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Abstract—

This paper discusses the design and evaluation of CATNIP, a Context-
Aware Transport/Network Internet Protocol for the Web. This integrated
protocol uses application-layer knowledge (i.e., Web document size) to pro-
vide explicit context information to the TCP and IP protocols. While this
approach violates the traditional layered Internet protocol architecture, it
enables informed decision-making, both at network endpoints and at net-
work routers, regarding flow control, congestion control, and packet dis-
card decisions.

We evaluate the performance of the context-aware TCP/IP approach
first using ns-2 network simulation, and then using WAN emulation to test
a prototype implementation of CATNIP in the Linux kernel of an Apache
Web server. The advantages of the CATNIP approach are particularly evi-
dent in a congested Internet with 1-10% packet loss. Simulation results in-
dicate a 10-20% reduction in TCP packet loss using simple endpoint control
mechanisms, with no adverse impact on Web page retrieval times. More
importantly, using CATNIP context information at IP routers can reduce
mean Web page retrieval times by 20-80%, and the standard deviation by
60-90%. The CATNIP algorithm can also interoperate with Random Early
Detection (RED) for active queue management.

Keywords: Internet protocols, TCP/IP, Web performance, net-
work simulation, network emulation

|. INTRODUCTION

There has been a long-standing debate in the Internet research
community about “layered” protocol stacks, such as the OSI and
TCP/IP protocol stacks. The common mantra is; “Layered de-
sign is good; layered implementation is bad”.

Layered designs are “good” because they provide a unify-
ing framework for the specification and discussion of proto-
cols. Layered designs can lead to modular protocols, each with
clearly-defined functionality and well-defined interfaces to other
protocol layers. The layered design approach provides as much
independence as possible between layers, enabling “plug and
play” interoperability with different protocols, if desired.

Layered implementations are “bad” because they can com-
promise performance. For example, a naive implementation of
a strictly layered protocol stack can result in excessive copying
of packet data from layer to layer, adding significant overhead
to protocol processing. More importantly, strictly layered im-
plementations can hide from higher-layer protocols information
that is important to know (e.g., channel error rate, maximum
packet size) for optimizing communication. For this reason, im-
plementations of the TCP/IP protocol stack often include inter-
layer optimizations. For example, the TCP Maximum Segment
Size (MSS) is computed from the Maximum Transmission Unit
(MTU) size at the network layer. As another example, TCP
uses a PUSH bit in the packet header to expedite delivery of
application-layer data in certain situations.

In this paper, we consider the specific problem of Web data
transfer using the TCP/IP protocol stack, and show how end-

to-end performance can deteriorate on a congested Internet. We
then show that end-to-end performance can be improved by pro-
viding a minimal amount of context information from the appli-
cation layer to the TCP/IP protocol stack about the Web doc-
ument transfer. We use this example to support the case for a
general “context-aware” TCP/IP.

We choose the Web/TCP/IP example because Web data trans-
fer is a particularly relevant example from today’s Internet, and
one in which the mismatches between protocols (HTTP and
TCP) are particularly acute. Further discussion on these pro-
tocol interaction problems are deferred to Section Il.

The question that we focus on in this paper is: can we make
the TCP/IP protocols “smarter” about the specific job (e.g., Web
document transfer) that they are trying to do? As a possible
answer, we propose a ‘“goal-oriented” transport-layer protocol
called the Context-Aware Transport/Network Internet Protocol
(CATNIP). CATNIP is based on the TCP protocol, but changes
the sender’s TCP/IP protocol stack to get information, such as
Web document size, from the application layer. With this in-
formation, CATNIP sources can make informed decisions about
flow and congestion control, so as to reduce traffic burstiness,
avoid packet losses, and improve Web document transfer times.
Similarly, CATNIP routers can make informed packet discard
decisions when Internet congestion occurs.

The specific research questions addressed by this work are:

« To what extent can a TCP source influence Web document
transfer time, using only application-layer context information,
and no additional support from the IP network layer?

« To what extent can an IP router affect Web document transfer
time with its packet discard decision-making, using Web/TCP
context information?

« What are the performance advantages, if any, of a Context-
Aware Transport/Network Internet Protocol (CATNIP) for Web
document transfer?

The CATNIP approach is evaluated using both network simu-
lation and a prototype implementation in the Linux kernel. Our
simulation results demonstrate significant advantages for the
context-aware TCP/IP approach: endpoint control algorithms at
the TCP sources can reduce overall packet loss by 10-20%, and
exploiting CATNIP context information at routers can reduce
mean transfer times by 17-82% in our experiments. A prototype
implementation of CATNIP in the Linux kernel demonstrates
the feasibility of the approach, and preliminary network emu-
lation experiments with an Apache Web server indicate that up
to 40% reductions in Web page transfer times are possible. The
performance advantages of CATNIP are most pronounced on a
congested Internet with 1-10% overall packet loss. In general,
the CATNIP approach reduces both the mean and variance of
Web page retrieval times.

The remainder of this paper is organized as follows. Sec-



tion Il provides some background information on TCP and
Web performance, and a brief discussion of related work. Sec-
tion 111 discusses the design of CATNIP, a Context-Aware Trans-
port/Network Internet Protocol for Web document transfer. Sec-
tion IV presents the experimental methodology for the simula-
tion evaluation of the CATNIP protocol. Section V presents the
results from our simulation experiments. Finally, Section VI
concludes the paper, and describes ongoing work.

I1. BACKGROUND AND RELATED WORK
A. Background

The Web relies primarily on three communication protocols:
IP, TCP, and HTTP. The Internet Protocol (IP) is a connection-
less network-layer protocol that provides global addressing and
routing on the Internet. The Transmission Control Protocol
(TCP) is a connection-oriented transport-layer protocol that pro-
vides end-to-end data delivery across the Internet. Among its
many? functions, TCP has flow control, congestion control, and
error recovery mechanisms to provide reliable data transmis-
sion between sources and destinations. The robustness of TCP
allows it to operate in many network environments. Finally,
the Hyper-Text Transfer Protocol (HTTP) is a request-response
application-layer protocol layered on top of TCP. HTTP is
used to transfer Web documents between Web servers and Web
clients (browsers). Currently, HTTP/1.0 and HTTP/1.1 [21] are
widely used on the Internet.

Several interesting protocol interactions occur when TCP is
used to transfer Web documents. For example, TCP’s flow and
congestion control algorithms are (arguably) designed to opti-
mize throughput for long-lived bulk data transfers. The TCP
slow-start phase is used initially to probe the network capacity,
and steady-state is typically reached in the congestion avoidance
phase. For small documents, however, the steady-state conges-
tion avoidance phase is not always reached before the transfer
terminates. Unfortunately, the extra round-trip times incurred
during TCP slow-start add to the transfer times for Web users.

The TCP protocol is unaware of this dichotomy between
throughput and latency. In addition, the short and bursty nature
of most Web document transfers means that the cost of packet
loss and retransmission is high, in terms of transfer latency. Of-
ten a TCP timeout is required to recover from a packet loss,
adding significant delay to the document transfer time.

B. Performance Problems

Two TCP-related network performance problems are the pri-
mary focus in this paper:
o The window-based flow control mechanism often produces
bursts (clumps) of packet transmissions. The bursty packet ar-
rival process can make IP routers more susceptible to packet
losses. Depending on the number of lost packets and the loss
pattern, the performance of a TCP connection can degrade sig-
nificantly. For example, Barford and Crovella [7] report that file
transfers with at least one packet loss take 1.3 to 7.8 times longer
than transfers that do not experience a packet loss. Clearly, re-
ducing packet loss is desirable.

1The reader unfamiliar with TCP is encouraged to consult Appendix A for a
concise TCP tutorial.

o Packet losses can be relatively costly for small document
transfers. TCP has two schemes to recover from packet losses:
timeout and fast retransmit. The fast retransmit strategy is trig-
gered when a TCP sender receives three duplicate ACKs, and it
is more efficient than the timeout strategy. However, for small
documents (common in the Web [4], [14], [27]), the congestion
window sizes for these TCP connections may be too small to
trigger fast retransmit if a packet loss occurs. Thus the less effi-
cient timeout strategy for retransmission is often required. This
can result in poor performance for Web data transfers using TCP,
in terms of user-perceived response time.

C. Related Work

Several researchers have addressed performance issues re-
lated to TCP and the Web.

Padmanabhan and Katz [23] proposed a “fast start” mecha-
nism for TCP that increases the initial TCP window size (based
on cached connection state information [6]), combined with a
“low” packet priority for these “extra” packets at TCP connec-
tion startup. The goal of this approach is to decrease the num-
ber of round trip times incurred, particularly for short-lived Web
document transfers. The fast start mechanism requires Internet
routers to consider packet priority, discarding the extra fast start
packets in the event of Internet congestion.

Several other researchers have proposed rate-based pacing
of packets as a way to reduce the burstiness of TCP transmis-
sions [1], [19], [29]. Reducing the burstiness can reduce the av-
erage level of packet loss in the Internet, and can also reduce the
likelihood of multiple lost packets from the same TCP conges-
tion window, which can degrade TCP performance significantly.
Improved mechanisms for TCP connection startup and recovery
from multiple TCP packet losses have also been proposed [2],
[31, [5], [9], [13], [17], [30]. We believe that our context-aware
TCP/IP approach complements many of these prior approaches,
including connection state caching, rate-based pacing, SACK
TCP [13], Ensemble-TCP [12], and RED [16].

Barford and Crovella [8] discuss the “critical path” analysis
of TCP connections, in an attempt to pinpoint the causes of the
delays incurred during Web document transfers, However, this
analysis is primarily from a network traffic analysis viewpoint,
rather than a TCP control algorithm viewpoint. Our work builds
upon their work in this regard.

Finally, the issue of “context-awareness” for TCP has been
considered, but primarily for TCP in relationship to non-
traditional physical layer network environments, such as wire-
less networks and ad hoc networks. Conventional TCP imple-
mentations consider packet loss as an implicit signal of network
congestion, and use backoff mechanisms to reduce packet load
offered to the network. This approach works reasonably well
for the wired Internet, since losses of packets due to conges-
tion dominate packet losses due to transmission errors. In wire-
less networks, this situation is reversed: losses due to transmis-
sion errors dominate congestion losses. Researchers have added
more aggressive mechanisms to TCP to improve its performance
in wireless environments. In multi-hop ad hoc networking en-
vironments, explicit feedback (EF) mechanisms have been pro-
posed to notify TCP of transient routing failures, and the use of
rate-based flow control suggested to expedite TCP data transfer.



Context-aware TCP/IP is a general concept, which can be ap-
plied to many different application-layer protocols, or indeed to
multiple layers of the protocol stack (higher or lower). In this
regard, our work is reminiscent of Application-Layer Framing
(ALF) [11]. However, the focus in this paper is primarily on
the Web as an illustrative example for the use of context-aware
TCP/IP. There are two reasons for this choice of example. First,
Web traffic constitutes a significant fraction of the packet load
on today’s Internet [27]. Second, the Web application is one that
is particularly sensitive to the dynamics of TCP.

I11. CATNIP: A CONTEXT-AWARE TRANSPORT/NETWORK
INTERNET PROTOCOL

This section describes the design of our context-aware
TCP/IP protocol. The section begins with some background mo-
tivation for the design features of CATNIP, and then a discussion
of algorithmic features at both the TCP and IP layers.

A. Motivation

Our work is motivated by the following three observations:
« Not all packet losses are created equal.
TCP has two mechanisms to recover from lost data packets,
namely timeout and fast retransmit. Surprisingly, most network
performance studies in the literature focus on the average TCP
packet loss rate, and not on which TCP packets are lost. In a
given TCP data transfer, the losses of some packets (e.g., the
first or last packet of a transfer) can only be recovered using a
coarse timeout. Other lost packets may be recovered by time-
out, by fast retransmit, or by SACK, depending on the number
of packet losses, their relative location in the flow control win-
dow, and the congestion window size at the time of the loss.
Our observation is that which packet is lost matters a lot, in terms
of the impact on the data transfer time for the TCP source. This
observation is illustrated graphically in Figure 1, for a (simu-
lated) transfer of an (arbitrarily chosen) 14-kilobyte document
in the ns-2 simulator [28]. This experiment uses a simple two-
node client-server network model, with a 1 Mbps link, a 100
millisecond propagation delay, and a TCP packet size of 512
bytes. On this graph, the black dots show the transfer time (on
the vertical axis) that would result if a single TCP data packet
loss occurred during the transfer, for the packet with the spe-
cific sequence number indicated along the horizontal axis (from
1 to 28). Loss of an ACK packet is less of a problem for TCP,
since subsequent ACKs are cumulative. The horizontal dashed
line shows the transfer time (1.1 seconds) that would result if no
packet losses occurred.
Clearly, the loss of a single TCP data packet during the trans-
fer can have a dramatic impact on the transfer time. The loss
of packet 1, 2, or 3 results in a TCP timeout at the source, with
the timeout value dependent upon the round-trip time (RTT) es-
timate available at the source at the time of the loss. Loss of
the first? packet (packet 1) is the most “expensive”, since the
default TCP timeout value (6 seconds in the ns-2 simulator) is
used. Similarly, loss of any of the last three packets of the trans-
fer (packet 26, 27, or 28) results in a timeout, since there are not

20ur simulation did not use ns-2’s three-way handshake for TCP connection
setup, so the first packet referred to here is a data packet, not a SYN packet. A
similar observation applies for SYN packets for real TCP connections.

Transfer time with single packet loss of packeti =
Transfer time without packet loss ------—-
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Fig. 1. Transfer Times for a Simulated 14-kilobyte Web Document Transfer
under Different TCP Single Packet Loss Scenarios

enough duplicate ACKs to trigger fast retransmit. Fortunately,
there is a tighter retransmit timeout (RTO) value at this point
(because of a better estimate of the RTT and its variance), and
so the impact on the total transfer time is less pronounced than
for the early packets in the transfer. Losses of any of the inter-
mediate packets of the transfer would result in fast retransmit
to recover the missing packet (assuming normal TCP slow-start
cwnd evolution), with minimal adverse impact on the total trans-
fer time, as shown in Figure 1.

To summarize, the “packet loss profile” in Figure 1 shows that
the transfer time for a Web document using TCP is very sensitive
to the loss of a packet early or late in the transfer. In other words,
some packets are more important than others in terms of their
possible impact on TCP data transfer time. A TCP source that
can reduce the risk of packet loss in these phases of the transfer,
or at least shift packet losses away from “important” packets,
can improve Web document transfer performance.

« The TCP source has limited control over packet loss effects.
The TCP slow-start and congestion avoidance algorithms pro-
vide a means for a TCP source to estimate and adjust to the bot-
tleneck network bandwidth along a network path. By its very
nature, the TCP control algorithm “pushes” until a packet loss
occurs, and then adjusts to achieve a steady-state throughput that
approaches the available bandwidth.

Unfortunately, the packet loss indicating network congestion
can have a dramatically different impact on each TCP source af-
fected by the loss epoch, depending on each source’s congestion
window size at the time of the loss. While the TCP algorithm
tries to control the number of packet losses, there is no consider-
ation of which packets to discard, since an IP router has no state
information about a TCP flow (e.g., number of packets, current
packet number, current congestion window size).

Adding a means to convey application-layer context information
(e.g., Web document size) to the TCP and IP layers may pro-
vide sufficient information for informed decision-making at the
TCP and IP protocol layers. This context information could take
the form of a simple “priority” bit in TCP/IP packet headers to
identify crucial packets, or explicit sequence number informa-
tion (e.g., packet 7 of V) in every packet.

« An IP router has significant control over packet loss effects.
A router that discards packets that are early or late in a specific
Web document transfer will have maximal adverse impact on
the Web document transfer latency. A router that avoids dis-



carding these packets will have minimal adverse impact on the
Web document transfer latency.

B. Adding Context-Awareness to TCP

The performance issues identified previously motivate an en-
hancement to TCP that provides explicit context information
about the data being transferred. Our experiments consider sev-
eral different “context-aware” algorithms that could be used at
the sender-side for a TCP source, beyond a baseline Reno TCP
configuration:

« Rate-Based Pacing of the Last Window (RBPLW): A TCP
source that is explicitly aware of the number of packets remain-
ing in its last window of data may choose to space (in time) the
transmissions of these last few packets over a short interval so
as to reduce the risk of packet loss. This use of Rate-Based Pac-
ing (RBP) is different from that in the literature [1], [19], [29],
where RBP has been considered for connection startup, for re-
covery after a packet loss, or for complete connection lifetimes.
Instead, we are proposing RBP for the final few packets of a
transfer, since the increase in transfer time is minimal, and the
risk of packet loss is (hopefully) reduced. Note that this ap-
proach by itself does not require any changes to TCP/IP packet
headers, nor does it require special support at the IP routers.
It is an endpoint control algorithm only, which makes the TCP
source more cautious.

« Early Congestion Avoidance (ECA): A TCP source that is
explicitly aware of the number of packets remaining in its Web
document transfer may voluntarily (and prematurely) switch
from the TCP slow-start algorithm to the TCP congestion avoid-
ance algorithm. The TCP sender does this if it deems that lin-
ear growth of the congestion window will reduce the risk of
packet loss, while having minimal adverse impact on expected
document transfer time. For example, the additional round-trip
time(s) incurred to complete the data transfer may be tolerable,
compared to the risk of a coarse timeout. Note that this approach
by itself does not require any changes to TCP/IP packets, nor
does it require special router support within the network. This
algorithm makes the TCP source less aggressive.

o Selective Packet Marking (SPM): In a context-aware TCP
protocol, the TCP source knows exactly how many packets there
are in the Web document transfer. Among these packets, the first
three and the last three are the most crucial in terms of their pos-
sible impact on the Web document transfer time in the event of a
packet loss, as are any packets sent when the congestion window
is small (i.e., less than 4 packets). A context-aware TCP source
can selectively mark these crucial packets (about 35-40% of the
packets for a typical 8 KB Web document transfer [4], [14],
assuming 512-byte packets) “high” priority. All other packets
of the transfer are marked with default “low” priority. Note
that these priorities refer to packet loss priority only, not packet
scheduling priority. The SPM approach requires a priority bit in
the TCP/IP packet headers, and special packet handling at the
routers based on this information. SPM by itself does not alter
any other aspects of TCP’s flow control, congestion control, and
packet departure process.

Figure 2 illustrates these TCP variants. Figure 2(a) shows an
example of a simulated Reno TCP transfer of a 7-kilobyte Web
document, using ns-2. The graph illustrates the TCP slow-start

behaviour, with exponential growth (e.g., 1, 2, 4, and 8 pack-
ets) of the TCP congestion window. Note that the last burst
contains only 7 (rather than 8) packets, since the transfer only
involves 14 packets (512 bytes each) in this case. Figure 2(b)
shows Rate-Based Pacing of the Last Window (RBPLW). The
TCP source voluntarily paces the last window’s worth of pack-
ets, to reduce burstiness. Figure 2(c) shows Early Congestion
Avoidance (ECA). The TCP source voluntarily restricts the con-
gestion window to linear growth in the congestion avoidance
phase. The result is a burst of 4 packets followed by a burst of
3 packets, rather than a single burst of 7 packets. The rationale
for this approach is to avoid packet losses that may occur due
to large bursts of back-to-back packets. Figure 2(d) shows RB-
PLW combined with ECA. In this case, only the last window of
3 packets is temporally spaced.

These context-aware TCP algorithms are evaluated in the ex-
periments in Section V. In these experiments, different ver-
sions of the context-aware TCP protocol use the foregoing three
mechanisms, either in isolation or in combination.

C. Adding Context-Awareness to IP

For the routers in our experiments, we consider five algo-
rithms that vary in the amount of context information available
and how it is used.

The algorithms are:

o Drop Tail:

The classic DropTail router uses a First-In-First-Out queue. Ar-
riving packets enter the tail of the queue, and proceed onward
for FIFO service. Arriving packets that encounter a full queue
are dropped (discarded). This algorithm has no context informa-
tion, and serves as a simple baseline for comparison.

« Random Early Detection (RED):

The RED algorithm [16] seeks to maintain queue occupancy at
or below a specified threshold level, and uses a probabilistic ap-
proach to discard packets from flows to limit excessive queue
growth. The parameters of this algorithm determine the queue
threshold at which packet discard begins, and how to compute
the discard probabilities as a function of queue length. This ap-
proach can discard packets before the queue is full, and is thus
classified as an active queue management approach. In our sim-
ulations, the RED approach has no Web/TCP/IP context infor-
mation. It is used as a baseline for comparison, since this ap-
proach has been proposed for use on the Internet.

o CATNIP-Good:

The CATNIP-Good algorithm exploits the packet loss priority
information provided by TCP sources using Selective Packet
Marking (SPM). This algorithm modifies the FIFO structure of
the DropTail router, by exploiting context information carried
in the form of a priority bit in the TCP/IP packet header. In
the normal case, arriving packets enter the tail of the queue,
and proceed forward for FIFO service. A low-priority arriving
packet that encounters a full queue is dropped, as in a DropTail
router. However, a high-priority arriving packet that encounters
a full queue may or may not be dropped, depending on the state
of the queue. In particular, if there is at least one low-priority
packet within the queue, one such low-priority packet (e.g., cho-
sen at random) is removed from the queue, making room for the
high-priority packet to be added at the tail of the queue. All
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Fig. 2. Graphical Illustration of TCP Behaviours for a Simulated 14-packet Web Document Transfer: (a) Reno TCP; (b) Rate-Based Pacing of the Last Window

(RBPLW); (c) Early Congestion Avoidance (ECA); (d) ECA+RBPLW

queued packets maintain their relative order. If the full queue
contains no low-priority packets, then the arriving packet is al-
ways dropped.

o CATNIP-Bad:

Like “The Force” in the movie Star Wars, omniscient power can
be used either for good or for evil. A CATNIP-Bad router uses
the same “packet priority” context information that is available
to a CATNIP-Good router, but in the opposite way. That is, the
CATNIP-Bad router tries to discard high-priority TCP packets,
rather than low-priority TCP packets, when the queue is full.
It thus has maximal adverse effect on TCP sources. This algo-
rithm is used as a worst-case comparison point to understand
the impact of router queue management algorithm on Web/TCP
performance.

o CATNIP-RED:

This queue management algorithm combines the RED approach
and CATNIP-Good. That is, it uses the RED notion of early
packet discarding to maintain queue occupancy below a thresh-
old, but considers packet loss priority context information in its
discard decisions. Whenever a packet must be discarded by the
RED algorithm, an attempt is made to discard a low-priority
packet rather than a high-priority packet. This algorithm is used
to assess the interoperability between RED and CATNIP.

1V. EXPERIMENTAL METHODOLOGY

We initially evaluate the context-aware TCP/IP approach us-
ing simulation, with the ns-2 network simulator [10], [28]. The
ns-2 simulator provides a detailed packet-level network simula-
tion environment, complete with HTTP, TCP, and IP protocol
models. For simplicity, we use the TCP Reno model and the
DropTail router as the baseline for comparison in our experi-
ments. We add various degrees of the CATNIP functionality
to the TCP and IP models, and evaluate performance impacts

in progressive steps. The following subsections provide more
background on the setup for the simulation experiments, includ-
ing simulated network topology, Web workload model, experi-
mental design, performance metrics, and simulation validation.
Simulation results are used to guide the implementation and
evaluation of CATNIP in the Linux kernel, discussed in Sec-
tion V-G.

A. Network Model and Assumptions

Figure 3 shows the network topology® used in the simula-
tion experiments. There are 100 Web clients connected to a
router (RouterC) via dedicated 10 Mbps links. There are 10 Web
servers connected to another router (RouterS) via dedicated 10
Mbps links. All Web document transfers flow from the Web
servers to the clients. There is a 1.5 Mbps bottleneck link be-
tween the two routers, shared by all traffic flows. All router
queues are large enough to hold 50 packets, except for the queue
at the bottleneck link, which can hold at most 10 packets. The
propagation delays on the links are as indicated in Figure 3.

Each Web server receives requests from a distinct set of 10
Web clients. Clients are homogeneous. That is, each client uses
the same version of TCP.

Clients generate requests for each Web document in the simu-
lated workload, modeling the HTTP/1.0 protocol. A maximum
of four concurrent (parallel) TCP connections are allowed be-
tween a given client-server pair. In most experiments, HTTP/1.1
is not modeled, though one experiment with HTTP/1.1 is dis-
cussed in Section V-F.

3This network model is similar to that used by Padmanabhan and Katz [23].
The primary difference is the shorter propagation delay for the bottleneck link
in our network (5 milliseconds, rather than 50 or 200 milliseconds), to lessen the
influence of RTT effects.
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B. Web Workload Model

The workload for the simulation experiments is generated
using the ns-2 Web workload models [20]. These models
use empirically-observed distributions to determine the size (in
bytes) of the HTML content of each Web page, the number of
embedded images in each Web page, and the size (in bytes) of
each of the embedded images. Each Web page is generated inde-
pendently from these empirical distributions, based on a pseudo-
random number sequence.

The precise workload used in our simulation experiments
consists of 10 such randomly generated Web pages, whose struc-
ture and sizes are illustrated schematically in Figure 4. For each
illustrated page, the rectangle in the top left corner represents
the size of the base HTML file, and the other rectangles repre-
sent embedded images and their relative sizes (though not ex-
actly to scale). For example, Page 1 in the generated workload
consists of a 2,589-byte HTML file, and two embedded images
(548 bytes, and 1,808 bytes, respectively). Each simulated Web
page* has at least one embedded image. Page 5 has 16 embed-
ded images, of widely varying sizes.

In the simulations, each user accesses these 10 Web pages,
in random order. The think times between page downloads for
each user are drawn independently from the empirically-derived
think time models in the ns-2 simulator [20].

The entire workload consists of 1000 Web page downloads,
which includes 4500 TCP connections, and about 46,000 TCP
data packets. In the baseline configuration, a typical client in the
simulations downloads the entire 216-kilobyte Web page work-
load in about 5 minutes of simulated time (including think times
between pages), for an average per-user throughput of about 6
kilobits per second. Thus the average aggregate throughput for
100 clients is approximately 0.6 Mbps, though the peak through-
put demands can exceed the capacity of the bottleneck link.

C. Experimental Design

There are two primary factors in our simulation experiments:
TCP version, and the queue management algorithm at IP routers.
A one-factor-at-a-time experiment is conducted using these fac-
tors. A summary of the experimental design appears in Table I.

4Note that the mean (21 KB) and median (9 KB) Web page sizes in our work-
load are much smaller than the 30, 50, and 175 KB transfers considered in the
TCP “fast start” experiments by Padmanabhan and Katz [23] to highlight the
advantages of CATNIP even for modest transfer sizes.

TABLE |
EXPERIMENTAL FACTORS AND LEVELS FOR EVALUATING
CONTEXT-AWARE TCP/IP

Factor | Levels
TCP Reno, RBPLW, ECA, ECA+RBPLW, SPM
IP DropTail, RED, CATNIP-Good, CATNIP-Bad, CATNIP-RED

We consider five TCP versions. Reno TCP has no application-
layer context information, while the other four TCP versions use
different heuristics to exploit context information.

At the routers, we consider five queue management algo-
rithms. These algorithms range from DropTail, which has no
context information, to CATNIP-Good, which has complete
context information.

D. Performance Metrics

Two performance metrics are considered in the experiments:
the transfer time for each complete Web page, and the average
packet loss in the simulated network. The aggregate transfer
time for a Web page represents the latest completion time for the
transfers of the individual components of the Web page, using
the indicated version of the TCP protocol. For transfer times,
we consider the mean and standard deviation of transfer times
as the measures of interest, since the variability of transfer times
can be significant in the presence of packet losses.

E. Validation

Validation of our context-aware TCP models was conducted
using small network scenarios, small numbers of sources, and
TCP sequence number plots of selected source behaviours (see
Figure 2, for example). Detailed simulation output includes the
start time, end time, transfer size, and packet loss occurrences
for each individual TCP connection and for each Web page, by
client. Analysis of these traces indicates that the TCP and IP
models are working as intended.

V. SIMULATION AND EXPERIMENTAL RESULTS

This section presents the results from our experiments. Simu-
lation results are presented in Sections V-A to V-F. Experimen-
tal results with our prototype implementation are discussed in
Section V-G. Section V-H summarizes the results.

A. Simulation Results for DropTail Routers

The first set of experiments assumes DropTail routers in the
simulated network topology. The experiments focus on what in-
fluence the TCP endpoints can have on Web page transfer times,
using the TCP heuristics described in Section I11-B. However,
no Selective Packet Marking (SPM) is used in these experi-
ments, since DropTail routers ignore packet priority.

Figure 5 shows the simulation results from the DropTail ex-
periments, for the 100 simulated clients. Figure 5(a) shows the
mean transfer times for each of the 10 Web pages in the sim-
ulated workload, while Figure 5(b) shows the standard devia-
tions of the transfer times. On each graph, the 10 Web pages
are represented across the horizontal axis, with transfer time on
the vertical axis. For each Web page, there are four columns in
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Fig. 4. Schematic Illustration of the Simulated Web Workload

the bar chart, one representing each TCP algorithm considered
in the experiment. The left-to-right ordering of algorithms is
Reno, Reno+RBPLW, ECA, and ECA+RBPLW.

The simulation results in Figure 5 show that each of the 10
simulated Web pages in the workload has its own distinct perfor-
mance characteristics. This observation is not surprising, given
that the 10 Web pages are diverse in size, structure, and num-
ber of TCP connections required. The performance results for
the 10 Web pages should be viewed as representative examples
of transfer times for typical Web pages. The trend in behaviour
across this set of Web pages will be the main focus of our analy-
ses and observations. For reference purposes, Table Il and Table
I11 provide detailed simulation results for two of the TCP al-
gorithms (Reno and ECA, respectively) illustrated in Figure 5.
Tabular results for the other algorithms are omitted, for space
reasons.

Figure 5(a) shows that (unfortunately) the TCP endpoint con-
trol algorithms by themselves have little advantage to offer. For
example, the Rate-Based Pacing of the Last Window (RBPLW)
heuristic seems to improve the performance of TCP Reno in
most cases (quite noticably for Web pages 1, 8, and 9, while
having little or no positive effect on the other Web pages consid-
ered). The Early Congestion Avoidance (ECA) heuristic some-
times improves performance compared to Reno (e.g., pages 1
and 9), but is sometimes worse than Reno (e.g., pages 3 and
4). The RBPLW feature helps a bit when combined with ECA,
though it has an adverse effect on several of the Web pages con-
sidered (e.g., pages 4, 7, and 9). The standard deviations of
transfer times in Figure 5(b) are large, meaning that performance
differences amongst TCP algorithms are not statistically signif-
icant. Simply stated, the results here are inconclusive.

Table IV provides a summary of the packet loss behaviours
for the TCP algorithms with DropTail routers. The ECA and
RBPLW heuristics each reduce packet loss. Adding RBPLW to
Reno reduces packet loss from 3.46% to 3.10%, a reduction of
10%. Adding ECA to Reno reduces packet loss from 3.46% to
2.87%, a reduction of 17%. Adding RBPLW to ECA seems to
mitigate the advantages of ECA.
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Fig. 5. Simulation Results for DropTail Routers

TABLE Il

DETAILED SIMULATION RESULTS FOR RENO/DROPTAIL

Page 10

Web Total Total Web Page Transfer Time

Page || Conns | Bytes Min | Median | Max || Mean [ SDev
1 3 4,945 0.134 0.134 18.131 1.058 | 2.613
2 2 56,434 0.450 0.771 18.630 1.311 | 2.266
3 2 7,860 0.184 0.186 6.036 0.302 | 0.593
4 2 12,315 0.202 0.215 6.239 0.325 | 0.610
5 17 87,451 0.844 1.049 18.098 1.527 | 1.970
6 2 27,991 || 0.276 | 0.328 6.939 0.627 | 1.078
7 5 2,078 0.103 | 0.103 6.127 0.587 | 1.634
8 3 9,886 0.205 0.213 6.239 0.779 | 1.695
9 6 9,620 0.190 0.195 18.353 1.251 | 3.414
10 3 2,776 0.103 0.108 6.147 0.541 | 1.534




TABLE 111
DETAILED SIMULATION RESULTS FOR ECA/DROPTAIL

TABLE V
DETAILED SIMULATION RESULTS FOR RENO/CATNIP-GooD

Web Total Total Web Page Transfer Time Web Total Total Web Page Transfer Time

Page || Conns | Bytes Min [ Median | Max [[ Mean | SDev Page || Conns | Bytes Min | Median | Max || Mean | SDev
1 3 4,945 0.134 0.134 6.472 0.694 | 1.742 1 3 4,945 0.134 0.138 6.136 0.275 | 0.842
2 2 56,434 0.450 0.573 18.835 1.223 | 2.255 2 2 56,434 0.450 0.792 2.245 0.866 | 0.463
3 2 7,860 0.205 0.205 6.446 0.439 | 1.032 3 2 7,860 0.184 0.184 0.566 0.230 | 0.096
4 2 12,315 0.210 0.213 6.236 0.561 | 1.301 4 2 12,315 0.202 0.209 0.630 0.266 | 0.110
5 17 87,451 0.930 1.051 7.636 1.569 | 1.445 5 17 87,451 0.702 1.082 2.733 1.274 | 0.430
6 2 27,991 || 0.277 | 0.299 6.432 0.605 | 1.053 6 2 27,991 || 0.276 | 0.312 1.465 || 0.446 | 0.217
7 5 2,078 0.103 | 0.103 6.141 0.707 | 1.806 7 5 2,078 0.103 | 0.103 | 6.100 || 0.173 | 0.599
8 3 9,886 0.213 0.214 6.255 0.777 | 1.698 8 3 9,886 0.205 0.208 0.584 0.254 | 0.093
9 6 9,620 0.184 0.185 18.165 0.645 | 2.125 9 6 9,620 0.190 0.197 0.445 0.230 | 0.070
10 3 2,776 0.103 0.103 18.101 0.652 | 2.267 10 3 2,776 0.103 0.103 6.064 0.174 | 0.595

TABLE IV

SUMMARY OF PACKET LOSS RESULTS FOR DROPTAIL ROUTERS

TCP/IP All Packets

Algorithm Sent | Drops | Loss
Reno/DropTail 47,918 | 1,656 | 3.46%
Reno+RBPLW/DropTail | 47,632 | 1,477 | 3.10%
ECA/DropTail 47,429 | 1,359 | 2.87%
ECA+RBPLW/DropTail | 47,641 | 1,466 | 3.08%

B. Simulation Results for CATNIP-Good Routers

The next set of experiments consider the addition of “context-
awareness” at the IP routers in the simulated network. In partic-
ular, the routers use one of the versions of the CATNIP (Context-
Aware Transport/Network Internet Protocol) algorithm. All
TCP sources use the Selective Packet Marking (SPM) mech-
anism to indicate the packet loss priority, and the routers are
explicitly aware of these priorities in the queue management.

Figure 6 shows the simulation results for the CATNIP-Good
algorithm at the routers. As was done for the DropTail exper-
iments, the graphical results present means (Figure 6(a)) and
standard deviations (Figure 6(b)) of transfer times for each of
the 10 Web pages, computed across the 100 clients in the sim-
ulation. On the graphs, each cluster of four columns represents
the four TCP source algorithms considered, as indicated in the
graph key. The extra column on the left (above the P’ in "Page”’)
shows the baseline performance for the Reno/DropTail configu-
ration, for which SPM is ignored. For reference purposes, Table
V and Table Vi provide detailed simulation results for the Reno
and ECA algorithms in the CATNIP-Good scenario.

Figure 6(a) shows the mean transfer time results for this
experiment. The primary observation is that adding context-
awareness at the IP routers (with the CATNIP-Good algorithm)
improves the mean Web page transfer time for most of the Web
pages in the workload. For some Web pages, the mean trans-
fer time is reduced by a factor of 2 or more (e.g., pages 1, 7, 8,
9, and 10). Considering Reno/CATNIP-Good versus the base-
line Reno/DropTail results, the improvements in mean transfer
time range from 17% for Web page 5 to 82% for Web page 9.
Most pages have improvements ranging from 24% to 70%. Five
pages have an improvement of 65% (i.e., a factor of 3 reduction)
or more. The relative impacts of the different TCP source vari-
ants are modest, compared to the impact of the CATNIP-Good

algorithm. In general, the ECA algorithm performs similarly
to Reno in most cases, though in some cases it is slightly worse.
There is no advantage for the RBPLW algorithm in this scenario.

The mean transfer times decrease largely because the “out-
lier” transfer times are reduced or eliminated with CATNIP-
Good. That is, the context information at the router reduces
the number of “painful” packet losses for TCP sources. This
improvement is evident in Tables V and VI compared to Tables
Il and I11. Note the lower maximum?® transfer times, the lower
mean transfer times, and the lower standard deviations.

This performance improvement is indicated more clearly in
Figure 6(b), which shows the standard deviations of the transfer
times for each Web page, across the 100 clients. Compared to
the Reno/DropTail scenario, there is a dramatic reduction in the
variability of Web page transfer time for each Web page con-
sidered, when the routers use the CATNIP-Good algorithm for
queue management. For example, the standard deviations for
Reno/CATNIP-Good are 60% (page 10) to 95% (pages 8 and 9)
lower than for Reno/DropTail. For several Web pages, the vari-
ance of the transfer time approaches zero (e.g., page 3 in Table V
and Table V1.

Table VII summarizes the packet loss results for CATNIP-
Good routers. The results show that about 40% of the pack-
ets carried on the network are marked high priority, and that
the losses (as expected) are heavily biased toward the low pri-
ority packets. Surprisingly, the average packet loss rates with
CATNIP-Good are higher than for the DropTail scenario, by
about 10% (e.g., 3.74% versus 3.46% for Reno). The reason
for this is that TCP sources experience fewer coarse timeouts,
and fewer resets (i.e., cwund = M S.S) of the congestion win-
dow, when CATNIP-Good routers are used. As a result, TCP
sources tend to remain more aggressive, and have (on average)
a larger congestion window size. The counter-intuitive relation-
ship between packet loss rate and mean Web page transfer time
serves to reinforce our point that not all packet losses are equal.

As noted previously, the ECA and RBPLW heuristics each
reduce packet loss. However, the most important observation is
that packet losses are shifted away from the high priority TCP
packets, using the CATNIP-Good algorithm (see Table VII).

5The worst-case transfer times remaining are in the range of 6 seconds, most
likely reflecting a timeout caused by the loss of the very first packet of a transfer.
There is little that a TCP source can do about this case.




TABLE VII
SUMMARY OF PACKET LOSSRESULTS FOR CATNIP-GOOD ROUTERS

TCP/IP All Packets High Priority Low Priority
Algorithm Sent | Drops | Loss Sent | Drops | Loss Sent | Drops | Loss
Reno/CATNIP-Good 48,126 | 1,799 | 3.74% | 19,126 93 0.49% | 29,000 | 1,706 | 5.88%
Reno+RBPLW/CATNIP-Good | 47,966 | 1,751 | 3.65% | 19,228 81 0.42% | 28,738 | 1,670 | 5.81%
ECA/CATNIP-Good 47,791 | 1,505 | 3.15% | 18,836 51 0.27% | 28,955 | 1,454 | 5.02%
ECA+RBPLW/CATNIP-Good | 48,087 | 1,836 | 3.82% | 19,876 96 0.48% | 28,211 | 1,743 | 6.18%

[ Reno/DropTail [ 47,918 [ 1,656 | 3.46% | 19,008 | 514 [ 2.70% | 28,910 | 1,142 | 3.95% |
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Fig. 6. Simulation Results for CATNIP-Good Routers

TABLE VI
DETAILED SIMULATION RESULTS FOR ECA/CATNIP-Goob

Web Total Total Web Page Transfer Time

Page || Conns | Bytes Min | Median | Max ]| Mean | SDev
1 3 4,945 0.134 | 0.135 | 0.390 || 0.153 | 0.040
2 2 56,434 0.450 0.811 2.440 0.895 | 0.443
3 2 7,860 0.205 0.206 0.580 0.239 | 0.077
4 2 12,315 0.210 0.214 0.828 0.264 | 0.116
5 17 87,451 0.935 1.072 6.225 1.371 | 0.924
6 2 27,991 || 0.277 | 0.301 | 0.929 || 0.392 | 0.181
7 5 2,078 0.103 | 0.103 | 6.073 || 0.170 | 0.596
8 3 9,886 0.213 | 0.215 | 0.609 || 0.246 | 0.076
9 6 9,620 0.184 0.190 6.167 0.334 | 0.839
10 3 2,776 0.103 0.103 6.088 0.238 | 0.839

C. Simulation Results for CATNIP-Bad Routers

The next experiment considers the CATNIP-Bad algorithm at
the routers. The IP routers have explicit TCP/Web context in-
formation provided to them by Selective Packet Marking (SPM)
at the TCP sources. However, the routers intentionally violate
the intended semantics of the packet loss priority indication, by
throwing away high priority packets when congested. The pur-
pose of this experiment is to understand the “worst-case” influ-
ence of routers on Web transfer performance.

Tables VIII and IX provide detailed simulation results for the
Reno and ECA algorithms in the CATNIP-Bad scenario. (The
graphical results are omitted for space reasons.) Many of the

Web pages have worst-case download times of 18 seconds or
more. As expected, the primary influence of CATNIP-Bad is
to throw away the “wrong packet” at the “wrong time”, when
network congestion occurs, making matters worse.

Table X summarizes the packet loss results for the various
TCP algorithms considered, for CATNIP-Bad routers. The re-
sults show that packet losses are shifted to the high priority TCP
packets, leading to the poor Web data transfer performance men-
tioned previously.

D. Simulation Results for RED and CATNIP-RED Routers

The next set of experiments considers RED and CATNIP-
RED algorithms at the simulated routers. The purpose of this ex-
periment is to assess the impact of the RED algorithm, which is
arguably “smarter” than DropTail, but not as smart as CATNIP-
Good. The CATNIP-RED approach combines the features of
RED and CATNIP-Good. In our experiments, the RED algo-
rithm uses a minimum queue threshold of 20%, a maximum
queue threshold of 60%, and a queue weight of 0.01.

The simulation results for these scenarios appear in Figure 7.
These results are presented using the same format as the pre-
vious results, showing mean (Figure 7(a)), and standard de-
viation (Figure 7(b)) of Web page transfer times for the 100
clients. One difference here is the four algorithms shown in the
graphs: these are Reno/RED, Reno/CATNIP-RED, ECA/RED,
and ECA/CATNIP-RED, in that order. The Reno/DropTail re-
sults are again included for comparison purposes (the leftmost
column for each Web page considered). No RBPLW results are
included for these experiments, since RBPLW seems to offer no
performance improvement.

The results in Figure 7 show that mean and standard deviation
of Web page transfer times are affected. The mean transfer times
tend to increase slightly with RED (pages 3, 4, 5, 6, 8, and 10),
because the overall level of packet loss (3.8-4.1%) is slightly
higher (since RED can discard packets before the router queue
is full). The effect of CATNIP-RED is far greater than the effect
of ECA,; in fact, Reno and ECA perform similarly in almost all
cases. The results also show that the CATNIP-RED algorithm
has a consistently positive impact for all the Web pages in the
workload. These results indicate that RED and CATNIP-Good
can interoperate in a complementary fashion.

E. Simulation Results for Fairness

An obvious concern that arises is the “TCP-friendliness” of
CATNIP if it were to share a network link with non-CATNIP
TCP sources. To investigate this fairness issue, a simple simula-
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TABLE X
SUMMARY OF PACKET LOSS RESULTS FOR CATNIP-BAD ROUTERS

TCP/IP All Packets High Priority Low Priority

Algorithm Sent | Drops | Loss Sent | Drops | Loss Sent | Drops | Loss
Reno/CATNIP-Bad | 47,690 | 1,847 | 3.87% | 19,317 | 1,320 | 6.83% | 28,373 | 527 1.86%
ECA/CATNIP-Bad | 47,250 | 1,501 | 3.18% | 18,842 | 1,165 | 6.18% | 28,408 | 336 1.18%

| Reno/DropTail

[ 47,918 | 1,656 | 3.46% | 19,008 | 514 [ 2.70% | 28,910 | 1,142 | 3.95% |

TABLE VIII

DETAILED SIMULATION RESULTS FOR RENO/CATNIP-BAD

tion experiment was conducted with 50 ECA sources sharing the
network simultaneously with 50 Reno sources. While the ECA
sources had lower average packet loss (3.05% versus 3.68% for

DropTail routers, and 3.23% versus 3.95% for CATNIP-Good

routers), there was no performance advantage or disadvantage

for ECA in terms of mean Web page retrieval time.

F. Simulation Results for HTTP/1.1

To estimate the performance advantages of our context-aware

TCP/IP protocol in the presence of HTTP/1.1, we conduct a

simple simulation experiment with an approximate model of

HTTP/1.1. It is the “persistent connection” feature of HTTP/1.1

that is of interest here, since it allows a single TCP connection to

be maintained and used throughout the duration of a user session
containing multiple HTTP GET requests.

Our approximate model of HTTP/1.1 reuses the Web page
workload from the previous simulation experiments, with the

additional assumption that each Web page is transferred in its

entirety using a single TCP connection. The aggregate byte

transfer volume of this connection is simply the sum of the sizes

of the objects within each page. This approximate model as-

sumes that all HTTP GET requests are pipelined on the same

TCP connection, and that each request has zero processing time.

As a result, the TCP transfer maintains its connection state

throughout the aggregate transfer. This model presents an op-

timistic view of HTTP/1.1 transfer performance.

Web Total Total Web Page Transfer Time
Page Conns Bytes Min | Median | Max [[ Mean [ SDev
1 3 4,945 0.134 0.134 18.150 1.019 | 2.570
2 2 56,434 || 0.450 0.475 18.077 1.445 | 2.864
3 2 7,860 0.184 0.187 42.037 1.918 | 5.192
4 2 12,315 || 0.202 0.209 42.171 1.497 | 5.046
5 17 87,451 || 0.663 1.049 43.014 || 4.410 | 7.095
6 2 27,991 || 0.276 0.291 42.419 1.859 | 6.088
7 5 2,078 0.103 0.103 18.131 || 0.835 | 2.461
8 3 9,886 0.205 0.209 6.282 0.894 | 1.870
9 6 9,620 0.190 0.195 18.168 1.083 | 2.548
10 3 2,776 0.103 0.103 6.170 0.601 | 1.633
TABLE IX
DETAILED SIMULATION RESULTS FOR ECA/CATNIP-BAD
Web Total Total Web Page Transfer Time
Page || Conns | Bytes Min [ Median | Max [[ Mean | SDev
1 3 4,945 0.134 0.134 6.488 0.697 | 1.738
2 2 56,434 || 0.450 0.474 18.567 1.162 | 2.235
3 2 7,860 0.205 0.205 18.210 1.315 | 3.102
4 2 12,315 || 0.210 0.212 18.476 || 0.815 | 2.292
5 17 87,451 || 0.701 0.967 18.110 || 2.523 | 2.914
6 2 27,991 || 0.277 0.289 6.570 0.662 | 1.325
7 5 2,078 0.103 0.103 42.098 || 2.387 | 5.704
8 3 9,886 0.213 0.220 6.944 1.030 | 2.025
9 6 9,620 0.184 0.186 18.187 1.604 | 3.595
10 3 2,776 0.103 0.103 18.085 1.020 | 2.992

The main design question is whether the Selective Packet
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Marking (SPM) feature of our context-aware TCP/IP protocol
should be applied at the application-layer document boundaries
(i.e., selective marking is done for the first few packets and the
last few packets of each transferred document) or based only on
TCP state (i.e., selective marking is done for the first few packets
and the last few packets of the TCP connection, plus any packets
sent when the TCP congestion window is small). We make the
latter choice, since it seems more natural. This choice also pro-
vides a pessimistic assessment of the potential benefits of SPM
(since a smaller proportion of the TCP packets are marked).

The simulation results from our HTTP/1.1 experiments show
that Reno/CATNIP-Good offers 7-76% improvement in mean
Web page transfer times compared to Reno/DropTail, and 58-
98% reduction in standard deviations. In these experiments,
only 20% of the total packets were marked high priority, and
only 2.59% of the total packets were lost. We thus conclude that
the CATNIP approach offers benefits even with HTTP/1.1.

G. Experimental Implementation and Evaluation

To explore the practical implementation issues associated
with context-aware TCP/IP, we undertook a “proof of con-



cept” prototype implementation in the Linux 2.4.16 kernel. Our
implementation effort focussed only on the SPM feature of
context-aware TCP, since the simulation experiments show that
it is the feature that enables the greatest performance advan-
tages. We use the (reserved) high-order bit of the TCP flags
field to convey packet priority context information.

Implementing SPM in the Linux TCP/IP protocol stack re-
quired adding a module that conveys application-layer docu-
ment size information to the TCP socket layer.

The kernel modules affected by our modificationsaret cp. h,
tcp. c, tcpoout put. c, and net syns. c. We verified the
correct operation of our packet marking TCP code using t cp-
dunp traces from our experimental environment.

Due to the imminent paper deadline, we have only a partial
implementation of SPM working at this time. This version pro-
vides selective packet marking of the first few TCP packets of
a connection, and all packets sent with a small congestion win-
dow. Marking of the last few packets of a transfer is only possi-
ble if the TCP sequence number information relative to the total
transfer size is known. The full implementation requires two
additional state variables in the socket data structure: an initial
sequence number, and a document size. This kernel is being
built and tested right now.

We evaluated our prototype implementation in a WAN emu-
lation environment using the Internet Protocol Traffic and Net-
work Emulator (IP-TNE) [24]. A desktop PC (Sony Vaio, 1 GHz
AMD processor, 128 MB SDRAM) was used to run the Apache
Web server software (version 1.3.19-5) on top of our modified
Linux 2.4.16 kernel. The client workload was generated using
100 emulated clients in the IP-TNE, traversing an emulated net-
work topology similar to that in Figure 3 (with the exception
that only 1 Web server is used, not 10). Each client generates
requests for the 10 Web pages (see Figure 4), which are physi-
cally stored on the Web server. User think times were set to zero
for these preliminary experiments, and concurrent TCP connec-
tions at the emulated clients were disabled. Only HTTP/1.0 is
modeled, since the HTTP/1.1 model in IP-TNE is still under de-
velopment (completion anticipated early in March 2002).

The primary factor in our experiments is the buffer size at the
emulated IP router attached to the 1.5 Mpbs bottleneck link. The
buffer size affects the overall level of packet loss in the emulated
network. We consider buffer size values from 64 KB to 512
KB, which span the range of interest for relevant levels of TCP
packet loss (0% for 512 KB, and about 10% for 64 KB).

The results from our WAN emulation experiments are sum-
marized in Table XI. Each numerical entry in the table shows
the average relative download time for a Web page, where the
relative download time represents the ratio of the download time
with the CATNIP approach (at the Web server and in the emu-
lated IP router) to the download time with the default Linux TCP
implementation (and FIFO routers in IP-TNE). Relative down-
load times are used to normalize the results across the diverse
Web page workload used, and to fit all results into one table (for
space reasons). Values smaller than 1.0 indicate a performance
advantage for the CATNIP approach.

The preliminary results in Table X1 show that our partial im-
plementation of the CATNIP approach provides performance
advantage for most (but not all) of the Web document down-
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TABLE XI
RELATIVE DOWNLOAD TIMES FOR WAN EMULATION EXPERIMENTSWITH

CATNIP-GooDp

Web Total Total Router Buffer Size

Page Conns | Bytes 64 KB | 128 KB | 256 KB | 512KB
1 3 4,945 0.95 0.88 0.95 0.96
2 2 56,434 0.79 1.13 1.10 1.14
3 2 7,860 0.88 0.67 0.95 0.98
4 2 12,315 0.64 0.69 0.97 0.98
5 17 87,451 0.93 0.96 1.00 1.02
6 2 27,991 1.01 1.05 0.93 0.97
7 5 2,078 1.02 0.89 0.96 0.96
8 3 9,886 1.38 1.04 0.99 0.97
9 6 9,620 0.82 0.77 0.96 0.96
10 3 2,776 0.85 0.86 0.96 0.98
Mean 0.93 0.89 0.98 0.99

StdDev 0.18 0.15 0.05 0.05

[ TCP Pkt Loss || | [[ 966% | 4.74% [ 0.22% [ 0.00% |

loads in this simple experiment. The performance advantages of
CATNIP are most evident at modest levels of packet loss, and
diminish (as expected) as the overall level of packet loss in the
network decreases. Performance advantages will improve when
the full SPM functionality is added.

H. Summary of Results

Application-layer context information about Web document
transfer size seems to provide valuable context information for
the TCP/IP protocols. The most dramatic performance improve-
ments occur when priority information is available in the packet
discard decision-making process. The use of the CATNIP-Good
algorithm can provide significant reduction in the mean and vari-
ance of Web page transfer times. These reductions range from
20% to 80% for the Web page workload considered in our sim-
ulation study. Conversely, the CATNIP-Bad algorithm can in-
crease mean and variance of Web transfer times significantly.

The TCP source heuristics considered in this paper offer
rather modest performance improvements in Web document
transfer time. Their improvements are more pronounced for
simple DropTail routers, and are negligible for CATNIP routers.
In general, the Early Congestion Avoidance heuristic reduces
overall packet loss, but its impact on Web transfer time is small.
The heuristic for Rate-Based Pacing of the Last Window of
packets seems to offer inconsistent performance results, particu-
larly when combined with other algorithms, and is of little value.

VI. CONCLUSIONS

This paper has presented the design and evaluation of CAT-
NIP, a context-aware Internet protocol that integrates TCP-layer
and IP-layer functionality through the use of application-layer
knowledge about Web document transfers. Our experiments
evaluate a range of mechanisms that can be used at the TCP
source to exploit application-layer context information in flow
and congestion control decision-making. Experiments also con-
sider a variety of queue management algorithms at IP routers for
exploiting context information.

Simulation results show that a 10-20% reduction in TCP
packet loss is possible using simple endpoint control mecha-
nisms alone, without any adverse impact on Web page retrieval



times. More importantly, queue management algorithms at the
router have a dramatic impact on the mean and standard devia-
tion of Web page retrieval times. The best results are achieved
with CATNIP context information at the routers: 20-80% reduc-
tions in the mean Web page retrieval times, and 60-90% reduc-
tions in the standard deviations. Furthermore, the CATNIP algo-
rithm can interoperate with RED or its variants for active queue
management at IP routers. Preliminary experiments with a pro-
totype implementation of the CATNIP approach in the Linux
kernel of an Apache Web server demonstrate performance ad-
vantages of up to 40% for Web page retrieval time.

The main “take home” messages in our paper are:

« Not all packet losses are created equal.

« A TCP source alone has very limited control over end-to-
end Web data transfer performance, even when application-layer
context information is available.

« The IP packet forwarding layer has a significant influence on
end-to-end Web data transfer performance, particularly when
application-layer context information is available.

« A simple change to the TCP/IP protocol stack implementa-
tion can provide the context information required at the TCP/IP
protocol layers.

« Changes to the queue management algorithms at routers can
provide significant performance advantages for the context-
aware TCP/IP approach.

We use these observations to argue the desirability of a layer-
violating context-aware approach to TCP/IP, at least for Web
document transfer on the Internet. Other uses for the context-
aware approach are under consideration.

Ongoing work involves a fuller evaluation of context-aware
TCP/IP protocols in our wide-area IP network emulation envi-
ronment, and an investigation of the many practical issues facing
the development and deployment of context-aware TCP/IP pro-
tocols on the Internet (e.g., socket API, TCP/IP headers, incre-
mental deployment, fairness, interoperability, and HTTP/1.1).
These issues clearly require further investigation.
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APPENDIX A: TCP OVERVIEW

TCP is a connection-oriented, end-to-end reliable-byte-
stream transport-layer protocol [25], [26]. It is widely used on
the Internet and in the Web.
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The fundamental unit of data transfer in TCP is a byte (i.e.,
for sequence numbering, flow control, and error control pur-
poses). However, TCP implementations generally work with a
larger logical unit size called a segment when transmitting pack-
ets across an IP internetwork. The Maximum Segment Size
(MSS) is a settable parameter for a TCP transfer. The choice
of the MSS typically depends on the Maximum Transfer Unit
(MTU) size supported by the underlying network layer. In most
instances, each TCP segment is carried in one IP packet; hence
we use the terms segment and packet interchangeably through-
out the paper. The task of TCP is to divide the application-layer
data into one or more segments, transmit them across the net-
work, and deliver them reliably (and in order) to the receiving
TCP. Each segment carries an explicit sequence number, for the
purposes of ordering and reliability.

There are several mechanisms in TCP to ensure reliable
packet delivery. For example, when a sender transmits a seg-
ment, it starts a timer. If this segment is received successfully,
then the receiver sends back an acknowledgement (ACK). Tech-
nically, the receiver is not required to generate the ACK im-
mediately. Rather, the receiver can delay the ACK (up to 200
milliseconds), in the hope that the ACK can be piggybacked
on an outgoing data packet, or that multiple incoming packets
(closely spaced in time) can be acknowledged with a single (cu-
mulative) outgoing ACK. In either case, an ACK indicates the
next expected TCP sequence number. The sender uses the ACK
for flow control and error control purposes, as well as to esti-
mate the round-trip time (RTT) to the destination. If the timer
expires before an ACK is received, then the sender retransmits
the outstanding segment. Another commonly used strategy is
fast retransmit [15], which uses duplicate ACKSs to trigger the
retransmission of a missing segment, typically well before the
retransmission timer expires. This approach works well in re-
covering from single packet losses [13].

TCP uses a sliding window flow control mechanism that lim-
its the maximum number of bytes that can be outstanding (i.e.,
not yet acknowledged) between a sender and a receiver at any
time. A sender is allowed to transmit the segments in a window
as quickly as it wishes (assuming data is available to transmit).
As ACKs are received, the flow control window advances, and
new segments can be transmitted.

A congestion control mechanism was added to TCP in 1988,
based on algorithms proposed by Jacobson [18]. These algo-
rithms use adaptive window-based flow control to achieve con-
gestion control, since the IP network layer in the Internet does
not provide congestion control.

In TCP congestion control, the flow control window size is
adjusted dynamically based on two TCP state variables: the con-
gestion window (cwnd), and the slow-start threshold (ssthresh).
The initial value of cwnd is one segment, and cwnd is increased
as successful ACKs are received. The increase is exponen-
tial in the slow-start phase (i.e., doubling cwnd every RTT, un-
til ssthresh is reached), and linear in the congestion avoidance
phase (i.e., increasing cwnd by one segment for every complete
window’s worth of data exchanged) [18].

TCP uses packet loss (due to buffer overflow at a router) as an
implicit signal of network congestion. Each time a packet loss
is detected, TCP updates its estimate of the slow-start threshold



(e.g., ssthresh = cwnd/2), reduces its congestion window size
(e.9., cwnd = M SS), and re-enters the slow-start phase. The
fast recovery [15] mechanism reduces the congestion window
size by half (e.g., cwnd = cwnd/2) following a fast retransmit,
rather than reducing it to one segment.

The foregoing algorithms are part of most TCP implementa-
tions, including Reno TCP and New Reno TCP that are widely
used on the Internet today [3], [15], [22].
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