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This paper studies the “filter effects” that occur in Web proxy caching hierarchies due to the

presence of multiple levels of caches. That is, the presence of one level of cache changes the

structural characteristics of the workload presented to the next level of cache, since only the

requests that miss in one cache are forwarded to the next cache.
Trace-driven simulations, with empirical and synthetic traces, are used to demonstrate the pres-

ence and magnitude of the filter effects in a multi-level Web proxy caching hierarchy. Experiments

focus on the effects of cache size, cache replacement policy, Zipf slope, and the depth of the Web

proxy caching hierarchy.
Finally, the paper considers novel cache management techniques that can better exploit the

changing workload characteristics across a multi-level Web proxy caching hierarchy. Trace-driven
simulations are used to evaluate the performance of these approaches. The simulation results

demonstrate that size-based partitioning and heterogeneous cache replacement policies each offer
improvements in overall caching performance. The sensitivity of the results to the degree of

workload overlap amongst child-level proxy caches is also studied.

Categories and Subject Descriptors: H.3.4 [Information Storage and Retrieval]: Systems and
Software—World Wide Web (WWW); H.3.4 [Information Storage and Retrieval]: Systems
and Software—Performance Evaluation; H.3.5 [Information Storage and Retrieval]: On-

line Information Services—Web-based Services; C.4 [Performance of Systems]: Measurement
Techniques, Modeling Techniques, Performance Attributes

General Terms: Design, Experimentation, Measurement, Performance

Additional Key Words and Phrases: Performance Evaluation, Simulation, Web Performance, Web

Proxy Caching Hierarchies

1. INTRODUCTION

Caching proxies have gained widespread popularity on the Internet [Abdulla et al.
1997; Baentsch et al. 1997b; 1997a; Bestavros et al. 1995; Bolot and Hoschka 1996;
Cohen et al. 1998; Zhang et al. 1997]. Proxies function as intermediaries between
Web clients (browsers) and Web servers, accepting client requests and forwarding
them to Web servers only as neccessary. When a requested document is returned
by a Web server, the proxy server sends the document to the client and stores a
copy of the document in its local cache. Depending on client request patterns, the
proxy may be able to satisfy future client requests directly from the cache without
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contacting the Web servers.

In recent years, multi-level proxy cache configurations have received increasing
research attention [Chankhunthod et al. 1996; Fan et al. 1998; Gwertzman and
Seltzer 1995; Mahanti et al. 2000; Povey and Harrison 1997]. In a hierarchical
configuration, proxies at or near the end-user constitute the lowest level of the
hierarchy, often with sibling-sibling relationships with one another. The lowest
level proxies may have a child-parent relationship to a higher level proxy, usually a
(geographically) regional proxy. A regional proxy can in turn connect to a higher
level proxy, such as a national proxy [Mahanti et al. 2000]. A request that cannot
be satisfied by one proxy cache can be sent to a nearby sibling or to the parent using
an Inter-Cache Protocol [Fan et al. 1998; Wessels and Claffy 1998]. Contacting the
origin server to obtain the document serves as the last resort.

Interesting design issues arise with caching hierarchies, and performance trade-
offs exist. For example, the potential advantages of reduced server load, reduced
network traffic, and reduced end-user latency may be offset by inter-cache commu-
nication overhead, delays incurred at each level of the hierarchy, and performance
bottlenecks at higher level proxies [Rodriguez et al. 1999].

Empirical measurements suggest that Web proxy caching hierarchies are not that
effective [Mahanti and Williamson 1999; Mahanti et al. 2000; Rodriguez et al. 1999].
For example, the measurements reported in [Mahanti and Williamson 1999] for a
three-level caching hierarchy indicate document hit ratios of 35-40% for a university-
level Web proxy cache, hit ratios of 15-20% for a national-level Web proxy, and hit
ratios of 5-10% for a root-level NLANR (National Laboratory for Applied Network-
ing Research) cache. Thus a caching hierarchy can suffer “diminishing returns”:
the further up the hierarchy you go, the less likely you are to find the document of
interest. In many cases, a request to the originating server is eventually needed to
resolve the sequence of cache misses incurred.

The diminishing returns phenomenon makes sense intuitively, since the lower-
level caches filter out many of the hits. As a result, the workload characteristics
seen at higher-level caches become more “random” in nature. The only surprising
aspect is that the diminishing returns occur despite the fact that higher-level caches
are often larger (sometimes significantly larger) than the caches at the lower lev-
els. These observations suggest that caching hierarchies are not that well-designed.
Often, too much focus is placed on the performance of a proxy cache in isolation,
rather than as part of an overall caching system [Weikle et al. 1998].

The purpose of this paper is to take an overall “system-level” view of Web caching
hierarchies, and strive to improve their performance. First, the paper explores the
behavioural characteristics of the filter effects in a multi-level Web proxy caching
hierarchy, and their structural causes. Second, the paper proposes and evaluates
several novel cache management techniques that can better cope with, or even
exploit, the structural changes in Web workloads across the levels of a caching
hierarchy.

This work uses trace-driven simulations, with empirical and synthetic traces, to
study cache filter effects in a Web caching hierarchy. Empirical traces are taken
from a university-level Web proxy cache in a Web caching hierarchy [Mahanti et al.
2000]. Synthetic traces are generated using a Web proxy workload generator called
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ProWGen, developed in previous work [Busari and Williamson 2001a]. ProWGen
traces capture the salient characteristics of Web proxy workloads (e.g., one-time
referencing, Zipf-like document popularity, heavy-tailed file size distribution, tem-
poral locality) that are most relevant to Web proxy cache performance [Busari and
Williamson 2001a]. For simplicity, only a two-level caching hierarchy is considered,
with three types of cache replacement policies: recency-based, frequency-based, and
size-based. Synthetic workloads are used to investigate the performance of different
combinations of replacement policies at different levels of the hierarchy, and then
to investigate a size-based document partitioning approach.
The simulation results demonstrate the presence and magnitude of cache filter

effects in a Web caching hierarchy, and their structural causes. The simulation re-
sults show that size-based partitioning and the use of different replacement policies
at different levels of the hierarchy each improve performance. The sensitivity of the
results to the degree of workload overlap amongst child-level proxy caches is also
studied.
The remainder of this paper is organized as follows. Section 2 provides some

background on Web proxy workloads and related work on Web caching hierarchies.
Section 3 illustrates the presence of cache filter effects using trace-driven simula-
tions. Section 4 studies ways to exploit cache filter effects to improve the overall
performance of Web caching hierarchies. Finally, Section 5 concludes the paper.

2. BACKGROUND AND RELATED WORK

This section provides some background information on Web traffic workload char-
acteristics, which are central to understanding the cache filter effects discussed in
this paper. The section concludes with a brief synopsis of related research work on
the design and performance of Web caching hierarchies.

2.1 Web Workload Characteristics

Several Web workload characterization studies have appeared in the literature.
These empirical studies have focussed on Web client [Cunha et al. 1995], Web
server [Arlitt and Jin 2000; Arlitt and Williamson 1997a], and Web proxy workload
characteristics [Abdulla et al. 1997; Almeida et al. 1998; Duska et al. 1997; Mahanti
et al. 2000].
From these empirical studies, several common workload characteristics emerge

that are relevant to Web caching performance. These characteristics include a high
degree of one-time referencing, a Zipf-like document popularity distribution, heavy-
tailed file and transfer size distributions, and a temporal locality property in the
document referencing behaviour. These characteristics are summarized as follows:

—One-Time Referencing
Studies of Web server and Web proxy workloads have shown that many docu-
ments requested from a server or a proxy are requested only once, regardless of
the duration of the access log studied [Abdulla et al. 1997; Arlitt and Williamson
1997a; Mahanti et al. 2000]. These documents are referred to as “one-timers” in
the literature. Clearly, there is no benefit to caching one-timer documents, since
they are never accessed again. In fact, caching algorithms need to discriminate
against such documents so that they do not clutter the cache and reduce its
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effectiveness [Arlitt and Williamson 1997a].
One-timers are important because of their prevalence in Web workloads. Arlitt
and Williamson [1997a] report that 15-40% of the unique files accessed from a
Web server are accessed only once. The situation is even worse in Web proxy
access logs, where one-timers can account for 50-70% of the documents [Abdulla
et al. 1997; Mahanti et al. 2000]. Modeling the one-time referencing characteristic
is thus important when generating workloads for evaluating different caching
algorithms.

—Zipf-like File Popularity Distribution
One common characteristic in Web workloads is the highly uneven distribution
of references to files [Arlitt et al. 1999; Mahanti 1999; Roadknight et al. 1999].
In many cases, Zipf’s law has been applied to model file popularity [Almeida
et al. 1996; Breslau et al. 1999; Cunha et al. 1995; Roadknight et al. 1999].
Zipf’s law expresses a power-law relationship between the popularity P of an
item (i.e., its frequency of reference) and its rank r (i.e., relative rank among the
referenced items, based on frequency of reference). This relationship is of the
form P = c/rβ , where c is a constant, and β is often close to 1. For example,
Zipf’s law arises in the frequency of occurrence of English words [Breslau et al.
1999]; when the number of occurrences is plotted versus the rank, the result is a
power-law function with exponent close to 1.
In the Web context, a similar referencing behaviour is observed [Arlitt et al. 1999;
Mahanti et al. 2000; Roadknight et al. 1999]. Some researchers have found that
the value of the exponent β is close to 1 [Almeida et al. 1996; Cunha et al. 1995],
precisely following Zipf’s law. Others [Almeida et al. 1998; Breslau et al. 1999;
Mahanti et al. 2000] have found that the value of β is less than 1, and that the
distribution can be described only as “Zipf-like”, with the value of β varying from
trace to trace. This behaviour typically results in a straight line of (negative)
slope β on a log-log plot of P versus r. The linear fit is usually good for the main
body of the distribution, though it may deviate slightly at both the most popular
end (due to “hot” documents and/or caching effects) and the least popular end
(due to one-timers) [Mahanti et al. 2000].

—Heavy-Tailed Size Distributions
Workload characterization studies [Abdulla et al. 1997; Arlitt and Jin 2000; Ar-
litt and Williamson 1997a; Duska et al. 1997; Mahanti 1999] have shown that the
file size distribution for Web transfers is heavy-tailed. A heavy-tailed distribution
implies that relatively few large files account for a significant percentage of the
data volume (in bytes) transferred to Web clients. This heavy-tail property con-
tributes to the self-similarity observed in WWW traffic [Crovella and Bestavros
1997].
Clearly, the distribution of file sizes affects the design and performance of caching
strategies. Caching only small files can reduce the number of requests to origi-
nating servers. This can result in a high document hit ratio, but a low byte hit
ratio. On the other hand, caching large files can result in a higher byte hit ratio
at the expense of document hit ratio (since many small documents may be forced
out of the cache).

—Temporal Locality
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Table I. Characteristics of Empirical and Synthetic Web Proxy Workloads

Item Empirical Synthetic

Total requests 5,000,000 4,965,779

Unique documents 1,739,119 1,700,000

Unique documents (% of requests) 34% 34%

One-timers 1,252,264 1,223,719
One-timers (% of unique documents) 72% 71%

Total Gbytes of unique documents 19 17

Smallest file size (bytes) 0 13

Largest file size (bytes) 53,857,877 42,975,450

Mean file size (bytes) 11,740 11,157

Median file size (bytes) 3,504 3,962

Zipf Slope -0.808 -0.834

R2 0.992 0.998

Tail index -1.323 -1.326

R2 0.980 0.998

Temporal locality refers to the tendency for Web documents referenced in the
recent past to be referenced in the near future [Almeida et al. 1996; Jin and
Bestavros 2000b]. Caching policies (e.g., Least-Recently-Used) often take advan-
tage of this property when deciding what to cache and what to remove from the
cache. Clearly, the presence (and strength) of the temporal locality property in
the workload can have a dramatic effect on caching performance [Cherkasova and
Ciardo 2000; Jin and Bestavros 2000a; Mahanti and Williamson 1999].

Among these workload characteristics, the Zipf-like document popularity distri-
bution seems to have the most direct impact on Web proxy cache performance [Bres-
lau et al. 1999; Busari 2000; Roadknight et al. 1999], and is thus the main focus of
discussion throughout the paper.

2.2 An Empirical Trace Example

Table I provides a statistical summary of an empirical workload trace collected from
a university-level Web proxy cache at the University of Saskatchewan in 1999. This
empirical trace represents a typical two-week sample of a six-month trace analyzed
in [Mahanti et al. 2000].
This empirical workload has structural properties consistent with those described

in the previous subsection. There is a high percentage (72%) of one-timer docu-
ments. The Zipf-like document popularity distribution (see Figure 1(a)) has a
slope of -0.808. The document size distribution (see Figure 1(c)) appears to be
heavy-tailed (see Figure 1(d)), with a tail weight of 1.323. The temporal locality
properties of this empirical trace have been studied in earlier work [Busari 2000;
Busari and Williamson 2001a; Mahanti et al. 2000].

2.3 A Synthetic Trace Example

A Web proxy workload generation tool called ProWGen [Busari and Williamson
2001a] was used to synthesize an aggregate client workload, with workload param-
eters similar to the empirical trace. This workload is based on empirically observed
workload characteristics at the lowest level of a Web proxy caching hierarchy [Busari
2000; Mahanti et al. 2000].
The statistical characteristics of the resulting workload produced are shown in
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Fig. 1. Comparison of Characteristics of Empirical and Synthetic Web Proxy Workloads

the rightmost column of Table I. The statistical characteristics of the generated
trace match closely with those of the empirical trace used.
A “graphical validation” of the synthetic workload is shown in Figure 1. Fig-

ures 1(a) and (b) show the file popularity results for the empirical trace and the
synthetic trace, respectively. Figure 1(c) shows the cumulative distributions for
file sizes and bytes transferred, while Figure 1(d) shows the tail behaviour using
a log-log complementary distribution (LLCD) plot. In the latter two graphs, the
results for the empirical trace are shown using solid lines, while the results for the
synthetric trace are shown using dashed lines.
Figure 1 provides evidence that synthetic Web proxy workloads generated using

ProWGen can match both the body and the tail of the empirical file size distri-
bution, in addition to the Zipf-like referencing behaviour. The temporal locality
properties of synthetic traces were analyzed in earlier work [Busari 2000; Busari
and Williamson 2001a; Mahanti et al. 2000].
Synthetic traces are used selectively in the simulation experiments in this paper to

demonstrate some of the performance characteristics and properties of Web proxy
caching hierarchies.
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2.4 Related Work

Several researchers have suggested ways to improve the performance of caching hi-
erarchies. Tewari et al. [1999] suggested a distributed approach using metadata to
track where copies of files are stored in the hierarchy. A similar technique is sug-
gested by Povey et al. [1997], where only the lower level caches are responsible for
storing documents, while upper level caches maintain information about the con-
tents of lower level caches. The collaborative method proposed by Yu et al. [1998]
employs a protocol that passes caching information down the proxy hierarchy for
the lower level proxies to make better caching decisions. The Cache Array Rout-
ing Protocol (CARP) [Valloppillil and Ross 1998] is a form of distributed caching
where multiple proxy servers are configured to appear as a single logical cache to
the clients. In the “summary cache” scheme proposed by Fan et al. [1998], each
proxy stores a summary of URLs of documents cached at every other proxy so that
misses can be sent to a proxy with a copy of the requested document, or otherwise
directly to the Web server.
Other authors have addressed the more general issue of hierarchical versus dis-

tributed caching approaches [Rodriguez et al. 1999; Wolman et al. 1999]. For exam-
ple, Rodriguez et al. [1999] present mathematical analyses of hierarchical and dis-
tributed caching architectures, identifying performance tradeoffs for each approach,
and proposing a hybrid scheme that combines the advantages of both. Wolman et
al. [1999] discuss cooperative Web proxy caches, and analyze their scaling properties
as a function of population size.
The approach in this paper is different, in at least two ways. First, this work

assumes, as a starting point, the existence of a traditional Web proxy caching
hierarchy, such as that in [Mahanti et al. 2000], and then strives to improve its
performance. There is no attempt to re-design the overall caching infrastructure.
Second, a primary focus in this work is on the explicit relationships between work-
load characteristics and Web proxy caching performance. The work is motivated by
the observation that the workload characteristics differ across the levels of a caching
hierarchy [Mahanti et al. 2000], due to filtering effects at lower-level caches [Che
et al. 2001; Weikle et al. 1998]. This observation suggests the use of different (i.e.,
heterogeneous) caching policies at different levels of a caching hierarchy, or the use
of “cache-aware” caching policies within the hierarchy. Relatively few papers [Bres-
lau et al. 1999; Busari and Williamson 2001a; Doyle et al. 2001; Che et al. 2001]
have taken this workload-based approach in the context of the Web, though simi-
lar problems have been addressed in the context of CPU cache hierarchies [Weikle
et al. 1998], databases [Franklin et al. 1992], and client-server systems [Willick et al.
1993].
The initial focus of the paper is on understanding cache filter effects, and their

structural causes. The latter part of the paper focuses on how to exploit knowledge
of cache filter effects to improve the design and performance of Web proxy caching
hierarchies.

3. UNDERSTANDING CACHE FILTER EFFECTS

This section provides graphical illustrations of cache filter effects, in an attempt to
understand their structural causes and their impacts on Web proxy caching perfor-

ACM Transactions on Internet Technology, Vol. V, No. N, 20YY.



8 · Carey Williamson

mance. Trace-driven simulations are used, with empirical and synthetic traces, to
illustrate the cache filter effects. A one-factor-at-a-time experimental design is used
to identify the impact of selected factors, such as cache size and cache replacement
policy, on the workload characteristics from one cache to the next. For simplicity,
only a two-level caching hierarchy is considered in most of the experiments.

3.1 Number of Requests

The first experiment considers simulation run-length and warmup issues. This ex-
periment examines the document referencing behaviour of the cache output stream
(i.e., the stream of cache misses from the first-level cache) for input traces with
1,000,000 to 5,000,000 requests. The purpose of this experiment is to ensure that
the traces used for subsequent experiments are of appropriate duration for analysis,
and for general observations about the referencing behaviour. A cache size of 4 MB
and a Least-Frequently-Used (LFU) replacement policy are used. Results for other
policies are qualitatively similar.

Figure 3.1 shows the document popularity profile for the resulting workload des-
tined for the second-level cache. The primary impact of the first-level cache is to
truncate and flatten the top-left portion of the original Zipf-like document popular-
ity distribution (see Figure 1(a)). In other words, most of the hits in the first-level
cache are (as expected) for the highly popular documents that are re-referenced
at short intervals. These requests are thus eliminated (filtered) from the request
stream presented to the next-level cache. Similar observations are made by Doyle
et al. [2001].

The impact of the first-level cache is quite consistent on each of the workload
traces considered, producing a two-part plot that is no longer Zipf-like, but rather
piecewise linear in shape. The leftmost portion of the plot is almost flat, reflecting
fairly uniform popularity among the most popular documents seen by the second-
level cache. The rightmost portion of the plot has a slope consistent with that of
the original input trace (approximately -0.8, as shown in Figure 3.1). The boundary
point between the two portions of the plot is dependent upon the document working
set size of the trace relative to the cache size used (4 MB in this example).

In general, the document popularity profile shifts upward as longer traces are
used, since longer traces often have more references to the popular documents. The
proportion of one-timers in each of the input traces is approximately 73%.

Table II shows the document hit ratio (DHR) and byte hit ratio (BHR) results
at the first-level cache, as a function of the trace length considered. The table also
shows the number of requests passed on to the second-level cache, and some char-
acteristics of the cache output stream. In addition to the change to the document
popularity profile (reflected in the relatively poor R2 values in Table II for the
attempted least-squares linear fit of the Zipf slope), the presence of the first-level
cache increases the percentage of unique documents and one-timers seen by the
second-level cache (see Table I).

The results in Table II suggest that a trace length of 5,000,000 requests is ade-
quate for assessing cache filter effects in simple Web proxy caching hierarchies.
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f(x)=-0.808x+4.838
N=5,000,000
N=4,000,000
N=3,000,000
N=2,000,000
N=1,000,000

Table II. Simulation Results for Different Trace Durations (First-Level Cache: 4 MB, LFU-Aging)

Trace Duration DHR BHR Requests Unique One-Timers Zipf Slope R2

1,000,000 20.95% 16.07% 790,512 57% 79% 0.54 0.86

2,000,000 20.29% 14.91% 1,594,127 53% 79% 0.59 0.87

3,000,000 20.27% 15.08% 2,391,762 51% 79% 0.62 0.88
4,000,000 20.01% 14.65% 3,199,503 51% 79% 0.62 0.88

5,000,000 19.66% 14.33% 4,016,755 51% 79% 0.63 0.88

3.2 Cache Size

The purpose of the second experiment is to determine what effect the size of the
first-level cache has on the document referencing characteristics of the cache output
stream. The empirical input trace is used for input to the simulator. Results for an
LFU replacement policy are shown, since the results for other policies are similar.
Figure 2 shows the resulting document popularity profile for the workload after

the first-level cache. Each line in the graph shows the results for a different cache
size, ranging from 1 MB to 1 GB. Recall that the empirical workload has about 19
GB of total unique content bytes.
The plots show that increasing the cache size makes the resulting document pop-

ularity distribution less and less Zipf-like. With a tiny 1 MB cache, the flattening
behaviour in the top left of the plot is minimal, and the main body of the plot
still follows the original Zipf slope of -0.8. As the cache size increases, the flatten-
ing behaviour due to cache filter effects becomes more and more pronounced. The
rightmost part of the plot still provides a Zipf-like behaviour for all but the largest
cache sizes considered in this experiment.
Table III summarizes the performance results for the first-level cache, and the

resulting characteristics of the workload destined for the second-level cache. The
Zipf-like property deteriorates greatly when the first-level cache is large (note the
decreasing Zipf slopes and low R2 values in Table III). The percentage of unique
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Fig. 2. Document Popularity Profile Results for Different Cache Sizes (LFU-Aging)

Table III. Simulation Results for Different Cache Sizes (First-Level Cache: LFU-Aging)

Cache Size (MB) DHR BHR Requests Unique One-Timers Zipf Slope R2

1 13.47% 8.57% 4,326,296 49% 79% 0.65 0.89

4 19.66% 14.33% 4,016,755 51% 79% 0.63 0.88
16 26.47% 20.18% 3,676,555 55% 80% 0.61 0.87

64 34.00% 26.03% 3,299,892 61% 82% 0.57 0.86
256 42.21% 32.06% 2,889,479 69% 83% 0.51 0.85

1,024 51.58% 39.43% 2,421,117 81% 87% 0.40 0.82
4,096 60.61% 47.51% 1,969,588 95% 95% 0.20 0.68

16,384 65.12% 52.13% 1,743,119 99% 99% 0.01 0.10

documents and the percentage of one-timers increase significantly for the second-
level cache. Note that an infinite-size first-level cache would produce 100% one-
timers at the second-level cache, since only “cold misses” would occur there. That
is, all the documents are stored in the first-level cache, and with the exception of
the first time reference to the document, all requests are served from this cache.
Subsequent simulations use a first-level cache size of 4-8 MB. This (small) size

is large enough to have a pronounced filter effect on the workload emerging from
the first-level cache, yet not so large as to represent an (uninteresting) infinite-size
first-level cache.

3.3 Cache Replacement Policy

The third experiment studies the impact of the cache replacement policy on the
document referencing behaviour of the cache output stream. The replacement pol-
icy for the cache determines which document(s) to remove from the cache when
more space is needed to store a new incoming document. The empirical input trace
is used for this experiment, with a cache size of 8 MB. This size is well below the
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infinite cache size, as demonstrated by the previous cache size experiment.

Five different cache replacement policies are considered: RAND, FIFO, LRU,
LFU, and GDS. The RAND policy chooses documents for replacement equiprobably
at random. The FIFO policy removes documents on a strictly First-In-First-Out
sequential basis. The RAND and FIFO policies are examples of simplistic “zero
knowledge” policies. While rarely used in practice, these two policies provide a
useful point of reference for the remaining three policies (LRU, LFU, and GDS),
which are often considered in practical Web proxy cache implementations. LRU
tries to keep recently active documents in the cache, by removing the document
that is Least-Recently-Used. LFU tries to keep popular documents in the cache
(with aging of old popular documents), by discarding the document that is Least-
Frequently-Used. Greedy-Dual Size (GD-Size) [Cao and Irani 1997] tries to keep
small documents in the cache, by associating a weightH = 1/s with each document,
where s is the size of the document in bytes.

This set of policies represents a broad range of candidate replacement policies
(i.e., recency-based, frequency-based, and size-based). These policies are well-
documented in the literature [Arlitt et al. 1999; Arlitt and Williamson 1997b; Cao
and Irani 1997], and thus are not discussed at length here.

Figure 3 shows the document popularity profile results for the cache output
stream from the first-level cache. Each line in the graph represents the results for
one of the five replacement policies considered at the first-level cache. For most
policies, a two-part piecewise-linear plot results. With all five replacement policies,
the rightmost tail of the plot is Zipf-like with a slope of -0.8, as in the original
workload trace.

Examining the plot shows that the LFU policy has the most pronounced impact
on the document popularity profile, while the RAND and FIFO policies have the
least impact. This result makes sense intuitively: since LFU is a frequency-based
policy, the highly popular documents are favoured in the first-level cache, and the
flattening effect in the document popularity profile for the second-level cache is
more pronounced.

RAND and FIFO have less of a filtering effect on the workload, since they remove
documents without any consideration for how frequently or how recently they have
been referenced. Some filtering effect is still present for RAND and FIFO, however,
since a highly popular document will re-enter the cache repeatedly. Upon each
entry, there is an expected cache residency time prior to removal, during which
re-references are possible. This residency time occurs since a document is unlikely
to be chosen repeatedly as a candidate for removal (for the RAND policy), or must
wait its turn for removal (for the FIFO policy).

The LRU policy produces workload characteristics between that of RAND and
LFU. By considering recency of use, popular documents may receive many re-
references in the first-level cache, thus filtering the workload to the next-level cache.
The magnitude of this filtering effect depends of course on the relative size of the
document working set compared to the cache size. Since the size of the first-level
cache is relatively small (8 MB) in this example, the filtering effect is not that
pronounced. Note that “recency of use” and (high) “frequency of use” are similar
but not identical concepts, as illustrated in Figure 3.
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Fig. 3. Document Popularity Profile Results for Different Replacement Policies (8 MB)

Table IV. Simulation Results for Different Cache Replacement Policies (First-Level Cache: 8 MB)

Cache Policy DHR BHR Requests Unique One-Timers Zipf Slope R2

RAND 18.45% 13.96% 4,077,302 51% 80% 0.63 0.88
FIFO 19.15% 14.76% 4,042,424 51% 80% 0.62 0.88

LRU 20.61% 15.79% 3,969,433 52% 80% 0.62 0.88
LFU 22.99% 17.26% 3,850,620 53% 80% 0.62 0.88
GDS 27.10% 14.62% 3,644,856 56% 81% 0.60 0.87

The GDS policy has an interesting impact on the workload characteristics. The
leftmost portion of the plot is not as flat as those for the other policies. The reason
for this is that document size, rather than document popularity, is the central
criterion for cache replacement decisions, and document size is (for the most part)
independent of document popularity. The impact of the GDS policy is thus felt
across a broader range of the document popularity profile, rather than concentrated
on the highly popular documents. The transition point at which the plot becomes
Zipf-like (with slope -0.8) is also further to the right, since the cache typically holds
more documents (but not more bytes) than the other policies.
Table IV summarizes the performance results for the first-level cache, and the

resulting characteristics of the workload destined for the second-level cache. The
GDS policy provides the highest document hit ratio at the first-level cache, but
not the highest byte hit ratio. For all cache replacement policies considered, the
percentage of unique documents and the percentage of one-timers increase for the
second-level cache, compared to the input workload for the first-level cache.

3.4 Zipf Slope

The fourth experiment studies the effect of the Zipf slope of the initial input trace
on the document referencing behaviour of the cache output stream. For this ex-
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Table V. Characteristics of Synthetic Traces with Different Zipf Slopes

Item Trace A Trace B Trace C

Total requests 2,311,932 2,441,597 2,208,523

Unique documents 750,000 750,000 750,000

Unique documents (% of requests) 32% 31% 34%

One-timers 374,487 374,487 374,487

One-timers (% of unique documents) 50% 50% 50%

Total Gbytes of unique documents 9 9 9

Smallest file size (bytes) 25 25 25

Largest file size (bytes) 45,045,905 45,045,905 45,045,905

Mean file size (bytes) 12,824 12,814 12,815

Median file size (bytes) 3,826 3,825 3,824

Zipf Slope -0.64 -0.78 -0.94

R2 0.9993 0.9996 0.9996

Table VI. Simulation Results for Different Zipf Slopes (First-Level Cache: 8 MB, LFU-Aging)

Zipf Slope DHR BHR Requests Unique One-Timers Zipf Slope R2

0.64 12.69% 7.35% 2,018,593 37% 51% 0.72 0.94
0.78 27.30% 15.06% 1,174,958 42% 55% 0.65 0.93
0.94 40.37% 24.14% 1,316,911 56% 65% 0.48 0.85

periment only, synthetic input traces of approximately 2,500,000 requests are used,
with approximate Zipf slopes of 0.60, 0.75, and 0.95. Table V summarizes the
characteristics of these traces. These traces were generated using ProWGen, as
described in Section 2.3. The cache size for these simulations is 8 MB, and the
cache replacement policy is LFU.
Figure 4 shows that the filtering effects of a first-level cache occur regardless of the

Zipf slope of the input trace. The two-part piecewise-linear document popularity
profile is common for all three workloads, with the filtering effect most pronounced
for the input trace with the steepest Zipf slope. In all three cases, the rightmost
portion of the plot matches the Zipf slope of the input trace used.
Table VI summarizes the workload characteristics and caching performance that

result from the presence of the first-level cache. As expected, Web proxy caching
performance is best when the Zipf slope is steep. In all cases, the filtering effects
produce higher percentages of one-timers and unique documents at the second-level
cache than in the original input trace.

3.5 Depth of Caching Hierarchy

The final cache filtering experiment focuses on the depth of the caching hierarchy, by
looking at the document referencing characteristics as the workload passes through
three levels of caches. For this experiment, all caches use an LFU replacement
policy and a cache size of 4 MB. A small cache size is used in order to see the
impact of each successive level of cache.
Figure 5 shows that the first-level cache has the most pronounced filtering effect

on the overall workload. Further levels of caching produce little change in the
document popularity profile. This observation makes sense intuitively, since the
higher level caches tend to have lower and lower hit ratios, and thus provide little
change to the workload proceeding to the next higher level cache.
Table VII summarizes the details for cache performance and filtering effects for

the three-level caching hierarchy experiment. The results in Table VII indicate that
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Fig. 4. Document Popularity Profile Results for Different Zipf Slopes (8 MB, LFU-Aging)
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Fig. 5. Document Popularity Profile Results for Different Cache Depths (4 MB, LFU-Aging)

Table VII. Simulation Results for Different Cache Depths (First-Level Cache: 4 MB, LFU-Aging)

Cache Level DHR BHR Requests Unique One-Timers Zipf Slope R2

1 19.66% 14.33% 4,016,755 51% 79% 0.63 0.88
2 2.05% 1.50% 3,934,235 52% 79% 0.63 0.88

3 0.94% 0.66% 3,897,370 53% 79% 0.62 0.88

the higher level caches are not very effective: the document hit ratio and the byte
hit ratio both drop significantly beyond the first-level cache.

This observation is consistent with findings reported in the literature [Abdulla
et al. 1997; Busari and Williamson 2001b; Mahanti and Williamson 1999; Mahanti
et al. 2000]. The poor performance of the cache explains the similarity between
the document popularity profiles across the upper cache levels. If few requests for
documents hit in the cache, most of the requests are passed through to the higher
level, with the workload minimally changed.
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3.6 Summary of Results

This section has explored the presence and magnitude of cache filter effects in simple
Web proxy caching hierarchies. A summary of the key observations about cache
filtering effects is as follows:

—Proxy caches filter out the most popular documents from a workload. The fil-
tering effect typically changes the Zipf-like document popularity profile of the
input stream into a two-part piecewise-linear document popularity profile for the
output stream. The upper leftmost part of the plot is significantly flattened.

—The percentage of unique documents referenced and the percentage of one-timer
documents tend to increase as the request stream passes through a cache.

—Among the caches in a caching hierarchy, the first-level cache has the most pro-
nounced filtering effect on the workload.

4. EXPLOITING FILTER EFFECTS

The foregoing observations on cache filter effects paint a rather bleak picture for
Web proxy caching hierarchies. These observations can be used to explain the
ineffectiveness of Web caching hierarchies, and to argue for their demise in favour
of distributed or cooperative caching approaches [Rodriguez et al. 1999; Povey
and Harrison 1997; Tewari et al. 1999; Wolman et al. 1999; Yu and MacNair 1998].
Alternatively, these observations can be used to design improvedWeb proxy caching
hierarchies that can take advantage of cache filtering properties in a multi-level
caching system.
This section takes the latter approach, and considers approaches that might im-

prove overall performance of a Web proxy caching hierarchy. The approaches con-
sidered are heterogenous replacement policies and size-based partitioning. Trace-
driven simulations are used to evaluate the candidate approaches.

4.1 Experimental Methodology

The simulation experiments consider a two-level hierarchical Web proxy configura-
tion as shown in Figure 6. In the simulation model, requests from the aggregate
workload are forwarded to the lower level proxies, and misses are forwarded to the
upper level proxy. Misses from the upper level proxy are forwarded to the (simu-
lated) Web servers. There are no interactions directly between the two lower-level
proxies, and there are no cache consistency mechanisms in the modeled hierarchy,
since the workload is assumed to consist only of static documents (i.e., document
size and content do not change with time).
The experimental methodology considers three main factors: cache size, cache re-

placement policy, and cache management policy. Cache sizes range from 1 MB to 32
GB in the experiments, with all three caches (parent and two children) identical in
size. Three cache replacement policies are considered: Least-Recently-Used (LRU),
Least-Frequently-Used-with-Aging (LFU-Aging), and Greedy-Dual-Size (GD-Size).
The cache management policy determines how the different levels of the hierarchy
operate. Two approaches, namely heterogeneous caching policies and size-based
partitioning, are considered.
Two performance metrics are used to evaluate cache performance: document hit

ratio and byte hit ratio. The document hit ratio is the number of requests satisfied
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Fig. 6. Two-level Hierarchical Proxy Simulation Model

Table VIII. Characteristics of Synthetic Workload for Caching Simulations

Item Value

Requests 9,749,703

Unique documents 3,000,000
Unique documents (% of requests) 31%

One-timers 2,099,045
One-timers (% of unique documents) 70%
Total bytes of unique documents (GB) 30
Total transferred content bytes (GB) 89
Smallest file size (bytes) 9

Largest file size (bytes) 51,600,679
Mean file size (bytes) 10,850

Median file size (bytes) 3,815
Correlation (file size and popularity) -0.004982

Zipf Slope -0.768985
R2 0.9980

Pareto tail index -1.300494
R2 0.9998

by a particular proxy’s cache divided by the total number of requests seen by the
proxy. The byte hit ratio is the volume of data (in bytes) satisfied by the proxy’s
cache divided by the total volume of data requested from the proxy. Both metrics
are required since Web documents can differ dramatically in size. In general, the
higher the document hit ratio and byte hit ratio are, the better a replacement policy
is. Furthermore, the closer the “hit” is to the client, the lower is the (expected)
document retrieval latency.

4.2 Workload

The experiments in this section use a synthetically generated ProWGen workload.
The synthetic trace has approximately 10 million requests. The details of the
workload are summarized in Table VIII. Qualitatively, this workload is similar
in structure to the empirical workload introduced in Section 2.2, though it has
approximately twice as many requests.
The aggregate workload is then split across the two lower-level proxies to model

three different scenarios: complete overlap, partial overlap, and no overlap. Each
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scenario reflects a different degree of overlap (i.e., common URLs in the Web doc-
ument request streams) in the workloads of the two lower level proxies.
The complete overlap scenario models the situation where the two lower-level

proxies reside in “similar” organizations (i.e., the aggregate client sets behave sim-
ilarly, in terms of the Web content requested). Thus the cache contents at the two
lower level proxies are likely to be statistically similar, on average. This scenario
is modeled by randomly dispatching each request in the workload to one of the
lower-level proxies (equiprobably, at random).
The no overlap scenario models Web proxies with entirely different document

request streams (i.e., completely different client behaviours). This scenario is mod-
eled by assigning requests for odd-numbered documents to one lower-level proxy,
and requests for even-numbered documents to the other lower-level proxy.
The partial overlap scenario represents an intermediate situation between the

two extremes already discussed. In particular, this scenario has a 50% overlap in
the workload of the two lower level proxies. This scenario is modeled by randomly
choosing half of the documents to be shared (as in complete overlap), with the
remaining documents split between the two child proxies on an odd-even basis.

4.3 Heterogeneous Replacement Policies

The experiments in this section are motivated by the simple observation that the
workload characteristics are different at each level of the caching hierarchy. A
natural follow-on from this observation is to try different caching techniques at each
level of the hierarchy. Thus the experiments here consider different replacement
policies (LRU, LFU-Aging, and GD-Size) at the child and parent caches in the
caching hierarchy.
Simulation results for the complete overlap scenario are shown in Figure 7. In

this figure, the leftmost column of graphs show document hit ratio results, while
the rightmost column of graphs show the corresponding results for byte hit ratios.
Figures 7(a) and (b) show the results for the LRU policy at the child level, while
Figures 7(c) and (d) show the results for LFU-Aging at the child caches, and Fig-
ures 7(e) and (f) show the results for GD-Size at the child caches. On each graph,
the uppermost line shows the results for the child1 cache, and the remaining three
lines show the results for the parent cache, for each replacement policy considered.
In general, the child proxy caches have much higher hit ratios than the parent

proxy. This observation is not surprising, given that the parent proxy only sees the
requests that miss at the lower level caches (i.e, the request stream is filtered by
the lower level proxies) [Doyle et al. 2001; Weikle et al. 1998; Willick et al. 1993].
The graphs in Figure 7 illustrate some interesting differences in marginal utility

(i.e., additional incremental value gained) when more cache space is added at either
the child level or the parent level. This behaviour can be seen by noting the
differences in the slopes of the hit ratio plots for the parent and child caches, as the
cache sizes are increased (exponentially) from left to right. At some points, adding
more child level cache is a big win; at other points the graph is fairly flat. Similar
observations apply for the parent level cache.

1Since the hit ratios are similar for each child cache, only the results for one child cache are shown,

for clarity.
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Fig. 7. Performance Results for Different Combinations of Replacement Policies in a Two-Level

Hierarchical Proxy Configuration, with COMPLETE Overlap in the Workloads of the Lower Level
Proxies.
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In some cases, the hit ratio results for the parent level cache drop as the cache
size is increased; this non-monotonic behaviour happens because the child cache in
the simulation is also being increased in size, absorbing more hits, and reducing
the number of requests to the parent level cache. In other words, the relative
balance between “cold misses” (first request for a document) and “capacity misses”
(subsequent request for a document that used to be in the cache, but has now been
removed from the cache) changes as the cache sizes are scaled. This impact may
be different at each level of the hierarchy.
The exact shape of these curves depends, of course, on the nature of the workload:

the temporal locality property, the Zipf-like referencing behaviour, and the size
(in bytes) of the “document working set”, relative to the cache size used. These
marginal utility trends also depend on the cache replacement policy used, since the
replacement policy at one level changes the workload characteristics for the next
level of cache.
Overall, Figure 7 shows that the GD-Size policy at the parent cache provides

a significantly better document hit ratio than either LRU or LFU-Aging at the
parent cache. This document hit ratio advantage is a factor of two or more for most
of the cache sizes considered, when the child level cache uses LRU (Figure 7(a))
or LFU-Aging (Figure 7(c)). Furthermore, this advantage does not come at the
expense of the byte hit ratio (see Figure 7(b) and (d)), as is often the case with
GD-Size [Arlitt and Williamson 1997b]. The performance advantage of GD-Size at
the upper level is less pronounced, but still present, when the child proxies use GD-
Size (see Figure 7(e)). However, the document hit ratio advantage is compromised
by a lower byte hit ratio (Figure 7(f)).
Determining which combination of policies is “better”, from an end-user point

of view (i.e., response time), is a challenging problem, since it depends on net-
work capacity, network latencies, server load, version of HTTP, and TCP-level
effects [Feldmann et al. 1999; Heideman et al. 1997]. Further discussion of this
issue, and an approximation technique for cost-benefit analysis, appears in [Busari
2000].
In summary, the potential advantage of heterogeneous caching policies is most

evident in Figure 7(a). For a given cache size, the effectiveness (hit ratio) of a
second-level cache can be doubled or tripled by using a size-based replacement
policy that is different from that used at the first-level cache (LRU, for example).

4.4 Sensitivity of Results to Workload Overlap

This section explores the sensitivity of the previous results for heterogeneous cache
replacement policies to the degree of workload overlap between the two child-level
proxies in Figure 6. The previous section assumed complete overlap in the work-
load: clients at either proxy are equally likely to access any given page in the Web
document space. This section considers:

—a partial overlap scenario, in which 50% of the Web document space is common
to all clients (accessed from any child proxy), and 50% is of regional interest only
(accessed from only one child proxy)

—a no overlap scenario, in which the two child proxies handle requests for com-
pletely disjoint document sets
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Results for the partial overlap workload scenario are shown in Figure 8. These
results follow the same trend as in the complete overlap case, except for a slight
improvement2 in hit ratios for the child cache, and a noticeable drop in the hit
ratios of the parent cache.

The explanation for this behaviour is the reduced overlap in the workloads of the
two lower level proxies. That is, the 50% overlap in the workloads means that the
left-most child proxy exclusively sees requests to 25% of the aggregate document
set, the right-most child proxy exclusively sees requests to a different 25% of the
aggregate document set, and the remaining 50% of the documents are (typically)
seen by both proxies.

The partial overlap workload assumption has two important consequences. First,
each child proxy sees only a subset (75%) of the total document space, which means
fewer documents contending for cache space. Second, references to a particular
document, as generated by ProWGen’s document popularity and temporal locality
models [Busari 2000; Busari and Williamson 2001a], may now be concentrated on
a single child proxy, rather than randomly split across the two proxies. Again,
this translates into better caching performance at the child proxies. On the other
hand, the reduced overlap in the workload implies worse caching performance at
the parent cache: the probability that a file requested by one child (and pulled into
the parent cache from the origin server prior to delivering to the child) is requested
later by the other child is reduced (by about half) compared to the complete overlap
scenario. Furthermore, repeated hits at the parent cache for such a document can
only occur if there are repeated capacity misses at the child level.

The results for the no overlap scenario (Figure 9) show the same trend: further
improvement in the performance of the child caches, and a further decrease in
the performance of the parent cache. This trend is consistent, regardless of the
replacement policies used.

For the no overlap scenario, the only role for the parent cache is to serve capacity
misses from the lower level caches. In such a case, the GD-Size policy at the parent
cache has the best performance, since it typically stores the most documents. The
results show that the parent cache has its highest hit ratio when the size of the child
cache is about 1-2 GB: about 10% of the total size of the Web content accessed. As
the child caches grow larger, fewer capacity misses occur, and the relative benefit
of the parent cache diminishes.

In summary, the effectiveness of the parent cache in a caching hierarchy dimin-
ishes when there is little overlap in the Web workloads seen at the child-level proxies.
For the scenarios and workloads studied here, the LRU or LFU-Aging policies at
the lower level combined with GD-Size at the upper level always provide improve-
ment in performance over an LRU-LRU combination. The GD-Size policy often
doubles the document hit ratio at the parent cache, without any penalty in byte hit
ratio. Using GD-Size at both levels improves the document hit ratio, but sacrifices
the byte hit ratio.

2Note the change in vertical scale from Figure 7 to Figure 8.
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Fig. 8. Performance Results for Different Combinations of Replacement Policies in a Two-Level

Hierarchical Proxy Configuration, with PARTIAL Overlap in the Workloads of the Lower Level
Proxies.
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Fig. 9. Performance Results for Different Combinations of Replacement Policies in a Two-Level

Hierarchical Proxy Configuration, with NO Overlap in the Workloads of the Lower Level Proxies.
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4.5 Size-Based Partitioning

The next cache management strategy evaluated is a document partitioning ap-
proach called size-based partitioning. That is, based on a specified size threshold
S, the lower level caches are allowed to store only files smaller than S, while the
upper level cache is allowed to store only files of size S or larger. This simple policy
provides a natural partitioning of the document space, using minimal information.
Document size information is available to Web servers and proxies in the HTTP
response header.

This partitioning is similar in nature to the “consistent hashing” approach used
to partition the URL space in some distributed (flat) caching strategies, in that
a specific document is only eligible to reside in a specific cache location (or cache
level in this case). However, the partitioning is based on document size rather than
URL, and there is no restriction on the number of first-level caches (for example)
in which a copy of a given document could reside. The motivation for keeping
small documents in the first-level cache is to minimize the round-trip latency for
connection setup, which often dominates the retrieval time for small documents.
Larger documents can be maintained at the second-level cache, since the larger
connection setup latency can be amortized over the duration of a (longer) data
transfer.

In its strictest form, size-based partitioning provides a way to flatten (i.e., de-
feat) the caching hierarchy. That is, the first-level caches handle small documents
only, and the second-level cache handles large documents only. Variations of this
approach could relax this principle. For example, one could use a document size
threshold restriction on the first-level cache only, while allowing the second-level
cache to cache any document, small or large. Alternatively, a hybrid scheme could
devote part of the first-level cache (e.g., 90%) to caching small documents, and
part to large documents, with these proportional settings reversed at the next-level
cache. This approach would preserve the semantics of a caching hierarchy, and
allow size-based partitioning and heterogeneous replacement policies to be com-
bined within the same caching hierarchy. In this paper, only the simplest (strict)
size-based partitioning approach is considered, to evaluate its tradeoffs.

A key advantage of the size-based partitioning approach is that it confines the
filtering effect of the first-level cache to only a portion of the incoming workload
(e.g., small documents). Requests for large documents are passed through to the
next-level cache unperturbed, preserving the Zipf-like document popularity profile
in the request stream presented to that cache.

For completeness, the converse of this policy is also considered, namely large
files at the lower level, and small files at the upper level. With either of these
approaches, distinct documents are maintained at each level of the hierarchy. Some
replication of documents in multiple caches at the child level of the hierarchy is still
possible.

The first design issue for size-based partitioning is the choice of the threshold
size S. To understand the impact of different threshold sizes, three values are
considered: 5,000 bytes, 10,000 bytes, and 100,000 bytes. For each chosen threshold
size, heterogeneous replacement policies are studied. For space reasons, only the
results for the partial overlap workload scenario and the LRU replacement policy at
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Fig. 10. Simulation Results for Size-Based Partitioning (Size Threshold = 5,000 Bytes)

the lower level caches are presented here. Complete results are available in [Busari
2000].
Figure 10 shows the results for a threshold size of 5,000 bytes. The top two

graphs (Figures 10(a) and (b)) show the results when small files are kept at the
lower level of the hierarchy, and large files at the upper level. The bottom two
graphs (Figures 10(c) and (d)) are for the converse policy.
Figures 10(a) and (b) show that with size-based partitioning, the child caches

have higher hit ratios than the parent cache (Figure 10(a)), but the parent cache
achieves a much higher byte hit ratio (Figure 10(b)). The result for the parent cache
is particularly interesting, in that it is able to achieve significant document hit ratios
as well as byte hit ratios. This behaviour can be attributed to the high proportion
of small files in the workload: about 60% of the requests are for files below this
threshold size. The penalty for not keeping the large files (files ≥ 5,000 bytes) in
the lower level cache is the lower byte hit ratios, as observed in Figure 10(b). The
significant hit ratios and byte hit ratios achieved by the parent cache indicate that
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many references occur to files stored in its cache, and these files are responsible for
a significant fraction of the total volume of data transferred.

All three replacement policies considered at the parent cache are reasonably ef-
fective in Figure 10, since the incoming workload still has a Zipf-like document
popularity profile, and the temporal locality property. That is, the filter effects of
the first-level cache only apply to small documents. The original workload char-
acteristics for requests to larger documents are preserved. Clearly, this workload
is still amenable to caching at the parent level, since the document and byte hit
ratios at the parent cache significantly exceed those of the heterogeneous caching
approach for this workload (Figure 8).

Figure 10(a) shows that the GD-Size policy still provides the best document
hit ratio at the parent cache, among the policies considered. However, its perfor-
mance advantage over LRU and LFU-Aging has diminished significantly from that
in Figure 8(a). Furthermore, it has a slight disadvantage in terms of byte hit ratio
(Figure 10(b)) at large cache sizes.

The flattening of the hit ratio plots for the child caches beyond a cache size of
2 GB indicates a form of “cache ineffectiveness” beyond this point. That is, while
increasing the cache size beyond 2 GB can improve the performance of the parent
cache, it has no further benefit for the child caches. The reason for this is that the
child cache is already large enough to accommodate all requested files smaller than
5,000 bytes, without any replacements required for the workloads considered. The
hit ratios thus stabilize beyond this “infinite” cache size.

The performance results for the converse policy (i.e., keeping large files at the
lower level and small files at the upper level) are shown in Figures 10(c) and (d). In
these graphs, the parent cache shows consistently better document hit ratios than
the child caches (Figure 10(c)). This is not surprising: the child proxies are not
allowed to cache files smaller than 5,000 bytes, and these files account for a large
fraction of the requests. While the observed document hit ratios at the child caches
are low, the byte hit ratios (Figure 10(d)) are better than for the parent cache.

Figure 10(d) also shows that with the converse size-based partitioning approach,
there are no noticable differences in byte hit ratio performance for the three dif-
ferent replacement policies considered at the parent cache (which is not allowed to
cache large files). In other words, the performance impact of the size-based thresh-
old scheme between levels of the proxy hierarchy is so dominant that the precise
replacement policy used at the upper level is irrelevant. LRU, LFU-Aging, and
GD-Size are equally effective (or ineffective) at the parent cache.

Figure 11 shows the results for size-based partitioning when the threshold size
is 10,000 bytes. Compared to the results in Figure 10, Figures 11(a) and (b)
show a significant improvement in performance for the lower level proxies, while
the performance of the parent cache decreases. This trend occurs because the
percentage of files that can be cached at the lower level of the hierarchy increases:
approximately 80% of the requests are for files smaller than 10,000 bytes. The byte
hit ratios for the child caches shift up noticeably. The drop in byte hit ratio for
the parent cache is modest (compare Figure 10(b) and Figure 11(b)), compared to
the drop in document hit ratio (compare Figure 10(a) and Figure 11(a)), because
the large files cached at the upper level still contribute a significant fraction of the
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Fig. 11. Simulation Results for Size-Based Partitioning (Size Threshold = 10,000 Bytes)

total byte traffic volume.
The results for the reversed threshold policy (i.e., keeping large files at the lower

level) are shown in Figures 11(c) and (d). Comparing these figures with Fig-
ures 10(c) and (d) shows that there is an increase in hit ratios for the parent
cache, while the hit ratios for the child proxies decrease. By keeping only large
files in the lower level proxies, the byte hit ratio is still high, but the document
hit ratio is low because of fewer references to the large files. The GD-Size policy
provides the best document hit ratio at the upper level, without compromising the
byte hit ratio. Again, the byte hit ratio results for the parent level cache are largely
independent of the replacement policy used.
Increasing the size threshold further (S = 100, 000 bytes, not shown here) contin-

ues the same trends indicated previously [Busari 2000]. When small files are kept at
the lower level, the document hit ratio at the parent drops drastically, though the
byte hit ratio at the parent cache is still significant. Reversing the size threshold
restriction improves hit ratios at the parent, but at the expense of the lower level
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proxies.

4.6 Summary of Results

The foregoing experiments have illustrated the performance tradeoffs, in terms of
document hit ratio and byte hit ratio, at both child-level and parent-level caches in
a two-level Web proxy caching hierarchy. Several novel cache management strate-
gies were explored, including heterogeneous cache replacement policies, and the
partitioning of Web document content across the levels of the caching hierarchy
based on document size.
The simulation results suggest performance advantages for the use of heteroge-

nous replacement policies across the levels of a caching hierarchy. The results also
suggest advantages for the use of size-based partitioning policies across the levels of
a caching hierarchy. The latter policy is particularly attractive because of its (min-
imal) filtering effect on the workload characteristics as the request stream passes
from one level of cache to the next. Combining heterogeneous replacement policies
with the size-based partitioning approach makes little sense, since the heterogenous
policies have their largest advantage on filtered request streams.
Determining which policy is “best”, in terms of user-perceived response time,

requires in-depth consideration of network capacity, network latencies, server load,
HTTP, and TCP-level effects [Feldmann et al. 1999]. Such a rigorous evaluation
is beyond the scope of the current paper. Further discussion of this issue, and an
approximate cost-benefit analysis of selected caching strategies, appears in [Busari
2000].

5. CONCLUSIONS

This work used trace-driven simulations of Web proxy workloads to study cache fil-
ter effects in simple Web proxy caching hierarchies. First, the experiments demon-
strated the impacts of cache size, cache replacement policy, Zipf slope, and hierarchy
size on the document referencing characteristics at the next level of cache. Second,
the paper considered two different approaches to cache management for a two-level
Web proxy caching hierarchy. In particular, the experiments considered heteroge-
neous replacement policies within the hierarchy, and document partitioning across
the levels of the hierarchy based on size.
The simulation results show that combining different replacement policies at

different levels of the hierarchy can improve the performance of a caching hierarchy.
The best performance was typically provided by the use of LRU or LFU-Aging at
the lower level, combined with GD-Size at the upper level. The GD-Size policy is
more effective at the parent cache because the cache filtering effects of the first-
level cache result in a non-Zipf-like workload presented to the parent cache. Using
GD-Size at both levels provides a better document hit ratio, but sacrifices the byte
hit ratio. The results also show that the effectiveness of the parent cache depends
a lot on the degree of overlap in the workloads of the child-level proxies.
For file partitioning, the simulation experiments show that size-based partitioning

(with small files at the lower level of the hierarchy) can provide improved perfor-
mance. However, the performance improvements are sensitive to the size threshold
chosen.
Future work will involve studying network-level effects in Web proxy caching
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hierarchies. Extending the ProWGen proxy workload generation tool to model
document modifications, and the Web caching simulator to model cache consistency
protocols, are also planned.
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