char value is written to the output. To
distinguish between regular triples and “short
triples”, a special symbol is needed. We arbi-
trarily use the value 0x00 to precede the fully
encoded triple. If a short triple ever has 0x00 as
the last char, it is written to the output preceded
by another 0x00 value. This mechanism ensures
proper recognition at decompression, since 0x00
cannot occur in two consecutive positions in a
fully encoded triple.

• Optimized Triples. The third method im-
proves upon the second method by observing that
even for non-zero max length values, the encoded
triple may consume more space than the original
data string that was matched. The third method
outputs fully encoded triples only if the length of
the full triple is smaller than the length of the
string it encodes. If max length < num bytes +
1, then an array of max length triples (0, 0,
last char) is encoded, with one entry for each
last char value in the matched substring.

All three methods have been implemented, tested,
and evaluated in our experiments. In terms of hard-
ware costs the first encoding method is the easiest and

1The default MTU in our implementation is 1500 bytes.

Figure 6. Experimental Setup

the most economic implementation. The second and
third methods only slightly increase the logic utiliza-
tion in the Output Format Block and add one more
state to the Coder State Machine.

5 Experimental Methodology

5.1 Experimental Setup

The experimental evaluation of our prototype IP
packet compression engine was carried out in a wired
network environment, using a dedicated 10 Mbps Eth-
ernet LAN. This network speed was considered appro-
priate for the testing of our prototype, given its clock
rate (100 MHz).

A Dell Latitude laptop was used for running ex-
periments. A crossover Ethernet cable was used to
connect the laptop to the Memec development board
implementing the network processor.

Figure 6 shows a diagram of the experimental
setup. The laptop was used to download files from
the network processor and to log network traffic infor-
mation for analysis.

The laptop was running Red-Hat Linux operating
system version 2.4.18. The Dell laptop had a 3Com
3c590 Ethernet card. The network driver on the lap-
top was modified to recognize compressed IP packets
received from the network processor board. The net-
work driver can also compress IP packets (in software)
to send them to the network processor. The Maximum
Transfer Unit (MTU) size used on both the laptop and
the network processor was 1500 bytes.

5.2 Experimental Design

The two main system factors in the experiments
are the compression buffer length and the encoding
format used for triples. These factors were discussed
in Section 4.2. Table 1 provides a summary of the
experimental factors and levels.

Table 1. Experimental Factors and Levels
Factor Levels

Buffer Size 64, 128, 256, 512, 1024
Encoding Fixed, Mixed, Optimized

The performance metrics for the experiments are
the compression ratio achieved (per-packet and aver-
age) and the effective throughput.

5.3 Web Workload

We use a Web workload in our experiments because
HTTP traffic accounts for a large proportion of the
traffic in today’s wireless networks [17]. To generate
different usage transfer scenarios, a Web server was
installed on the network processor board used in the
experiments. The Web server is based on the fnord

Web server version 1.8 [3]. The Web server supports
the HTTP/1.0 and HTTP/1.1 protocols, and it has
a small memory footprint. The Web server accepts
connections on TCP port 80.

Five Web pages2 were used for the experiments
with HTTP transfers. All of the chosen Web pages
have embedded images, and some of them have Java
scripts in their structure. The file types, sizes, and
number of embedded objects are summarized in Ta-
ble 2. Web pages 1, 2, and 5 are the opening pages
for Web sites. These pages contain many embedded
images. The HTML files for Web pages 3 and 4 are
dominated by English prose.

6 Experimental Results

This section presents the results from our study.
We first present the compression profile results for se-
lected Web pages, followed by compression ratio re-
sults for different compression buffer lengths and en-
coding methods. The section concludes with a discus-
sion of throughput results for hardware and software
versions of LZ compression.

6.1 Compression Profile Results

The first experiment illustrates the per-packet com-
pression results achieved for each Web page in the
workload. We call these graphs “compression profile”
graphs because they provide a time series represen-
tation of the compression achieved for each TCP/IP

2Additional experiments with other Web pages, FTP trans-
fers, and a corpus of standard data compression tests are de-
scribed in [16].

Table 2. Summary of Web Page Workload Used in Experiments
Web Web HTML Images Java Scripts
Page Site File Size Total Total Total Total
ID URL (bytes) Num Bytes Num Bytes

1 cpsc.ucalgary.ca 25,859 42 83,174 2 117,951
2 www.yahoo.com 139,264 18 37,771 0 0
3 eetimes.com 142,672 93 169,315 0 0
4 ibm linux debug.html 60,709 8 2,421 7 7,751
5 pbs stonehenge.html 71,503 30 28,127 2 10,225

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 50 100 150 200 250 300

E
th

er
ne

t F
ra

m
e

S
iz

e
(B

yt
es

)

Packet Index

http_ucalgary_lz1024.plot Rx trace

uncompressed
lz1024

Figure 7. Compression Profile Results for
cpsc.ucalgary.ca Web Page

packet sent by the Web server over the Ethernet LAN.
These graphs provide insight regarding which parts of
the Web page are compressed effectively, and which
are not.

Figure 7 and Figure 8 present the compression pro-
file graphs for the cpsc.ucalgary.ca and yahoo.com

Web pages. The horizontal axis of each graph shows
the packet index in the (persistent) TCP connection
for the Web page transfer from the server to the client.
The vertical axis shows the size in bytes of the Eth-
ernet frames observed. Lower values represent better
compression performance. These plots show only the
frames received by the laptop, since the frames sent
by the laptop are typically small TCP acknowledge-
ments. The top line (with ‘+’ symbols) shows the
sizes when no compression is used. The lower line
(with ‘X’ symbols) shows the sizes when compression
is used. The results presented here are for a compres-
sion buffer length of 1024 bytes and the Optimized
Triples encoding format.

Figure 7 shows that good compression occurs in the

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 20 40 60 80 100 120 140 160

E
th

er
ne

t F
ra

m
e

S
iz

e
(B

yt
es

)

Packet Index

http_yahoo_lz1024.plot Rx trace

uncompressed
lz1024

Figure 8. Compression Profile Results for
yahoo.com Web Page

first part of the transfer (e.g., packets 10-70), which
represents the base HTML file and a few embedded
files. The remaining objects in the Web page are
mostly images, which do not compress well. Some of
the images are very small (e.g., packets 100 to 130),
and most are in a space-efficient compressed format al-
ready. When the compression engine tries to compress
an IP packet containing an image (or part of an im-
age), the length of the resulting packet often exceeds
that of the original packet; in this case, the original
(uncompressed) packet is sent instead. For some im-
ages, the lengths of the compressed packets exceed the
network MTU size, making the compression imprac-
tical. Two objects that do compress well later in the
Web page are the Java scripts (i.e., packets 180-200
and packets 210-240).

Similar observations apply for the yahoo.com Web
page in Figure 8. The HTML page compresses well at
the start of the transfer (e.g., packets 5-100). For the
other Ethernet frames containing the GIF and JPEG
embedded images, no compression is achieved since

they are already encoded in a space-efficient format.
Similar trends are observed for the other Web pages

studied. Complete results appear in [16].

6.2 Compression Ratio Results

The second set of results compares the overall com-
pression ratios for different compression buffer lengths
and different encoding methods. These results are
presented in Figure 9 through Figure 13. The hori-
zontal axis of the graph shows the compression buffer
length. The vertical axis shows the average compres-
sion achieved. The compression ratio is calculated
relative to the cumulative byte count for Ethernet
frames. The ratio expresses the relative reduction in
byte traffic volume for Ethernet frames when compres-
sion is used. Higher values represent better compres-
sion performance.

Figure 9 shows the overall compression ratio results
for the cpsc.ucalgary.caWeb page. A general trend
observed is that the compression ratio tends to im-
prove as the compression buffer size is increased. This
result makes sense since the LZ algorithm has more
data to work with at a time, and is more likely to find
matches (and longer matches) in the strings processed.
However, this trend is not universally true: there are
some non-monotonic behaviours for the Fixed-Length
triple encoding method. The exact compression ratio
achieved can be highly sensitive to the size of a Web
object, the data content, the HTTP response header,
and the compression buffer length.

The overall compression ratio graphs in Figure 9
to Figure 13 show that the Fixed-Length encod-
ing method for the triple (pointer, max length,
last char) does not offer much advantage for Web
page compression. The best compression ra-
tio obtained with this method is 14% for the
cpsc.ucalgary.ca Web page, using a compression
buffer length of 256 characters. Typical results av-
erage about 5% improvement. However, there is no
compression for the yahoo.com Web page (Figure 10)
for any of the compression buffer lengths considered.

In general, the Mixed-Length encoding method
provides better compression ratios. However, for
the cpsc.ucalgary.ca Web page (Figure 9) and the
pbs stonehengeWeb page (Figure 13), Mixed-Length
encoding is worse than Fixed-Length encoding. This
is due to the overhead introduced by the 0x00 stuff-
ing on the fully encoded triples. For these Web pages,
there are few triples with max length = 0, so adding
one byte to each regular triple is costly.

The third encoding method (Optimized Triples)
provides the best results in terms of compression ratio.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000
C

om
pr

es
si

on
 R

at
io

Compression Buffer Length (chars)

 ucalgary compression ratio

Optimized Triples
Mixed-Length Triples
Fixed-Length Triples

Figure 9. Relative Compression Results for
cpsc.ucalgary.ca Web Page

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000

C
om

pr
es

si
on

 R
at

io

Compression Buffer Length (chars)

 yahoo compression ratio

Optimized Triples
Mixed-Length Triples
Fixed-Length Triples

Figure 10. Relative Compression Results for
yahoo.com Web Page

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000

C
om

pr
es

si
on

 R
at

io

Compression Buffer Length (chars)

 eetimes compression ratio

Optimized Triples
Mixed-Length Triples
Fixed-Length Triples

Figure 11. Relative Compression Results for
eetimes.com Web Page

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000

C
om

pr
es

si
on

 R
at

io

Compression Buffer Length (chars)

 ibm compression ratio

Optimized Triples
Mixed-Length Triples
Fixed-Length Triples

Figure 12. Relative Compression Results for
ibm linux debug Web Page

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 200 400 600 800 1000

C
om

pr
es

si
on

 R
at

io

Compression Buffer Length (chars)

 2403stone compression ratio

Optimized Triples
Mixed-Length Triples
Fixed-length Triples

Figure 13. Relative Compression Results for
pbs stonehenge Web Page

The best results observed are 38% compression for the
yahoo.com Web page. The typical compression ratio
achieved ranges from 15-35%.

For the last two encoding methods, the best com-
pression results are observed for a compression buffer
length of 1024 characters. This buffer size exploits
most (but not all) of the TCP/IP data carried in full
Ethernet frames.

6.3 Latency and Throughput Results

Our final set of measurements quantifies the perfor-
mance benefits of hardware-based compression com-
pared to software-based compression.

The software implementation of the Lempel-Ziv
compression algorithm has a computational complex-
ity of O(n2), where n is the compression buffer length
in characters. The proposed hardware implementa-
tion, based on a CAM architecture [14, 21], has a
complexity of O(n).

The efficiency of both approaches was measured us-
ing FTP transfers of a large executable file (e.g., the
Solaris loader ld, with a size of 2,730,604 bytes) with
different compression buffer lengths. The performance
metrics used are the packet latency and the user-level
throughput reported by the FTP program. For each
experiment, the uncompressed ld file was transferred
using FTP.

The packet latency for the hardware compression
process is reasonable. For a 1500-byte packet, and
100 MHz clock frequency for the compression block,
the compression process adds at most 1.5 ms of delay,
This delay is comparable to the packet transmission

time on an IEEE 802.11b wireless LAN, but low rel-
ative to typical round-trip latencies on the Internet.
The observed delay reflects the design decisions made
(i.e., interception of packets at the kernel level rather
than building the compression engine as a pipeline
block inside the Ethernet controller, and the use of
FPGA technology with slower system speeds). An
optimized system architecture and a faster implemen-
tation technology would reduce this delay, making the
reported results relevant for other link-layer protocols
such as Fast Ethernet or Gigabit Ethernet.

Figure 14 summarizes the throughput results. The
graph shows throughput on the vertical axis versus
the compression buffer length on the horizontal axis.
Three lines appear on the graph. These represent
the throughput for the hardware and software imple-
mentations of compression, as well as for performance
of the system without compression. Higher values of
throughput represent better system performance.

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100 120 140

U
se

r-
Le

ve
l T

hr
ou

gh
pu

t (
K

by
te

s/
se

c)

Compression Buffer Length (chars)

Speed performance Hardware versus Software Implementation

No Compression
HW Compression
Sw Compression

Figure 14. Throughput Performance Results

The generally low throughput results observed are
attributable to the volume of (unoptimized) kernel in-
strumentation that was used in the experiments (i.e.,
recording information into the kernel logs on both the
laptop and the development board). Statistical data
are printed directly on the serial console.

Despite the instrumentation overhead, Figure 14
shows qualitative and quantitative differences between
the hardware and software implementations of LZ
compression. The throughput using the hardware im-
plementation is 190 Kbytes/sec for a buffer length
of 16 characters. The throughput for the hardware
compression is 2-4 times higher than that for soft-
ware compression, though the throughput for hard-
ware compression is about 40 Kbytes/sec lower than
that without compression.

Changing the compression buffer length has negli-
gible impact on the throughput achieved by the hard-
ware implementation. However, the software imple-
mentation suffers performance degradation when the
compression buffer length is increased. This graph
demonstrates the advantage of hardware-based com-
pression versus software-based compression.

7 Conclusions

This paper presented the design, implementation,
and evaluation of a compression mechanism for IP
packets based on the hardware implementation of the
Lempel-Ziv compression algorithm. Experiments with
Web traffic were performed to understand the im-
pacts of system parameters such as compression buffer
length and encoding method on the overall compres-
sion performance.

The experimental results show that compression of
IP packets for Web page transfers can reduce the vol-
ume of data sent over the physical medium. Compres-
sion ratios of up to 38% were observed for a compres-
sion buffer length of 1024 characters. The best results
were obtained using the Optimized Triples encoding
method for (pointer, max length, last char).

Our results suggest that the hardware compres-
sion mechanism is attractive for wireless network ap-
plications, where power consumption for transmis-
sion/reception of packets is a limiting factor. Al-
though our experiments were performed on a wired
network, the results are applicable to wireless net-
works as well since the proposed mechanism is not
restricted by a particular choice of datalink layer pro-
tocol. Extending our prototype to wireless LAN op-
eration requires additional hardware for a USB-based
wireless interface [5].

Another conclusion of the experiments is that the
hardware implementation of the Lempel-Ziv compres-
sion algorithm is more scalable than the software
implementation. In particular, the throughput of
the hardware-based implementation does not degrade
when increasing the compression buffer length.

In addition to the wireless LAN extension, future
work will explore other application domains for our
network processor board. We believe that the network
processor architecture is easily reconfigurable for other
packet-level services such as Web content transcoding,
packet monitoring, or network intrusion detection [4].

Acknowledgements

Financial support for this research was provided by
iCORE (Informatics Circle of Research Excellence) in

the Province of Alberta, as well as NSERC (Natural
Sciences and Engineering Research Council) and CFI
(Canada Foundation for Innovation). The authors are
grateful to Nayden Markatchev for his technical sup-
port related to this work, and to Dr. Laurence Turner
for his insightful comments about FPGA-based com-
pression for wireless networks.

References

[1] G. Boggia, P. Camarda, and V. Squeo, “ROHC+:
A New Header Compression Scheme for TCP
Streams in 3G Wireless Systems”, Proceedings of

the IEEE International Conference on Commu-

nications, Vol. 5, pp. 3271-3278, 2002.

[2] P. Crowley, M. Franklin, H. Hadimioglu, and
P. Onufryk, “Network Processors: An Introduc-
tion to Design Issues”, Proceedings of the 8th

International Symposium on High Performance

Computing, Workshop on Network Processors,
Vol. 1, pp. 1-8, 2003.

[3] http://www.fefe.de/fnord/

[4] M. Gokhale, D. Dubois, A. Dubois, M. Boorman,
S. Poole, and V. Hogsett, “Granidt: Towards Gi-
gabit Rate Network Intrusion Detection Technol-
ogy”, Proceedings of the 12th International Con-

ference on Field-Programmable Logic and Appli-

cations, September 2002.

[5] M. Gruteser, A. Jain, J. Deng, F. Zhao, and
D. Grunwald, “Exploiting Physical Layer Power
Control Mechanisms in IEEE 802.11b Network
Interfaces”, Technical Report CU-CS-924-01, De-
partment of Computer Science, University of Col-
orado at Boulder, December 2001.

[6] S. Hwang and C. Wu, “Unified VLSI Systolic
Array Design for LZ Data Compression”, IEEE

Transactions on VLSI Systems, Vol. 9, No. 4,
pp. 489-499, August 2001.

[7] www.iana.org/assignments/version-numbers

[8] IEEE Standard 802.11a, IEEE 1999.

[9] IEEE Standard 802.11b, IEEE 1999.

[10] IEEE Standard 802.11g, IEEE 2003.

[11] V. Jacobson, “Compressing TCP/IP Headers for
Low-Speed Serial Links”, RFC1144, 1990.

[12] B. Jung and W. Burleson, “Performance Op-
timization of Wireless Local Area Networks
through VLSI Data Compression”, Wireless Net-

works, Vol. 4, No. 1, pp. 27-39, 1998.

[13] K. Le, C. Clanton, Z. Liu, and H. Zheng, “Effi-
cient and Robust Header Compression for Real-
Time Services”, Proceedings of the Wireless Com-

munications and Networking Conference, Vol. 2,
pp. 924-928, 2000.

[14] C. Lee and R. Yang, “High-throughput Data
Compressor Designs Using Content Addressable
Memory”, Proceedings of IEEE Circuits, Devices,

and Systems, Vol. 142, No. 1, pp. 69-73, February
1995.

[15] http://www.mind.be

[16] D. Munteanu, A Hardware Programmable Net-

work Processor, M.Sc. Thesis, Department of
Computer Science, University of Calgary, August
2004.

[17] C. Na, J. Chen, and T. Rappaport, “Hotspot
Traffic Statistics and Throughput Models for Sev-
eral Applications”, Proceedings of IEEE GLOBE-

COM, pp. 3257-3263, December 2004.

[18] N. Ranganathan and S. Henriques, “High-Speed
VLSI Designs for Lempel-Ziv-Based Data Com-
pression”, IEEE Transactions on Circuits and

Systems, Vol. 4, No. 2, pp. 96-106, February 1993.

[19] K. Torkelsson and J. Ditmar, “Header Compres-
sion in Handel-C: an Internet Application and a
New Design Language”, Proceedings of the Eu-

romicro Symposium on Digital Systems Design,
pp. 2-7, 2001.

[20] R. Saha, “Content-Addressable Memory Speeds
Up Lossless Compression”, Electronic Design

(online version), www.elecdesign.com, September
2003.

[21] R. Yang and C. Lee, “High-Throughput Data
Compressor Techniques Using Content Address-
able Memory”, Proceedings of the IEEE Inter-

national Symposium for Circuits and Systems,
pp. 147-150, May 1994.

[22] J. Ziv and A. Lempel, “A Universal Algorithm
for Sequential Data Compression”, IEEE Trans-

actions on Information Theory, Vol. 23, pp. 337-
343, May 1977.

