
Experimental Evaluation of TCP Performance

in Multi-hop Wireless Ad Hoc Networks

Abhinav Gupta Ian Wormsbecker Carey Williamson

Department of Computer Science, University of Calgary

{gupta,ianw,carey}@cpsc.ucalgary.ca

Abstract

This paper presents experimental measurements of
TCP bulk data transfer performance in a multi-hop
wireless ad hoc network environment. The first part
of the paper studies how TCP throughput is affected by
AODV routing, user mobility, and the number of hops
traversed in the network. The second part of the paper
studies the effectiveness of rate-based pacing (RBP) of
TCP packets in improving TCP throughput. Contrary
to prior simulation results in the networking literature,
our measurement results show no performance advan-
tages for RBP TCP in our experimental scenarios.

1. Introduction

Multi-hop wireless ad hoc networks present many
challenges for TCP (Transmission Control Protocol).
End-to-end reliable delivery of user-level data requires
each TCP packet (segment) to traverse one or more
intermediate hops en route to the destination. In ad-
dition to the unreliable wireless transmission at each
hop, contention problems from “hidden nodes” and
“exposed nodes” in the wireless network limit the num-
ber of TCP data packets that can be in flight concur-
rently from source to destination. These physical-layer
properties constrain the TCP throughput achievable
over a multi-hop path [5].

To further complicate matters, TCP acknowledge-
ment (ACK) packets must travel upstream to the TCP
source, against the downstream flow of TCP data pack-
ets. Correlated arrivals of TCP data and ACK packets
lead to contention for the wireless channel, which can
cause excessive collisions [10] and even packet losses [5].
These problems arise even for a single TCP flow on
a multi-hop wireless ad hoc network. As a result,
throughput degrades as the length of the multi-hop
path increases.

Several approaches have been proposed in the liter-
ature to tackle these challenges. For example, Fu et
al. [5] propose three techniques: (1) constraining the
growth of the TCP congestion window size so that it
does not exceed a pre-calculated optimal size; (2) im-
plementing a form of RED (Random Early Detec-
tion) [4] at the Medium Access Control (MAC) layer
to reduce contention; and (3) using adaptive pacing
of TCP packets. Kuang et al. [9] take a different ap-
proach. They propose a multi-channel MAC protocol,
with bi-directional channel reservations, to solve this
problem. In both of these papers, network simulation
is used as one means to demonstrate the effectiveness
of the proposed solutions.

The purpose of our paper is to study the practi-
cal performance of TCP in a multi-hop wireless ad
hoc network environment. There are three main con-
tributions in this paper. First, we present empiri-
cal measurements of TCP throughput in a multi-hop
wireless ad hoc network environment, using an ex-
perimental signal-strength-aware version of the Ad-hoc
On-demand Distance-Vector (AODV) routing protocol.
We demonstrate the functionality of this routing pro-
tocol, and quantify the impacts of user mobility and
AODV overhead on TCP performance. Second, we
demonstrate experimentally that TCP throughput de-
grades with the number of hops traversed (consistent
with prior known results). Third, we evaluate the effec-
tiveness of TCP rate-based pacing (RBP) in improving
end-to-end throughput. Contrary to prior simulation
results in the networking literature, our measurement
results show no performance advantages for RBP TCP
in our experimental scenarios. We attribute this out-
come to wireless channel contention issues.

The rest of this paper is organized as follows. Sec-
tion 2 briefly summarizes prior work on TCP perfor-
mance in wireless ad hoc networks. Section 3 de-
scribes the experimental implementation of AODV
with signal-strength-aware routing, and Section 4 the
experimental environment. Section 5 presents the mea-

1

...

A B DC

interference range

carrier sensing range

Figure 1. Multi-hop Wireless Ad Hoc Network

surement results for TCP throughput, establishing a
baseline for TCP performance and its sensitivity to
AODV routing dynamics. Section 6 studies the effec-
tiveness of RBP TCP. Section 7 concludes the paper.

2. Background and Related Work

This section provides background information on
wireless ad hoc networks, and on TCP performance
problems in such environments.

2.1. Multi-hop Wireless Ad Hoc Networks

Multi-hop wireless ad hoc networks offer communi-
cations capability to mobile hosts without requiring a
fixed infrastructure. In such a network, packets can
traverse multiple intermediate nodes en route from the
source to the destination.

An example of a multi-hop wireless network is shown
in Figure 1. This example shows four nodes (labelled A,
B, C, D) in a simple “chain” network topology. Many
other topologies are possible, though we consider only
the simple chain network in this paper. The topology
is called multi-hop because (for example) a packet des-
tined from A to D must use B and C as intermediate
routers. Each forwarding step is called a hop.

The overall performance achieved within a multi-
hop wireless network depends on the Medium Access
Control (MAC) protocol and transport protocol used.
For mobile nodes, performance also depends on mobil-
ity patterns and the ad hoc routing protocol used.

A popular MAC protocol for wireless networks is
the IEEE 802.11 MAC [2]. This protocol requires each
node to sense the channel before sending a frame. The
protocol is called CSMA/CA (Carrier Sense Multiple
Access with Collision Avoidance). To address the hid-
den node problem, the 802.11 MAC uses a Request-
To-Send (RTS) and Clear-To-Send (CTS) handshake.
A node sends an RTS control frame to indicate that
it has a frame to send. Upon receiving the RTS, the
intended receiver returns a CTS control frame if it is
okay to receive the data frame. In this fashion, a packet
traverses one hop at a time toward the destination.

2.2. TCP Performance

Many previous studies show that TCP performance
in multi-hop wireless networks is poor [5, 12, 16]. TCP
throughput often decreases dramatically with the num-
ber of hops traversed by a flow, regardless of the MAC
protocol used [5, 12]. The primary reason is link-layer
packet losses caused by contention between data pack-
ets traveling in the same direction, and collisions be-
tween data packets and TCP ACK packets traveling in
opposite directions.

Several methods have been proposed to remedy
these problems. Fu et al. [5] propose a link-layer
version of RED [4] to signal the TCP sender about
impending congestion, and an adaptive pacing algo-
rithm to distribute TCP data packets evenly across
a multi-hop chain. Combined, these algorithms im-
prove throughput by 5%-30%. As another example,
Cordeiro et al. [3] propose disjoint routes for forward
TCP packets and backward TCP ACKs so that con-
tention is reduced. They report throughput improve-
ments of 90%.

Several multi-channel MAC protocols have been pro-
posed to improve the overall ad hoc network capac-
ity [6, 7, 11, 13, 15]. We do not consider multi-channel
approaches in this paper, but we have studied them in
prior work [9].

3. Signal-Strength-Aware AODV

This section describes the design and implemen-
tation of our signal-strength-aware version of AODV
routing, which provides the basis for our experimental
evaluation of TCP performance.

3.1. AODV Overview

In an ad hoc network, mobile nodes must communi-
cate with each other to determine appropriate routes to
use. One approach is the Ad-hoc On-demand Distance-
Vector (AODV) routing protocol. In AODV, mobile
nodes advertise their presence in the network by broad-
casting HELLO beacons periodically (e.g., once per
second) to their neighbours.

AODV uses three types of control packets for man-
aging network routes. A Route Request (RREQ) packet
is initiated by a sender that has no known route to a
desired destination. A Route Reply (RREP) packet is
returned by a node with a known route to the des-
tination indicated in an RREQ. Each RREQ carries
a (monotonically-increasing) sequence number so that
the matching RREP can be determined. When an
RREP is received in response to an RREQ, the sender

2

records the route received, and uses it for subsequent
data packets sent to that destination. A Route Error
(RERR) packet is returned by a node along a (formerly
working) route that is no longer valid (perhaps because
of node movement).

AODV is designed to maintain fresh routes. A node
updates its AODV routing table whenever it receives a
control packet (RREQ, RREP, or RERR) with a higher
sequence number than it has recorded in its routing
table for a given destination.

3.2. Modifying AODV

Our experimental version of AODV is designed to
choose stable routes, rather than choosing the freshest
route or the shortest route. The primary rationale for
this choice is that frequent route breakages are undesir-
able. Route breakages trigger RERR packets and a re-
newed route discovery process, temporarily stalling the
TCP data transfer for that sender. A secondary ratio-
nale is that route flapping (i.e., rapidly changing back
and forth between several candidate routing paths) is
also undesirable, since it can lead to out-of-order packet
delivery, and reduced TCP efficiency.

In our AODV protocol, determining the next hop
to use for a “stable” route is based on received
signal strength. In particular, the signal strength
from HELLO beacons and control packets (RREQ,
RREP, RERR) are used to ascertain the proxim-
ity of neighbour. The assumption is that all nodes
transmit at the same power, and that the received
signal strength from a node is inversely related to
the distance from the receiver. To avoid choosing
nodes at the periphery of the coverage range, only
HELLO messages with a signal strength above a spec-
ified HELLO STRENGTH THRESHOLD are consid-
ered for processing.

3.3. Implementation Overview

Our implementation of signal-strength-aware AODV
is based on the public-domain AODV implementation
provided by Uppsala University (UU). We modified
AODV-UU to incorporate signal strength functional-
ity, choosing stable routes based on the signal strength
received from the neighbouring nodes.

The AODV-UU implementation contains several
modules (see Figure 2). The three kernel modules are
kaodv, k route, and libipq. The koadv module regis-
ters packet handling functions for three Netfilter hooks:
NF IP LOCAL OUT for handling locally generated pack-
ets; NF IP PRE ROUTING for handling incoming pack-
ets prior to routing; and NF IP POST ROUTING for re-

routing packets prior to sending them. Packets arriving
via NF IP PRE ROUTING or NF IP LOCAL OUT are queued
in user space for AODV to process them, while those
arriving via NF IP POST ROUTING (i.e., packets to be
sent out by the system) are re-routed using the latest
information in the kernel routing table. The libipq

module provides user-space queueing of IP packets. It
uses a netlink socket to communicate with Netfilter,
so that it can decide whether to drop (NF DROP) or
accept (NF ACCEPT) packets arriving from user space.
The k route module modifies the kernel routing table.
The user space modules handle the packets, depending
on their type, as described in the next section.

3.4. Packet Handling

Data packets and AODV control packets are han-
dled differently. Initial packet processing is performed
by the packet input module, which checks to see if a
packet is a control packet or a data packet.

If the packet is a control packet, an accept ver-
dict is returned to libipq, and the packet is copied
to the proper socket for handling. Control packets
are handled using a UDP socket on port 654, the
well-known port assigned for AODV operation. The
control packets are passed to the aodv socket mod-
ule. In our AODV variation, the link strength mod-
ule first checks the signal strength of the received
control packet. If the signal strength is below the
HELLO STRENGTH THRESHOLD, the control packet is not
processed further. Otherwise, the type field is checked
and the appropriate AODV module is called to handle
the packet.

If the packet is a data packet, then it is analyzed
further. If the destination IP address is the receiving
host, then the packet is accepted and handled as usual
by Linux. The same applies for broadcast packets. For
all other cases, the AODV routing table is checked for
a valid route to the indicated destination. If a route
is found, then the next hop of the packet is set, and
the packet is forwarded. If no route is found, then
two possibilities arise. If the packet was generated lo-
cally (determined from the source IP address), then
the packet is queued temporarily in user space (i.e.,
libipq is called by packet queue) until AODV route
discovery (RREQ) completes. If the packet was not
generated locally, then the packet is discarded, after
sending an RERR to the source of the packet.

3.5. Signal-Strength Awareness

The signal strength associated with a control packet
is obtained using an ioctl call on the socket accepting

3

Netfilter

Stack
Protocol

koadv k_routeHooks
Netfilter

Kernel

Netlink socket

libipq

packet_inputpacket_queue

routing_table

UDP
Port 654

aodv_socket

aodv_rreq

aodv_rrep

aodv_rerr

link_strength

Kernel

User
Space

Space

Figure 2. Packet Handling and Route Update Modules in Signal-Strength-Aware AODV

the control packets. The request code is SIOCGIWSPY,
and the signal strength information is returned using
an iwreq structure. The link quality data is copied to
iw qual to determine signal strength in dBm.

Figure 3 shows a graphical illustration of the signal
strength variation for a mobile node, first moving away
from and then back toward a static node in the ad hoc
network. The raw signal strength value fluctuates at
short time scales because of the wireless radio prop-
agation characteristics. To dampen these fluctuations
and better track user mobility, we use an exponentially
weighted moving average for the signal strength. Pre-
liminary experiments showed that a weight of α = 0.25
for the most recent signal strength sample provided
good results. The smoothed value of signal strength
is used as the decision variable for control packet pro-
cessing, as mentioned above.

4. Experimental Methodology

The experimental environment for our work consists
of 5 laptop computers (3 IBM Thinkpads, 2 Compaq
notebooks) in a wireless ad hoc network in the ICT
building at the University of Calgary. All of the lap-
tops were running RedHat Linux 8.0 (kernel version
2.4.18-14). Each laptop was equipped with an IEEE
802.11b Cisco Aironet 350 PCMCIA wireless network
card. The transmit rate for the cards was configured for
automatic rate selection, using channel 6. The trans-
mission power was set to the minimum value allowed,
so that a 4-hop ad hoc network could be established in
50 meters of hallway on one floor of the ICT building.

We used a chain topology for our ad hoc network
with Node 1 at one end running netserver, and Node

-80

-70

-60

-50

-40

-30

-20

-10

0

0 20 40 60 80 100 120 140 160

S
ig

na
l S

tr
en

gt
h

(d
B

m
)

Beacon Number

Smoothed Value(Alpha = 0.25)
Raw Signal Value

Figure 3. Example of Signal Strength versus
Time for a Mobile Node

5 (the only mobile node) at the other end running
netperf, as shown in Figure 4. The laptops were ar-
ranged so that only adjacent nodes were within the
transmission range of each other. We ran the signal-
strength-aware version of AODV on all the laptops for
these tests.

TCP traffic was generated using netperf

TCP STREAM tests, with each test lasting 120 sec-
onds. Unfortunately, we were unable to use tcpdump

to capture TCP packet traces: running tcpdump froze
the wireless cards when the interface was put into
promiscuous mode. To remedy this problem, we
added our own kernel instrumentation to record TCP
packet-level statistics.

4

running
netserver

Node 5
running
netperf

Migration Path

Node 3 Node 4Node 2

Upstream TCP ACKsDownstream TCP Data

Node 1

Figure 4. Wireless Ad Hoc Network Topology

5. TCP Throughput Results

This section presents the results from our TCP
throughput experiments using the signal-strength-
aware version of AODV. The experiments focus on
TCP throughput, and the impacts of network size, user
mobility, and AODV routing overhead.

5.1. Throughput Measurements

The first experiment studies the sensitivity of TCP
throughput to the path length in a multi-hop wire-
less ad hoc network. The laptops were arranged in
a static chain topology. The netperf software was run
on client Node 5 to send TCP data packets to Node 1
running netserver. The TCP throughput was deter-
mined from a 2-minute test. Since throughput varied
from one run to the next, the median throughput from
ten runs was used as a robust estimate.

Figure 5 shows the results from the first experiment.
The results (as expected) show that throughput de-
creases with the number of hops traversed. As a point
of reference, the maximum achievable TCP through-
put in a single-hop (direct) WLAN configuration with
our equipment is 5.1 Mbps [10]. Here, we only consider
multi-hop configurations. For two hops (1 intermediate
node), the throughput is 2.22 Mbps. For three hops,
the throughput is 1.44 Mbps, and for four hops, the
throughput is 1.24 Mbps.

The lower throughput in the multi-hop configura-
tions occurs because of hidden node and exposed node
problems. Because adjacent nodes are within the car-
rier sensing range of each other, they cannot transmit
at the same time. This property reduces the through-
put when the number of hops increases.

The second experiment measured the TCP through-
put for a mobile client. The topology and traffic gener-
ation for this experiment was the same as before. The

0

0.5

1

1.5

2

2.5

2 3 4

T
C

P
 T

hr
ou

gh
pu

t (
M

bp
s)

Number of Hops

Figure 5. TCP Throughput versus Number of
Hops for Stationary Client

Table 1. TCP Throughput Results (Mbps)
Hops Static Slow Medium Fast

2 2.22 2.40 2.26 1.96
3 1.44 2.17 2.05 1.66
4 1.24 1.59 1.30 1.18

only difference is that the mobile client with the lap-
top walks from one end of the network to the other,
beginning near the server (i.e., direct connectivity),
and ending just past (but within the range of) the last
hop. We consider three different walking speeds. The
slow-walking client moves at approximately 0.33 m/sec
(1.2 km/hr). The fast-walking client moves at approx-
imately 1.0 m/sec (3.6 km/hr). The medium-walking
client moves at a rate in between these two values.

Table 1 shows the throughput results for the mobile
client. For convenience, the throughput results for the
static client are also shown. Note that the measured
TCP throughput for the Slow/Medium mobile client is
actually higher than that measured for the stationary
client from the first experiment. This result occurs be-
cause the mobile client begins with direct connectivity
to the server (i.e., high throughput) and then expe-
riences worse and worse throughput as they walk fur-
ther and further away from the server. The throughput
achieved early in the transfer skews the measurement
results, creating the illusion of higher throughput for
the mobile client. Despite this idiosyncracy, the num-
ber of hops still clearly influences the overall through-
put achieved.

Table 1 also shows the impact of the speed of the mo-
bile client on the TCP throughput. The fast-walking
client experiences worse TCP throughput than the

5

Table 2. Route Discovery Time (msec)
Hops Min Median Max Mean StdDev

2 3 7 965 50.8 173.6
3 6 10 3,212 292.8 633.9
4 9 331 5,183 613.3 999.6

slow-walking client. The primary reason is that the
fast-walking client spends less time in direct contact
with the server, and relatively more time in the multi-
hop part of the network. The throughput disadvan-
tage for the fast-walking client is more pronounced for
the 3-hop (23%) and 4-hop (26%) networks than for
the 2-hop network (18%), since the fast-walking client
reaches the lower throughput locations sooner. Also
important are the route changes that occur during the
walk, and the non-zero route discovery time required
for each of these events. For the fast-walking client,
the outages induced by route discovery have a larger
relative impact on the TCP throughput.

5.2. Route Discovery Time

We conducted separate experiments to measure the
route discovery time for our signal-strength-aware ver-
sion of AODV. The route discovery time is the elapsed
time between sending an RREQ and receiving the cor-
responding RREP. This time depends on the distance
to the destination, the number of nodes in the network,
and the characteristics of the wireless channel.

We observed high variability in the route discovery
times. Table 2 shows the results from 40 runs. The
median route discovery time was about 10 milliseconds
(msec) for the 2-hop network and the 3-hop network,
but it increased to 331 msec for the 4-hop network.
This is because multiple RREQs had to be sent before
a RREP was received. We suspect that RREQ packets
were dropped at the link layer due to interference from
Node 2. While Node 2 was not within the transmission
range of Node 5, it was within the interference range,
leading to collisions during RTS/CTS handshakes. For
most of the cases, an RREP was received after the
second RREQ attempt. The time interval before re-
peating the RREQ was 320 msec. Assuming that the
RREP was received from the adjacent node in another
10 msec, this explains the 331 msec route discovery
time for the 4-hop network.

The worst cases observed required over 5 seconds to
establish a route. These unpredictable route discovery
times can adversely affect TCP throughput.

Table 3. AODV Routing Overhead
Num Data Control Overhead
Hops Packets Packets Ratio

2 24,369 347 0.014
3 17,369 405 0.023
4 13,249 499 0.037

5.3. Routing Overhead

Our experiments measured the AODV control
packet overhead for route discovery and route main-
tainence in our simple network topology. The over-
head packets considered are RREQ, RREP, RERR,
and HELLO (a special type of RREP packet). These
control packets are UDP packets arriving on port 654.
A WildPackets Airopeek Sniffer located at the center
of the network was used to capture all the control pack-
ets. We calculated the overhead ratio as the number of
control packets divided by the number of data packets.

Table 3 shows the results from selected experiments.
The routing overhead ratio clearly increases with the
number of hops, though it is always below 4%. The
overhead ratio for the 4-hop network is more than dou-
ble that for the 2-hop network. This increase comes
from the additional nodes in the network, each sending
HELLO messages to maintain route and connectivity
information. Another reason is that fewer TCP data
packets are delivered per unit time when the network
path length is larger.

5.4. End to End Delay

A final experiment was conducted to measure the
round-trip time (RTT) in the multi-hop ad hoc net-
work. This experiment was conducted for different
packet sizes and different hop counts on the chain
topology. RTT was measured using adaptive ping so
that there was never more than one unanswered ping
request in the network at a time.

Table 4 shows the observed RTT values in millisec-
onds. The results show the expected trends: the RTT
tends to increase with packet size, and with the number
of hops traversed.

The RTT behaviour is important because it influ-
ences TCP throughput. The larger the RTT is, the
lower the TCP throughput tends to be. Estimat-
ing RTT is also important for TCP rate-based pacing
(RBP) [8].

6

Table 4. Measured Round Trip Times from Client to Server (msec)
Num Ping Size Min Median Max Mean StdDev
Hops (bytes)

2 64 3.00 3.99 7.46 4.21 0.98
1024 10.20 10.85 17.80 11.36 1.41

3 64 4.53 5.91 61.40 6.78 5.70
1024 15.70 17.50 67.10 18.57 5.32

4 64 6.01 7.70 12.80 7.94 1.17
1024 20.80 22.30 26.60 22.59 1.28

6. Results for TCP Pacing

Several papers in the literature have proposed rate-
based pacing (RBP) to “spread out” TCP packets in
time and improve TCP performance [1, 5, 8]. Early
work proposed this technique for Web TCP traf-
fic [1, 8], while more recent work by Fu et al. [5] has
proposed this explicitly for multi-hop wireless ad hoc
networks. In particular, they propose link-layer pacing
of packets to coordinate the movement of packets sev-
eral hops apart in a multi-hop network. Their pacing
mechanism operates in conjunction with a link-layer
version of RED to handle wireless contention.

As a starting point for our study, we simulated TCP
pacing in a multi-hop network topology, using the ns-
2 network simulator [14]. The TCP Reno model was
modified to implement rate-based pacing, using [8]:

InterPacketDelay =
RTT

CurrentWindow + V

where RTT is the round trip time and
CurrentWindow is the current congestion win-
dow size (cwnd) in segments. The variable V controls
the aggressiveness of the pacing by artificially increas-
ing or decreasing the denominator [8]. For simplicity,
V is fixed at 1 in all experiments.

Experiments were performed comparing Reno TCP
and RBP TCP, with throughput as the primary per-
formance metric. A simple chain topology as depicted
in Figure 6 was used for all experiments. The two end-
points of the chain are used as the TCP sender and
receiver. The intermediate nodes in the chain forward
packets, but do not generate any traffic of their own.
In the simulations, chain length ranges from 2 to 16
nodes. The 2 node scenario has direct connectivity be-
tween the sender and the receiver, while the 16-node
scenario has 14 intermediate nodes to traverse. Each
link is 11 Mbps. RTS/CTS is used, and TCP Delayed-
ACKs are disabled.

Figure 7 shows the simulation results. Both RBP
TCP and Reno TCP perform similarly (as expected)

Figure 6. Example Chain Network Topology

 0

 200

 400

 600

 800

 1000

 1200

 1400

 2 4 6 8 10 12 14 16

T
hr

ou
gh

pu
t (

kb
ps

)

Number of Hops

RBP TCP
Reno TCP

Figure 7. Simulation Results for Reno TCP
and RBP TCP

when there are only 1 or 2 hops in the network. How-
ever, once packets traverse 3 or more hops to the re-
ceiver, RBP TCP shows a throughput advantage. The
advantage ranges from 10% to 50%, depending on the
number of hops. Our results are qualitatively similar
to those reported by Fu et al. [5], indicating that our
simulation model captures the essence of TCP pacing.

Next, we conducted RBP TCP experiments using
our experimental ad hoc network. We implemented
adaptive pacing of TCP data packets in the Linux ker-
nel of the mobile client (Node 5), and verified its cor-
rect operation using network packet traces collected
from the network. We then repeated several of the
TCP throughput experiments from Section 5.1. We
conducted these experiments using the 11 Mbps con-
figuration of IEEE 802.11b.

7

Table 5. Throughput Results for TCP Pacing
(Mbps)

Num Reno TCP RBP TCP
Hops Mean SDev Mean SDev

1 4.69 0.02 4.21 0.22
2 2.22 0.06 2.13 0.03
3 1.44 0.04 1.31 0.11
4 1.24 0.01 1.08 0.03

The results from these experiments are shown in Ta-
ble 5. Our results show no performance advantage for
RBP TCP in our multi-hop wireless ad hoc network.

There are several reasons for these disappointing re-
sults. First, the simulation results have an idealized
model of wireless channel contention. Each node has
precise, finite values for transmission range and inter-
ference range, and the nodes are carefully spaced to
provide transmission connectivity while minimizing in-
terference overlap. In our experimental scenario, even
though we carefully placed our nodes and controlled
the transmit power, there are many wireless propaga-
tion characteristics that differ from the idealized model
in the simulation. In particular, inter-node interfer-
ence may be much greater than that assumed in the
simulation. Second, the simulation model does not
consider AODV routing dynamics. Our experimen-
tal measurements show that AODV introduces many
artifacts: HELLO beacons, routing packet overhead,
non-deterministic forwarding delays, and dynamically
varying network round trip times. Third, our pacing
implementation was done at the TCP layer rather than
the link layer, and operates in isolation. In particular,
we do not use a link-layer version of RED.

All these factors disrupt the “perfect world” assump-
tions for RBP TCP in the simulation. The main take-
home message from our experiments is that ns-2 simu-
lation results for TCP performance in multi-hop wire-
less ad hoc networks should be interpreted with cau-
tion, unless they have been validated against experi-
mental measurements.

7. Summary and Conclusions

This paper studies TCP performance in a multi-hop
wireless ad hoc network environment, making three
main contributions. First, we present empirical mea-
surements of TCP throughput in a multi-hop wireless
ad hoc network environment running an experimental
version of the AODV routing protocol. We demon-
strate the functionality and performance of this pro-

tocol, and quantify the impacts of user mobility and
AODV routing overhead on TCP performance. Sec-
ond, we confirm prior results that TCP throughput
degrades with the number of hops traversed. Third,
we evaluate the effectiveness of TCP rate-based pac-
ing. Unlike earlier simulation results in the literature,
we find no performance advantage for RBP TCP. The
results suggest that the performance of RBP TCP is
highly sensitive to channel contention and AODV rout-
ing dynamics in a multi-hop wireless ad hoc network.

References

[1] A. Aggarwal, S. Savage, and T. Anderson, “Un-
derstanding the Performance of TCP Pacing”,
Proceedings of IEEE INFOCOM, Tel Aviv, Israel,
March 2000.

[2] ANSI/IEEE Standard 802.11b, “Part 11: Wireless
LAN Medium Access Control (MAC) and Physical
Layer (PHY) Specifications: Higher-Speed Physi-
cal Layer Extension in the 2.4 GHz band”, 1999.

[3] C. Cordeiro, S. Das, and D. Agrawal, “COPAS:
Dynamic Contention-Balancing to Enhance the
Performance of TCP over Multi-hop Wireless Net-
works”, Proceedings of IC3N’02, Miami, FL, Oc-
tober 2002.

[4] S. Floyd and V. Jacobson, “Random Early De-
tection Gateways for Congestion Avoidance”,
IEEE Transactions on Networking, Vol. 1, No. 4,
pp. 397-413, August 1993.

[5] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and
M. Gerla, “The Impact of Multi-hop Wireless
Channel on TCP Throughput and Loss”, Proceed-
ings of IEEE INFOCOM’03, San Francisco, CA,
April 2003.

[6] W. Hung, K. Law, and A. Leon-Garcia, “A Dy-
namic Multi-Channel MAC for Ad Hoc LAN”,
Proceedings of 21st Biennial Symposium on Com-
munications, Kingston, ON, Canada, June 2002.

[7] N. Jain, S. Das, and A. Nasipuri, “A Multichannel
CSMA MAC Protocol with Receiver-Based Chan-
nel Selection for Multi-hop Wireless Networks”,
Proceedings of the IEEE ICCCN’01, Phoenix, AZ,
October 2001.

[8] J. Ke, “Towards a Rate-Based TCP Protocol for
the Web”, Proceedings of MASCOTS’2000, San
Francisco, CA, pp. 36-45, October 2000.

8

[9] T. Kuang and C. Williamson, “A Bidirectional
Multi-Channel MAC Protocol for Improving TCP
Performance on Multi-Hop Wireless Ad Hoc Net-
works”, submitted for publication, 2004.

[10] T. Kuang, F. Xiao, and C. Williamson, “Diagnos-
ing Wireless TCP Performance Problems: A Case
Study”, Proceedings of SCS SPECTS Conference,
Montreal, PQ, pp. 176-185, July 2003.

[11] J. So and N. Vaidya, “A Multi-channel MAC Pro-
tocol for Ad Hoc Wireless Networks”, Technical
Report, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, January 2001.

[12] K. Tan and M. Gerla, “Fair Sharing of MAC under
TCP in Wireless Ad Hoc Networks”, Proceedings
of IEEE MMT’99, Venice, Italy, October 1999.

[13] A. Tzamaloukas and J. Garcia-Luna-Aceves,
“A Receiver-Initiated Collision-Avoidance Pro-
tocol for Multi-Channel Networks”, Proceedings
of IEEE INFOCOM’01, Anchorage, USA, April
2001.

[14] VINT Group, “Network Simulator ns-2”, available
at http://www.isi.edu/nsnam/ns

[15] S. Wu, Y. Tseng, C. Liu, and J. Sheu, “A Multi-
Channel MAC Protocol with Power Control for
Multi-Hop Mobile Ad Hoc Networks”, The Com-
puter Journal, Vol. 45, No. 1, pp. 101-110, 2002.

[16] S. Xu and T. Saddawi, “Does the IEEE 802.11
MAC Protocol Work Well in Multi-hop Wireless
Ad Hoc Networks?”, IEEE Communications Mag-
azine, June 2001.

9

