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ABSTRACT 
 
The Web proxy cache placement problem is often formulated as a classical optimization problem: 
place N proxies within an internetwork so as to minimize the average user response time for 
retrieving Web objects. Approaches to this problem in the literature include graph theoretic 
approaches, combinatorial approaches, dynamic programming approaches, and vector 
quantization approaches. 
 
In this paper, we tackle the cache placement problem using packet-level ns2 network simulations. 
There are three main conclusions from our study. First, network-level effects (e.g., TCP 
dynamics, network congestion) can have a significant impact on user-level Web performance, and 
must not be overlooked when optimizing Web proxy cache placement. Second, cache filter 
effects can have a pronounced impact on the overall structure of an optimal caching solution. 
Third, small perturbations to the Web workload can produce quite different solutions for the 
optimal cache placement problem. This implies that robust solutions are more desirable than 
"optimal" solutions. The paper provides several heuristics for cache placement based on our 
packet-level simulations. 
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 1.0 Introduction 
Given the explosion of Internet use in the last decade, much effort has been directed towards 
improving user perceived experience with the World Wide Web.  One popular approach is the 
installation and implementation of Web caching appliances or Web proxy caches.  Web caching 
can reduce and balance Internet traffic across a network, reduce user perceived latency when 
accessing Web documents, and improve server responsiveness by reducing server load. 
 
Web proxy caches provide a shared cache to a set of clients [16].  When a user requests a Web 
document from a particular origin server, the request goes through the proxy.  If the document is 
cached at the proxy and the document is not stale, then the user’s request is served from the proxy 
in the same way as it would have been served had it been handled by the origin server itself.  
Alternatively, if the document is not in the proxy cache, or if the document is not up to date, then 
the proxy forwards the request to the origin server.  The origin server responds to the proxy, and 
the proxy forwards the response to the client.  The proxy typically stores the document in its 
cache to serve future requests for the same document from other clients.  To the origin server, the 
proxy appears and acts as a client making a request.  To the client, the proxy appears and acts as 
the origin server responding to a request. 
 
The strategic placement of Web proxies in a network can yield a number of performance gains.  
When a user’s request for a Web document is served by a Web caching appliance in close 
proximity to the client, the request need not travel to the origin server over numerous wide area 
network links.  Specifically, the goal is to keep request/response traffic off of slower inter-
continental links that can dramatically inflate client response times.  Since round trip delay is 
reduced, the download of the Web document is faster for the user. Equally important, 
unnecessary network traffic is eliminated on high traffic Internet backbones. 
 
The Web proxy cache placement problem is often formulated as a classical optimization problem: 
place m proxies within an internetwork so as to minimize the average user response time for 
retrieving Web objects.  Approaches to this problem in the literature include graph theoretic 
approaches, combinatorial approaches, dynamic programming approaches, and vector 
quantization approaches [6][9][10][11][12][13]. 
 
One drawback of most theoretical approaches to the Web proxy cache placement problem is the 
limiting assumptions that are needed to make the analysis tractable.  For example, some 
approaches assume fixed-size documents, identical hit ratios at each proxy cache, and 
homogeneous clients in terms of the number of Web requests generated.  These assumptions are 
in stark contrast to empirical observations of Web workload characteristics: heavy-tailed transfer 
size distributions [1][5], diminishing hit ratios at each successive level of cache due to filter 
effects [4][14][19], and Zipf-like distributions for client activity and Web object popularity [2][5].  
Furthermore, theoretical approaches often abstract away details about network protocol effects, 
such as bursty packet traffic, packet losses, and the dynamics of TCP flow control. 
 
The purpose of this paper is to study the Web proxy cache placement problem from a packet-level 
network-layer perspective.  The motivation for the packet-based approach is three-fold.  First, the 
aforementioned discrepancies between empirical observations about Web proxy caching and the 
modeling assumptions often used motivate a detailed simulation approach with fewer unrealistic 
assumptions.  Second, some of our own earlier simulation work [20] has shown the significant 
impacts of network-level effects (e.g., round trip times, link speeds, network congestion, packet 
losses, TCP dynamics) on user-level Web performance.  We seek to build upon and extend these 
observations.  Finally, first-hand experiences with two different commercial Web proxy caching 
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appliances have shown that performance is surprisingly sensitive to TCP dynamics and network 
configurations. 
 
In this paper, we tackle the optimal Web proxy cache placement problem using simulation, with 
the ns2 network simulator [3].  In essence, we take a "brute force" approach to the problem, 
conducting a large number of simulations for a simple Web proxy caching environment, but with 
fairly realistic network and workload assumptions.  The experiments focus on the mean Web 
response time for the simulated Web clients. 
 
The primary research questions addressed in the paper are: 
• What are the differences, if any, between the solutions for optimal Web proxy cache 

placement determined by theoretical (e.g., dynamic programming) approaches and simulation 
(e.g., packet-level) approaches? 

• How sensitive is the "optimal" Web proxy cache solution to the assumptions made about 
client workload, network structure, and Web caching effectiveness? 

 
The results from our simulation experiments illustrate three main points.  First, network-level 
protocol effects can have a significant impact on user-level Web performance, and thus on the 
cache placement decision.  Second, assumptions about Web cache filter effects can completely 
change the structure of the optimal solution determined.  Third, surprisingly small perturbations 
to the Web workload can produce quite different solutions for the optimal cache placement 
problem.  Together, these three observations imply that robust “good”  solutions are more 
desirable than "optimal" solutions, especially with incomplete knowledge of Web workloads. 
 
The rest of the paper is organized as follows.  Section 2 provides some background on the cache 
placement problem, and briefly discusses prior work on this problem.  Section 3 describes the 
experimental methodology for our packet-level simulation experiments.  Section 4 provides a 
synopsis of results from a dynamic programming approach to the Web cache placement problem.  
Section 5 presents the main results from our packet-level simulation study.  Section 6 extends the 
study by varying selected assumptions regarding caching, workload, and network-level structure.  
Finally, Section 7 concludes the paper. 
 

2.0 Related Work 
The placement of Web proxy caches (proxies) in a given network poses an interesting problem.  
Specifically, there is a theoretical, optimal solution to the placement problem where the number, 
size, and cost of Web caching appliances is minimized while the benefit of Web caching is 
maximized in terms of reducing user latency and bandwidth usage.  In graph theory, this problem 
is referred to as the k-median problem, and has been proven to be NP-hard.  As a result, current 
solutions to the problem rely on heuristic approaches and approximate models [9][10][11][12].    
 
Li et al have studied the problem of optimal placement of multiple Web proxies among potential 
sites, given a certain traffic pattern.  The reduction in overall network traffic and the reduction in 
access latency are used as measures of optimal placement in this case. Using a dynamic 
programming approach, they propose an optimal solution for linear network topologies, and a 
sub-optimal approximation for tree topologies [13].  Later, they determined an optimal solution to 
the distributed caching  problem in an active network with a tree topology [12]. The latter paper 
provides the basis for the dynamic programming approach used as an example in our work. 
 
Krishnan et al’ s research also focuses on the problem of where to place caches within a network 
of a defined topology [11].  They consider the problem as it relates to general caches, transparent 
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en-route caches, and mirror placement for a single Web server.  The goal of their experiments 
was to formulate an algorithm that minimized overall network traffic and reduced average client 
delay through the strategic placement of caches.  Using a dynamic programming approach, they 
propose optimal algorithms for ring and line topologies, and a sub-optimal approximation for a 
tree network topology. 
 
Krishnan et al then ran simulation experiments to measure network performance based on their 
findings.  Results from the experiments demonstrated that determining the placement of Web 
caches is non-trivial, and did in fact influence the overall benefit.  In addition, their proposed 
algorithms outperformed greedy algorithms in either network traffic reduction or fewer caches 
placed in the network.  From a practical point of view, their research showed an “advantage over 
the common use of caches at the edges of the networks”  [11]. 
 
What makes the proxy placement problem more complicated than other instances of the k-median 
problem is the existence of upstream and downstream dependencies when evaluating potential 
proxy site locations. A hierarchical caching architecture is based on multiple levels of caching 
within a network.  If a document is not cached at one level, there is a chance it is cached at the 
level above.  Typically, it is assumed that there are four levels: client browser caches, institutional 
caches, regional caches, and national-level caches.  The latter refer to cache locations close to the 
Internet backbone or international links [18].   
 
Empirical measurements show that the cache hit ratio tends to decrease at each successive level 
of cache [14]. This phenomenon is called the cache filter effect [19].  However, hierarchical 
schemes such as Harvest, adaptive Web caching, and access-driven caching can still be used to 
effectively “diffuse popular Web content, especially if cooperating cache servers do not have 
high-speed connectivity” [12].  The simulation experiments in this paper consider hierarchical 
caching and cache filter effects. 
  
3.0 Experimental Methodology 

3.1 Network Model and Assumptions 
 
The network model assumed for our study is shown in Figure 1.  The chosen topology represents 
a compromise: large enough so that the placement of proxies is not trivial, yet simple enough so 
that it can be easily simulated and the results understood.  The network model has a single Web 
server at the root (top) of an unbalanced tree, with six clients at the leaf level.  Each leaf node 
could represent the aggregation of numerous clients in a Local Area Network (LAN), however, 
for simplicity, only six abstract clients are considered in this study.  The circular nodes, labeled 
P1 to P11, represent candidate proxy locations, at national, regional, and institutional levels. 
(Browser caches are ignored in our study.)  The connecting lines in the figure represent routing 
paths from the server to the clients.  Router nodes have buffers of size 100 packets with DropTail 
queueing. All network links have 10 Mbps transmission capacity.  Link propagation delays are 
shown on the left margin of the diagram.  The percentages beneath each client (square) indicate 
the proportion of the total Web request workload generated by each client. 
 
By design, the network structure and the traffic workload are unbalanced and asymmetric. Given 
this specific network topology, the goal is to determine an optimal placement for a set of m Web 
proxies. The numerical values adjacent to each link in Figure 1 represent weights used by the 
dynamic programming approach discussed in Section 3.5. 
 



MASCOTS 2003 Submission – Paper 52 

Page 5 of 17 

P3

P8 P11P10P9

P7P6P5P4

P2P1

S

C1 C2 C3 C4 C5 C6

(0.16,5)

1 ms

5 ms

10 ms

25 ms

(0.14,5) (0.26,5) (0.15,5)

(0.15,10)(0.22,10)(0.40,10)(0.16,10)

(0.07,10)

(0.63,25) (0.37,5)

16% 7% 14% 26% 22% 15%

National

Regional

Institutional

 
Figure 1 Network Topology and Workload Characteristics for Simulation Experiments 

 
3.2 Web Workload Model 
 
The Web workload in our study is synthetically generated using a version of WebTraff [15].  
Each line in the workload file represents the download of a Web object by one of the simulated 
clients. The workload file format has four columns: a timestamp (request arrival time); a source 
node (provider of the Web object); a sink node (the requesting client); and a transfer size (in 
bytes). The request arrival process is Poisson, with a specified mean arrival rate (e.g., 30 requests 
per second).  The transfer size is drawn from a hybrid distribution, with a log-normal body, and a 
Pareto tail.  The median transfer size is 5 KB (11 TCP packets), while the mean is 11.5 KB (24 
packets).  The largest transfer is 453 KB, while the smallest is 88 bytes.  Figure 2 shows a 
distribution of transfer sizes for the Web workload model.  The source and sink for each Web 
transfer are chosen at random according to the desired request rate for each client and the cache 
hit ratio(s) being modeled.  The default source for each Web transfer is the origin server. 
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Figure 2: Web Workload Transfer Size Distribution for 2500 requests 

The simulation experiments use a workload with 2500 requests.  This relatively short trace length 
again represents a compromise: large enough to produce statistically useful results, yet short 
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enough to permit the large number of simulations (hundreds) needed in our study.  With packet-
level simulations in ns2, about 10 simulation runs can be completed per hour on departmental 
compute servers.  We consider this trace length suitable for our purposes.  Furthermore, the 
results with this trace length are consistent with those from test runs with 6000 requests. 
 
3.3 Experimental Factors 
 
There is one main experimental factor in our experiments: the number of proxies.  This number is 
varied from 1 to 4. Its maximum possible value on our simulated network is 11.  There are two 
main workload factors in our experiment: the request arrival rate, and the cache hit ratios at the 
proxies.  The default request arrival rate is 30 requests per second, representing a moderate load 
of about 3 Mbps originating from the server.  Given the stochastic arrival process, variable-size 
transfers, and TCP’s bursty packet arrival process, the peak load can be much higher than this. 
The chosen cache hit ratios are shown in Table 1. 
 
3.4 Performance Metrics 
 
The primary performance metric is the overall mean response time for Web object downloads, 
which we call the transfer time.  This value is computed across all clients.  In some cases, we also 
mention the per-client mean transfer time, or the median transfer time.  A secondary metric used 
in Section 6 is the level of packet loss in the network.  By design, there are no packet losses in 
any of the experiments in Section 5. 
 
3.5 Dynamic Programming Approach 
 
Li et al present a proxy placement algorithm with time complexity O(n3m3), where n is the 
number of nodes in the network and m is the number of proxies to be placed in the network.  The 
authors observed a relationship among potential proxy sites with the surrounding links and paths 
in the network; namely that inserting a proxy at a downstream location affects the traffic pattern 
upstream of that location.  Since the traffic pattern affects network latency, it is this observation 
on which their problem formulation is based.  Their algorithm provides an optimal solution in 
terms of minimizing average latency.  The authors provide justification of the algorithm’s 
complexity and correctness [12].   
 
The approach assumes that the network is a directed graph of vertices (or nodes) and edges.  Each 
node has an associated weight that represents the volume of traffic expected to traverse the node 
in the no proxy scenario.  In our network model, each client is assigned a weight relative to the 
percentage of overall traffic in the system.  Each higher level node is assigned a weight 
representing the sum of the traffic from its children.  Each node is also associated with an edge 
distance that can be “ interpreted as either latency, link cost, hop count, or whatever”  [12].  In our 
study, the edge distance represents the one-way link propagation delay.  The cumulative cost 
from any downstream node u to an upstream node v is the sum of the edge distances.  The 
weights and distances for each node are identified in Figure 1.  
 
The dynamic programming approach in [12] then proceeds as follows.  For each node v in the 
tree, there is a subtree Tv with v as its root.  Note that for leaf nodes, the subtree contains only 
itself.  Given any node u, it is possible to further partition the tree into a left node subset Luv, a 
subtree Tu and the remainder set Tuv where: 

Luv = {  x ∈ Tv : x is to the left of u }  
Tuv = {  x ∈ Tv : x ∉ Tu ∪ Luv }  



MASCOTS 2003 Submission – Paper 52 

Page 7 of 17 

Within the tree, a set of nodes must be chosen as proxy sites.  Each proxy set solution has an 
associated cost and the set that minimizes the cost represents the optimal placement solution.  The 
authors define W( u, v ) as the total contribution to the cost of a given proxy set in the set Luv, and 
W( u, v, x ) as the total contribution to the cost in the set Lxv, where: 

W( u, v )  =  Σx∈Lu,v  w( x ) d( x,  v) 

W( u, v, x )  =  Σy∈Lu,v,x  w( y ) d( y,  v) 
Furthermore, C(v,m) represents the optimal cost of placing m proxies in Tv and C(u,v,m) 
represents the optimal cost of placing m proxies in Tuv .  These are defined as follows1: 
 

Σx∈Tuv  w( x) d( x,  v)    if m = 1 

C( u, v, m )  =  min x∈Tuv min x0<m’<m 

(W( u, v, x ) + C ( x, m’ ) + C( v, x, m - m’ ) if m > 1 
 

Σx∈Tv  w( x) d( x,  v)    if m = 1 

C( v, m )  =  min x∈Tv min x0<m’<m 

(W( u, v ) + C ( x, m’ ) + C( v, x, m - m’ )  if m > 1 
 
The static values for W( u, v ) and W( u, v, x ) can be pre-computed for all possible combinations 
of u, v and x, and stored in 2D and 3D arrays, respectively.  Next, C( v, m ) and C( u, v, m ), along 
with their ‘selected proxy sets’  can be calculated according to the equations mentioned earlier.  
Further, if they are calculated in order of increasing m values and stored in another table, each 
equation processes entries that have been previously calculated.  This means that the table is 
populated in a structured order.  Each stage represents a solution for a given set of m proxies for 
all nodes n. 
 
3.3 Simulation Approach 
 
Our simulation study uses a “brute force”  combinatorial approach to determine the optimal 
placement of proxies.  It is simply an exhaustive search of all possible proxy set combinations.  
With n potential proxy sites, the number of ways to place m proxies is: 
 

n! C(n,m) = 
m! (n – m)! 

 

For example, choosing a location for 1 proxy in the 11 node network of Figure 1, the expression 
is C(11,1) = 11!/1!10! = 11.  For 2 proxies, the expression is C(11,2) = 11!/2!9! = 55.  For more 
proxies, C(11,3)  = 165, C(11,4) = 330, and so on.  While this combinatorial search guarantees an 
optimal solution to the proxy placement problem (since all possibilities are tested), the effort 
required becomes prohibitive as the network and proxy set size grow.  
 
All possible proxy set combinations up to size 4 were simulated using the ns2 network simulator.  
ns2 is a public-domain network simulator originating from Lawrence Berkeley Labs. It is widely 
used by networking researchers.  It contains several TCP protocol models, and supports network 
animation for the visualization of network topology and network traffic dynamics [3].  
 

                                                 
1 By default, the root (server) node is considered a proxy site, so the base case is m = 1. 
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In this study, each simulation consists of 2500 Web TCP transfers flowing uni-directionally from 
a source (server or proxy) node to a sink (one of the 6 clients).  Network capacity and buffer size 
remained fixed, while Web workload characteristics and cache hit ratios are varied.   
 
The desired cache hit ratios are achieved by carefully manipulating the input client workloads. 
For any client request, the request could be served from any one of the proxy nodes on the path to 
the server.  If no proxies exist in the network, then every request involves the server.  However, if 
a proxy on a client’s path is part of the chosen proxy set, then with a probability equal to the 
cache hit ratio, a request from that client is served from the proxy instead of the server.  
 
Cache hit ratios were chosen to represent the “diminishing returns”  and cache filter effects 
reported in the literature [14][18][19].  Since higher level proxies serve more diverse client 
groups using a shared (finite) resource, the likelihood of an individual client finding a requested 
document at a higher level proxy drops.  Cache hit ratios were assigned consistently across 
network caching levels for each client stream according to Table 1. 

Table 1: Proxy Cache Hit Ratios 

level 1 level 2 level 3
1 30% - -
1 - 20% -
1 - - 15%
2 30% 15% -
2 30% - 10%
2 - 20% 10%
3 30% 15% 7.5%

Cache Hit Rationumber of 
proxies

 
 
Finally, we tested to ensure that the simulation results represent “steady state”  performance.  
Specifically, it was important to choose a request arrival rate that produces a reasonable number 
of simultaneously active TCP connections within the simulated network. An arrival rate that is 
too low would produce no observable network congestion.  An arrival rate that is too high would 
saturate the network and result in poor simulator performance.  
 
Figure 3 provides two time series plots showing the number of simultaneous connections from 
two simulation runs.  The “No Proxy”  scenario is the worst case when the server handles all client 
requests.  The “11 Proxies” represents the best case scenario (11 proxies in total, with the cache 
hit ratios prescribed earlier).  These scenarios provide an upper bound and a lower bound on the 
mean transfer time in our simulation experiments.  Both scenarios assume an arrival rate of 30 
requests per second, with a mean transfer size of 11.5 KB and median transfer size of 5 KB. 
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Figure 3: Simulation “ Steady-State”  for Number of Simultaneous TCP Connections 
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4.0 Results: Dynamic Programming 

4.1 Overview of Results 
 
The results from the dynamic programming approach are shown graphically in Figure 4.  The 
solution for m = 3 proxies is on the left, while the m = 4 proxy solution is on the right.  The 
diagrams show the optimal proxy placement, while the tables show the relevant portion of the 
dynamic programming algorithm results. 
 

P3

P8 P11P10P9

P7P6P5P4

P2P1

S

C1

C2

C3 C4

C5

C6

16%

7%

14% 26%

22%

15%  

P3

P8 P11P10P9

P7P6P5P4

P2P1

S

C1

C2

C3 C4

C5

C6

16%

7%

14% 26%

22%

15%  
 

root m=1 m=2 m=3 m=4
v=0 (1,2,9.55)
v=1 (5,1,5.10)
v=2 (-,-,0.0)

v=5 (-,-,0.0)

v=0,u=1 (2,1,4.45)  

 

root m=1 m=2 m=3 m=4
v=0 (1,2,7.35)
v=1 (5,1,5.10)
v=2 (6,1,2.25)

v=5 (-,-,0.0)
v=6 (-,-,0.0)

v=0,u=1 (2,2,2.5)  
 

Figure 4: Dynamic Programming Proxy Sets and Tables for m=3 and m=4 

The outcome of the dynamic programming algorithm is a table that can be read in reverse order to 
find an optimal proxy solution set for the subtree rooted at each cell in the table.  Each cell in the 
table contains a 3-tuple.  The first number identifies the choice for the next optimal proxy 
location, the second number identifies the subtree from which the remaining proxy selections are 
chosen, and the third number represents an associated cost.  For example, beginning at the top 
right corner for the m=4 table, the tuple reads (1,2,7.35).  In this cell, we are concerned with 
choosing 4 proxies within the tree T0 rooted at node 0 – which in this case happens to be the 
complete network since node 0 is the server.  One of the 4 optimal proxy sites was evaluated to be 
node 1 as identified by the first number of the tuple.  The second number of the tuple indicates 
that 2 proxies will be chosen from the subtree T1 rooted at node 1, including node 1 itself.  This 
means that we are interested in finding m=1 proxies under the tree at T1.  It follows that the other 
2 proxies will be chosen from the subtree T01 (the nodes that are to the right of T1).  The tuple at 
T1 for m=1 reads (5,1,5.10), indicating that node 5 has been selected as the single proxy site 
contained in this subtree.  The tuple at T01 where m=2 reads (2,2,2.5). The first number of this 
tuple indicates that node 2 is chosen as a proxy site and the second number of the tuple indicates 
that another proxy will be chosen from the subtree rooted at node 2.  Finally, the tuple at T2 for 
m=1 reads (6,1,2.25), indicating that node 6 has been selected as the last proxy location. 
 
The optimal placement for a single proxy in the network, according to the dynamic programming 
algorithm, is at site P1.  The optimal placement for m=2 proxies is at site P1 and P2.  For the 
latter result (as well as for m=3 and m=4 scenarios), all clients are directly affected by the 
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inclusion of a proxy in the network since at least one of these locations is contained in all the 
client paths to the server.  A summary of relevant results and a comparison with the upcoming 
packet-level simulation results is provided in Table 2. 

Table 2: Comparison of Dynamic Programming and Packet-Level Simulation Approaches 

Dynamic Simulation Dynamic Simulation Dynamic Simulation

1 1 10 6.1% 7.5% 0.337 0.332 0.005
2 1,2 6,10 10.2% 13.4% 0.323 0.311 0.012
3 1,2,5 5,6,10 15.6% 19.2% 0.303 0.290 0.013
4 1,2,5,6 5,6,8,10 20.8% 24.4% 0.284 0.271 0.013

Difference
# of    

Proxies

Reduction from     
Worst Case

Mean Transfer Time
Optimal                   

Proxy Set

 
 
4.2 Discussion 
 
The main observation is that with few proxies, the dynamic programming algorithm seems to 
favour proxy placement near the origin server.  Here, the proxy location selection suggests a 
tendency to initially choose sites that serve a collection of clients and remove traffic from the 
busiest network links.  A secondary influence appears to favour the placement of proxies in 
subtrees that reflect the highest traffic generating clients (in this network, clients 4 and 5).  This 
observation is not surprising considering that these subtrees are responsible for generating most 
of the traffic on upstream channels.  Interestingly, these tendencies differ from those in Section 5. 
 
 

5.0 Results: Packet-Level Simulation 

5.1 Overview of Results 
 
The results from the packet-level simulation experiments are shown graphically in Figure 5. From 
top to bottom, these graphs represent the results for m = 1, m = 2, m = 3, and m = 4 proxies, 
respectively. In each row of the figure, the diagram on the left shows the optimal proxy placement 
determined from the simulation, while the histogram on the right shows the distribution of the 
mean transfer times from all proxy placements considered.  In each histogram plot, the leftmost 
bar represents the optimal proxy placement found, while the rightmost bar shows the mean 
transfer time for the “No Proxy”  case.  
 
Table 3 provides a statistical summary of the transfer time performance results for the No Proxy 
case. Table 4 provides an example of the simulation results for m = 1 proxy, with results for 
locations P1, P5, and P10, respectively. 
 

Table 3: Statistical Summary of Simulation Results for the “ No Proxy”  Case 

# of
Client Transfers mean median mean median

1 400 14076 5819 0.397 0.337
2 175 11560 4769 0.327 0.294
3 350 10837 5176 0.366 0.336
4 650 10194 4939 0.358 0.336
5 550 10757 5520 0.322 0.295
6 375 13249 4745 0.382 0.336

ALL 2500 11583 5141 0.359 0.336

Transfer Size Transfer Time
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Figure 5: Packet-Level Simulation Results for m=1,2,3 and 4 Proxies 
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Table 4: Statistical Summary of Simulation Results for a Single Proxy at P1, P5, or P10 

# of
Client Transfers mean median mean median mean median mean median

1 400 14196 5782 0.360 0.336 0.397 0.337 0.397 0.337
2 175 11199 4732 0.280 0.223 0.327 0.294 0.327 0.294
3 350 10905 5236 0.334 0.335 0.307 0.335 0.366 0.336
4 650 10196 4911 0.327 0.335 0.299 0.256 0.255 0.252
5 550 10903 5567 0.322 0.295 0.322 0.295 0.322 0.295
6 364 13210 4727 0.382 0.336 0.382 0.336 0.382 0.336

ALL 2489 11606 11606 0.337 0.335 0.336 0.335 0.332 0.335

Transfer Size Transfer TimeTransfer Time Transfer Size
Proxy P1 Proxy P5 Proxy P10

 
 
 
5.2 Discussion 
 
There are three main observations evident from our packet-level simulation results: 
 
• The optimal placement of proxies tends to be close to the clients generating the most traffic.  

This placement makes sense intuitively, since it provides more “bang for the buck” .  The 
cache hit ratio is higher closer to clients; cache hits provide a dramatic improvement in mean 
transfer time for the busy client; and cache hits alleviate the traffic demand on higher-level 
links in the network, indirectly benefiting other clients in the same subtree.  For example, 
placing a proxy at P10 reduces the mean transfer time for client 4 from 0.358 seconds to 
0.255 seconds, an improvement of 29%, while the overall mean improves by 7.5%. These are 
exactly the benefits that motivated Web proxy caching in the first place. 

 
• The optimal solutions in the packet-level simulations have a “monotonic”  or “ incremental”  

property.  That is, when placing the kth proxy, the first k-1 proxies are already in the “ right”  
place. There is no reshuffling of proxy locations as the number of proxies is varied.  This 
property may be an artifact of our workload assumptions and small-scale network model. 

 
• As the size of the proxy set grows, the distribution of mean transfer times across the set of 

proxy configurations considered seems to converge to a Normal (Gaussian) distribution.  This 
property is surprising (at least to us).  We do not yet have an explanation for this behaviour. 

 
The other obvious observation is that the proxy solution set determined by the dynamic 
programming (DP) algorithm does not correspond to the optimal solution set observed under our 
simulation experiments.  One possible explanation for the discrepancy might be that the 
combination of propagation delay costs along with high network traffic weights assigned to 
higher layer nodes unfairly biases the DP algorithm towards off-loading traffic from the higher 
level network links.  In this study, we consider a closed system in which all network traffic 
represents communication between a single Web server and six clients.  The effect of a closed 
system may create unusual link costs with increasing network levels. 
 
Another explanation for the contradiction in dynamic programming and simulation results is that 
the dynamic programming method takes into consideration only network traffic characteristics 
and link transmission latency.  By contrast, it does not take into consideration network influences 
such as cache hit ratios, cache filtering effects, and TCP dynamics which are modeled in the 
packet-level simulations. 
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6.0 Results: Sensitivity Analysis 
To broaden the scope of our packet-level simulation experiments, we individually varied selected 
workload factors in an attempt to understand sensitivities in the results.  The factors studied are 
cache hit ratio, transfer size distribution, filter effect, request arrival rate, and network topology. 
 
6.1 Effect of Cache Hit Ratio 
 
The first experiment was originally designed to study the impact of cache consistency issues on 
Web proxy cache performance.  In particular, when a Web object is modified, a requesting client 
must retrieve a fresh copy of that object from the origin server, rather than retrieving a stale copy 
from a proxy cache. We modeled this in our workload by choosing, uniformly at random, 10% of 
the (former) proxy cache hits and changing them into transfers from the origin server (though 
with the same object size). In retrospect, this “document modification”  scenario is logically 
equivalent to a lower average cache hit ratio for all proxies. 
 
These experiments were conducted only for m = 1 and m = 2 proxies cases.  Although the mean 
transfer times for these experiments increased slightly, the simulation results were qualitatively 
similar to those stated in Section 5, and thus are not shown here. The results suggest that our 
observations are not highly sensitive to the cache hit ratio, at least over the range evaluated. 
 
6.2 Transfer Size Distribution 
 
A second experiment simplified our workload model to use fixed size Web objects.  Every Web 
transfer was 11,583 bytes, so that the overall average network load was the same as in the 
previous experiments. These experiments were conducted only for m = 1 proxy. 
 
The results from this experiment did not change from those in Section 5.  The optimal placement 
for a single proxy was still P10, the nearest proxy location to the busiest Web client.  The mean 
transfer time for the P10 proxy case was 0.376 seconds, a 7.8% improvement over the no proxy 
case (0.408 seconds) for this scenario. 
 
6.3 Cache Filter Effect 
 
The third experiment changed our assumption about the Web cache filter effect. Rather than 
modeling a diminishing cache hit ratio at progressively higher-layer Web proxy caches, we made 
the simpler assumption that the cache hit ratio is invariant.  That is, a Web proxy cache is equally 
effective no matter where it is placed in the overall network.  We simulated this scenario for m = 
1 and m = 2 proxies. 
 
Changing the filter effect assumption dramatically changed the simulation results (see Figure 6). 
Under the "equal effectiveness" assumption, the optimal proxy locations determined by the 
packet-level simulations are at or near the top of the modeled network. This placement makes 
sense intuitively, since (for example) a single proxy can serve the largest possible number of 
clients.  The packet-level simulations show that Web cache filter effects can have a significant 
impact on the optimal cache placement. 
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Figure 6: Simulation Results for m=1 and m = 2 Proxies with No Cache Filter Effect 

 
6.4 Request Arrival Rate 
 
The simulation results in Section 5 represent a moderate level of network load, with about 20% 
average utilization on the busiest link in the network. Under this workload, no packet losses occur 
in the simulation. The transfer times for Web objects are dominated by TCP slow start effects and 
network round trip times, with modest influence from queuing delays at the network routers. 
 
The next experiment increases the request arrival rate to model a busier network, in which 
network congestion and packet loss occur. Increasing the request arrival rate to 120 requests per 
second produces an average of 80% utilization on the busiest link in the network, from the Web 
server to Proxy P1. An average of 44 TCP connections are simultaneously active in the network 
in steady state. We consider only m = 1 proxy. 
 
With the high load workload assumption, the optimal proxy placement is at P1 (see Figure 7).  
The explanation for this placement requires an understanding of the effects of TCP packet loss. 
For this particular workload, a total of 65 packets are lost and retransmitted in the "No Proxy" 
case.  This represents an average packet loss rate of 65/37026 = 0.18% for the busiest link in the 
network. This is the only link on which packet losses occur. 
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Figure 7: Simulation Results for m=1 in High Load Scenario 

 
TCP packet losses can have two possible impacts on a Web object transfer.  In a large transfer, a 
TCP packet loss is often detected using the TCP "fast retransmit" algorithm, wherein duplicate 
acknowledgements quickly trigger retransmission of the (single) missing packet.  Recovery from 
these losses is quite "painless" to a Web user, since no TCP timeout occurs.  The second 
possibility is a (coarse) TCP timeout and retransmission.  This effect often adds significant 
latency to a TCP transfer, particularly for a short transfer [21].   
 
The optimal placement of the proxy at P1 is related to the dynamics of TCP packet loss recovery.  
With a proxy at P1, approximately 15% of the workload is offloaded from the busy Server ��  
P1 link, reducing packet loss due to buffer overflow at the busy link.  In our simulations, placing 
a single proxy at P1 reduces the packet loss to 13 packets.  A single proxy at P5 results in 44 
packet losses, while a single proxy at P10 results in 24 packet losses. The number of lost packets 
is highly dependent upon which objects are cache hits at the proxy, as well as the dynamics of 
TCP packet arrivals at the congested router.  It is difficult to capture the detailed dynamics of 
these TCP effects in anything but a packet-level model of the Web cache placement problem. 
 
6.5 Network Topology 
 
The final experiment considers a small change to the network topology, wherein the Web server 
is relocated behind a router that in turn connects to P1 and P2. The side-effect of this small 
topology change is to combine the (former) Server �� P1 traffic and the (former) Server�� P2 
traffic onto a single bottleneck link (Server ��  Router).  In this topology, the impact of a 
network bottleneck is more acute, both in traffic volume and in the number of clients affected. 
For this experiment, we consider only the m = 1 proxy case. 
 
At an arrival rate of 90 requests per second (average 90% utilization of the bottleneck link), the 
average packet loss rate was 690/60,085 = 1.15% on the bottleneck link. At this level of packet 
loss, many Web transfers were affected, for all clients. Some clients experienced losses both for 
an initial TCP packet as well as for its retransmission, which had a large impact on the transfer 
latency. While the median transfer times were similar, the mean transfer times varied 
significantly across proxy locations, and across clients.  
 
The simulation results show that the optimal solution is to place a proxy at P5 (mean transfer time 
0.401 seconds; 297 packet losses). This is a 20% improvement over the No Proxy case for this 
scenario (0.508 seconds).  The next best solutions for a single proxy are at P8 (0.407 seconds; 284 
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packet losses) or P1 (0.411 seconds; 339 losses).  Clearly, the dynamics of TCP behaviour can 
wreak havoc with determining "optimal" proxy cache placement. 
 

7.0 Summary and Conclusions 
This paper has presented a detailed packet-level simulation study of the optimal Web proxy cache 
placement problem. On a small and simple network model, we considered an exhaustive set of 
Web proxy cache configurations, using assumptions reflecting empirical Web workloads (e.g., 
unbalanced network load, variable size Web objects, heterogeneous client round trip times, and 
the presence of cache filter effects). 
 
There are three main conclusions from our study.  First, network-level effects (e.g., queueing 
delays, network congestion, packet losses, and the dynamics of TCP flow and congestion control) 
can have a significant impact on user-level Web performance, and thus on the cache placement 
decision.  These effects are often ignored in classical approaches to the cache placement problem.  
Second, assumptions about Web cache filter effects can completely change the structure of the 
optimal solution determined.  In fact, the presence or absence of the filtering assumption can 
completely reverse the overall structure of an optimal solution, for a small number of proxies.  
Third, relatively small perturbations to the Web workload can produce quite different solutions 
for the optimal cache placement problem.   
 
Combined, these three observations suggest that robust “good”  solutions are more desirable than 
perfectly "optimal" solutions.  Robust heuristic solutions are certainly preferable, given the many 
uncertainties about Web workloads and TCP dynamics in a large internetwork. 
 
Two cache placement heuristics seem to emerge from our packet-level simulation study (though 
these no doubt depend on our network and workload assumptions).  First, for moderate network 
load, proxy caches should be placed close to clients generating the most traffic.  This approach 
provides the largest possible benefit to a small number of clients, but also indirectly benefits other 
users of the network as well.  Second, in a heavily loaded or congested network, proxy caches 
should be placed well up in the hierarchy to offload the congested links, reducing packet losses, 
and helping as many clients as possible. 
 
Our ongoing work is considering larger Web workloads and more realistic network models, to 
add more statistical rigour to our observations, and to assess the generality of our conclusions.  
These additional results should be ready for the final version of the paper.  Future work may 
consider radically different approaches to the Web proxy cache placement problem, such as 
evolutionary or genetic programming techniques, based on the heuristics and insights developed 
in this work. 
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