
WebTraff: A GUI for Web Proxy Cache Workload Modeling and Analysis

Nayden Markatchev Carey Williamson
Department of Computer Science

University of Calgary
E-mail: {nayden,carey}@cpsc.ucalgary.ca

Abstract

This paper describes an interactive graphical user interface
(GUI) that can be used for the modeling and analysis of Web
proxy workloads. The WebTraff GUI has three main com-
ponents. First, the WebTraff tool provides a visual front-end
to ProWGen, a Web proxy workload generation tool devel-
oped in prior work, which can be used for generating syn-
thetic Web proxy workloads of arbitrary length, with user-
specified statistical properties. Second, the WebTraff GUI
provides tools for the analysis of Web proxy workload char-
acteristics, including document size distribution, document
popularity profile, and temporal locality properties. Third,
the GUI provides a front-end to a simple Web proxy cache
simulation program, which can be used in studies of Web
proxy cache performance and cache filter effects.

1. Introduction

Traffic modeling is an essential part of any network
simulation study, such as a performance study of Web
proxy caching architectures. Controllable and representa-
tive workloads are crucial for these studies, for successful
realization of cost-effective designs and for a thorough eval-
uation of their performance sensitivities.

In previous work [9], we developed a tool called ProW-
Gen (Proxy Workload Generator) for the synthetic genera-
tion of Web proxy traces, with controllable workload char-
acteristics. We also used this tool in a simulation study eval-
uating the sensitivity of Web proxy cache performance to
certain workload characteristics [10].

The purpose of this paper is to describe a visually inter-
active front-end for traffic modeling in Web caching perfor-
mance studies. This toolkit unifies a disparate set of tools
used previously for modeling and analysis of Web proxy
workloads, and for Web proxy cache simulation. By har-
nessing these tools together with a unified graphical user
interface (GUI), we improve the usability of the tools. We

also make the tool set available to a broader set of perfor-
mance modelers for use in Web proxy caching studies.

The remainder of this paper is organized as follows.
Section 2 provides an overview of the WebTraff toolkit
(e.g., system requirements, trace format, inputs, and out-
puts). Section 3 describes the three main parts of the Web-
Traff toolkit for generation, analysis, and simulation of Web
proxy cache workloads. Finally, Section 4 summarizes the
paper and the current status of our toolkit.

2. General Background Information

2.1. Overview of WebTraff

The WebTraff toolkit provides three main functions:
Web workload trace generation, Web workload trace analy-
sis, and Web proxy cache simulation. These functionalities
can be used either collectively or in isolation. For example,
if an empirical Web workload trace is available from a Web
proxy access log, then the workload generation phase can be
bypassed, with the (appropriately pre-processed) empirical
workload trace used directly in the analysis and/or simula-
tion phases. Conversely, if no empirical data sets are avail-
able, the generation phase can be used to make synthetic
workloads of arbitrary length, with desired workload char-
acteristics. The analysis functions can be used to verify the
properties of the workload trace prior to running Web cache
simulation experiments. Finally, the output trace of misses
from the Web proxy cache simulation step can be used (re-
cursively) in the analysis and simulation phases, to study
cache filter effects in Web caching hierarchies [4, 5, 15].
Graphical results produced from the analysis and/or simu-
lation stages can be saved to a file in PostScript form, and
used when writing research papers, such as this one.

2.2. Workload Trace Format

The WebTraff toolkit uses a simple three-column format
for representing Web proxy workloads, as shown in Fig-
ure 1. Each line of data in the file represents a Web doc-



ument (object) transfer. The first column is a timestamp,
representing the time in seconds at which a specific Web
object (i.e., URL) is requested. The second column is a
document identifier: a unique integer assigned to each URL
represented in the workload trace. The third column repre-
sents the size in bytes of the specific Web object. This size
is fixed throughout the workload trace for a given document
id, since only static Web content is modeled.

This trace format provides a simple and concise repre-
sentation of Web proxy workloads. The file contains all
information essential to a Web caching performance study
(i.e., document id, transfer size, relative ordering of re-
quests), while excluding other information (e.g., client id,
URL name, document type). All generated traces use this
format, which can also be obtained by extracting the ap-
propriate columns of information from the Common Log
Format used by most Web servers and Web proxies. The
same trace format is used both for input and output traces.
That is, the stream of misses from a cache simulation are
recorded using the exact same trace format.

TIMESTAMP DOC_ID SIZE
0.03245 0 1958
2.73954 9 366
3.47710 4 2536
3.57192 0 1958
4.61692 26 82906
4.68677 3 3413
5.11075 21 3257
8.97064 4 2536
9.63967 5 2914

11.23907 23 149
11.30097 2 38735
12.89020 0 1958
13.86087 9 366

Figure 1. Example of the Web Workload Trace
Format Used in WebTraff

2.3. System Requirements

Our tool has been developed in and for a Unix-based en-
vironment running X windows. The traffic generation, anal-
ysis, and simulation tools are written in C/C++ and perl.
The user interface is written in Tcl/Tk.

Installing and running our tool requires the following
software: cc, gcc, g++, tcl (version 8.0 or newer), tk (ver-
sion 8.0 or newer), wish, perl (version 5.0 or newer), gnu-
plot (a graph plotting tool), and gs (a PostScript previewer,
also known as ghostscript, gsview, or gsview32).

For hardware requirements, at least 64 MB RAM is
desirable, so that reasonably large data sets can be ana-
lyzed (e.g., 1-10 million references). Adequate disk stor-
age capacity (e.g., 10-100 Megabytes) is required for stor-
ing workload traces, which tend to be large.

3. The WebTraff Tool

Figure 2 shows a screen shot of the WebTraff GUI. The
interface has three main blocks corresponding to work-
load generation (top), workload analysis (middle), and Web
proxy cache simulation (bottom). The following sections
provide further details on the functionality provided in each
of these three blocks.

3.1. Web Workload Generation

The top block of the WebTraff GUI is for generation of
synthetic Web proxy workload traces. This portion of the
tool simply provides a graphical interface to ProWGen [9],
a Web proxy workload generation tool developed in prior
work. ProWGen models the aggregate request stream that
a Web proxy cache might see from many concurrent Web
clients.

The ProWGen tool models four common characteristics
that have been identified in empirical studies of Web server
and Web proxy workloads [1, 2, 7, 11]. These characteris-
tics include a Zipf-like document popularity distribution [8],
a high degree of one-time referencing [2], heavy-tailed file
and transfer size distributions [11], and a temporal locality
property [1] in the document referencing behaviour. These
characteristics are all relevant to Web proxy cache perfor-
mance [10].

The top portion of the GUI allows the user to set param-
eters to control the workload characteristics, prior to hitting
the ‘Generate’ button. An entry box at the top of the GUI
specifies the name of the trace file to be generated. Sliding
scale widgets are used to specify the number of references
(requests) desired in the generated workload, as well as the
number of distinct Web objects (expressed as a percentage
of the total references), and the number of one-timers (ex-
pressed as a percentage of the total documents). Separate
sliders are used to specify the slope for the Zipf-like doc-
ument popularity distribution, the slope for the Pareto tail
of the document size distribution (the body of the document
size distribution is log-normal, with a median of 4 KB and a
mean of 10 KB), and the degree of statistical correlation (if
any) between the size and popularity of Web objects. Posi-
tive correlation means that larger objects are more likely to
be referenced. Negative correlation means that smaller ob-
jects are more likely to be referenced. The default setting
of zero correlation means that document size and document
popularity are independent characteristics.



Figure 2. Screen Shot of Graphical User Interface (GUI) for WebTraff Tool

One novel aspect of the WebTraff GUI is a choice of
temporal locality models to use when generating a synthetic
workload. Temporal locality refers to the property that the
recent past is often a good predictor of the near future, in
terms of which Web objects are referenced next. The tem-
poral locality model affects the relative order in which ref-
erences appear in the generated workload. Clearly, this or-
dering can have a large impact on Web proxy cache perfor-
mance [1, 10, 13].

There are three temporal locality models available in
WebTraff. The first is the Independent Reference Model
(IRM). This simple model assumes that the inter-reference
times for a particular Web object are drawn independently
from a geometric distribution. There is no notion of hys-
teresis (past history) in this model; references are gener-
ated independently to each document based on relative doc-
ument referencing probabilities. The remaining temporal
locality models are all based on the Least-Recently-Used
(LRU) stack model (LRUSM). In the LRUSM, a stack data
structure is used to store the recent history of the reference
stream generation. In particular, the stack stores the N most
recently referenced items (where N is specified by the user),
with the most recent item at the top of the stack. Hystere-
sis is achieved by associating a probability with referencing
a document on the stack (as opposed to the general pool of

available documents) when generating the next request. The
user must provide the name of an external file that contains
the desired stack reference probabilities, which are typically
determined by analyzing an empirical trace.

The temporal locality models differ in how the stack
probabilities are computed and used. In the static LRU stack
model, the reference probabilities are (statically) associated
with particular stack levels, regardless of which document
currently resides at that position (if any). In the dynamic
LRU stack model, the reference probabilities are associated
with particular documents, and thus the stack level refer-
ence probabilities change (dynamically) with time depend-
ing on which documents are stacked. These models are ef-
fective for modeling the temporal locality characteristics in
empirical Web proxy workloads [9, 13].

One final control parameter in the WebTraff GUI is the
‘Popularity Bias’ button, which can influence whether pop-
ular documents tend to get chosen early or late in the syn-
thetic trace generation. This button was added to remedy a
problem in an early version of ProWGen, wherein the tem-
poral locality model tended to choose most of the one-timer
documents early in the trace and most of the popular doc-
uments late in the trace. This behaviour resulted in non-
stationary cache hit ratio performance throughout the trace.
This new button allows the user to control this behaviour.



The default setting of the Popularity Bias is adequate for
most traces, but the slider may need to be adjusted if unusu-
ally long traces are being generated.

Each click of the ‘Generate’ button produces an inde-
pendent sample path realization of the specified Web proxy
workload characteristics. Currently, the request arrival pro-
cess is modeled as Poisson [2, 14], though other models can
be added.

3.2. Web Workload Analysis

The middle block of the WebTraff GUI is for workload
analysis. The analysis functions fall into two main cate-
gories: time series analysis (on the leftmost edge of the
middle block), and Web workload analysis (on the right-
most edge of the middle block). The user must specify the
name of the workload file to be analyzed. The default file
name is the same as the most recently generated workload
file.

The time series analysis tools work primarily with the
first column of the Web workload trace, namely the times-
tamp (see Figure 1). The buttons here produce graphs of
the request inter-arrival time distribution, the request count
per (user-specified) time interval, and the byte count per
(user-specified) time interval. Examples of the graphs pro-
duced by these buttons are shown in Figure 3. Additional
buttons provide tests for long-range dependence (LRD) in
the request arrival process (i.e., autocorrelation function,
variance-time plot, and R/S analysis) [12, 14]. These anal-
yses are similar to those supported in the SynTraff GUI de-
veloped previously for modeling and analysis of LRD traf-
fic [6].

The Web workload analysis buttons work primarily with
the second and third columns of data, namely the document
id and size. The buttons here analyze the document size
distribution, the transfer size distribution, and the tail of the
size distributions (using a log-log complementary distribu-
tion (LLCD) plot). The latter analysis is useful for testing
for a heavy-tail in the size distribution [11]. Two additional
buttons produce analyses of the document popularity pro-
file (i.e., to check for a Zipf-like popularity profile) and the
LRU stack depth referencing behaviour (i.e., to characterize
temporal locality properties).

Most of the analysis buttons generate one or more graphs
in a “pop up” fashion on the screen for the user. The user has
radio buttons to control graph plotting characteristics (e.g.,
points, lines, boxes, impulses) as well as the graph caption
and the numerical ranges for axes. Additional slider but-
tons control the granularity of certain analyses (e.g., num-
ber of buckets in marginal distribution plots). Examples of
the graphs produced by the Web workload analysis buttons
are shown in Figure 4.

3.3. Web Proxy Cache Simulation

The bottom block of the WebTraff GUI is for simula-
tion studies of Web proxy cache performance. The Web
cache simulator used is a simple application-level document
caching model. Two parameters are required: the size of
the cache, and the cache replacement policy to be used to
remove documents when more space is required to store
an incoming document (e.g., Random replacement, First-
In-First-Out, Least-Recently-Used, Least-Frequently-Used,
and Greedy-Dual-Size) [3]. The user specifies these two
parameters, as well as the name of the Web proxy workload
file to be used as input for the trace-driven simulation.

The remaining buttons invoke different types of simula-
tion experiments. The ‘Simulate’ button runs a single sim-
ulation with the user-specified cache size and replacement
policy. As a side effect, it produces a file with the stream
of cache misses from the simulation. The ‘Run Size’ but-
ton runs a set of simulations for a given cache replacement
policy, with a range of cache sizes specified by the user.
The resulting graph plots the document hit ratio (HR) and
the byte hit ratio (BHR) as a function of cache size. The
‘Run Policies’ button runs a set of simulations that varies
the cache replacement policy as well as the cache size. Two
graphs are created for comparing replacement policy perfor-
mance: one for the HR and the other for the BHR. Finally,
the ‘Hit Ratio vs. Time’ button provides a visual look at the
stationarity (or non-stationarity) of the hit ratio and byte hit
ratio as a function of simulation time within the trace. This
plot is useful for identifying warmup and end effects, and
any anomalies present in the input workload. This button
uses the LRU replacement policy only, and a range of cache
sizes up to the maximum cache size specified by the user.

Examples of the graphs produced by the simulation part
of the WebTraff GUI are shown in Figure 5.

4. Summary

This paper has presented a graphical user interface for
the generation and analysis of Web proxy workloads, and
for simple simulation studies of Web proxy cache perfor-
mance. The Web traffic modeling and analysis tools are
based on our prior work in the published literature [6,
9], and have an easy-to-use graphical interface written in
Tcl/Tk. We have found the toolkit useful in a sensitivity
study of Web proxy cache performance [10], and in a study
of filter effects in Web caching hierarchies [4, 5, 15].

The WebTraff toolkit is available to the MASCOTS com-
munity for research purposes. The URL is:
www.cpsc.ucalgary.ca/˜carey/software.htm

At this time, only a UNIX-based version of the tool is avail-
able. We would welcome an effort to port this tool to the
PC Windows environment, to enable wider usage.



0

1

2

3

4

5

6

7

8

9

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

In
te

ra
rr

iv
a

l T
im

e

Requests

Interarrival Time of Trace1

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9

F
re

q
u

e
n

cy
 (

%
)

Interarrival Time in Seconds

Interarrival Time Distribution

(a) (b)

0

10

20

30

40

50

60

70

80

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

R
e

q
u

e
st

s

Time

Requests Per Interval of Trace1

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60 70 80 90

F
re

q
u

e
n

cy
 (

%
)

Requests per Interval

Distribution of Requests per Interval for Trace1

(c) (d)

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

3e+06

3.5e+06

4e+06

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

B
yt

e
s

Time

Bytes Per Interval of Trace1

0

2

4

6

8

10

12

14

16

18

0 200000 400000 600000 800000 1e+06 1.2e+06

F
re

q
u

e
n

cy
 (

%
)

Bytes per Interval

Distribution of Bytes per Interval for Trace1

(e) (f)

Figure 3. Example of Time Series Analyses in WebTraff: (a) ’Inter-Arrival Time’ Time Series; (b) ’Inter-
Arrival Time’ Distribution; (c) ’Requests per Interval’ Time Series; (d) ’Requests per Interval’ Distri-
bution; (e) ’Bytes per Interval’ Time Series; (f) ’Bytes per Interval’ Distribution



1

10

100

1000

1 10 100 1000 10000

N
u

m
b

e
r 

o
f 

R
e

fe
re

n
ce

s

Document Rank

Document Popularity Profile of Trace1

0

2

4

6

8

10

12

0 10000 20000 30000 40000 50000 60000

F
re

q
u

e
n

cy
 (

%
) 

Document Size in Bytes

Document Size Distribution of Trace1

(a) (b)

0

2

4

6

8

10

12

14

16

18

0 10000 20000 30000 40000 50000 60000

F
re

q
u

e
n

cy
 (

%
) 

Transfer Size in Bytes

Transfer Size Distribution of Trace1

0.0001

0.001

0.01

0.1

10000 100000 1e+06 1e+07

P
ro

b
a

b
ili

ty

Observed Value

LLCD Plot of Trace1

(c) (d)

0

500

1000

1500

2000

2500

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
ta

ck
 L

e
ve

l

Elapsed time (sec)

LRU Stack Depth Analysis

0

1

2

3

4

5

6

7

8

9

0 50 100 150 200 250 300 350 400 450 500

F
re

q
u

e
n

cy
 (

%
) 

Stack Level Referenced

LRU Stack Depth Analysis for Trace1

(e) (f)

Figure 4. Example of Web Workload Analyses in WebTraff: (a) Zipf-Like Document Popularity Pro-
file; (b) Document Size Distribution; (c) Transfer Size Distribution; (d) LLCD Plot of Transfer Size
Distribution; (e) LRU Stack Depth Time Series; (f) LRU Stack Depth Distribution



0

5

10

15

20

25

30

35

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

H
it 

R
a

tio
 R

 (
%

)

Elapsed Time (seconds)

Cumulative Document Hit Ratio Results for LRU Policy on Trace2

Cache size 1024 (bytes)
Cache size 4096 (bytes)

Cache size 16384 (bytes)
Cache size 65536 (bytes)

Cache size 262144 (bytes)

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

H
it 

R
a

tio
 R

 (
%

)

Cache Size C (Bytes)

Hit Ratio Results for First-Level Cache for Trace2 (LFU-Aging)

Document Hit Ratio
Byte Hit Ratio

(a) (b)

0

10

20

30

40

50

60

70

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

D
o

cu
m

e
n

t 
H

it 
R

a
tio

 R
 (

%
)

Cache Size C (Bytes)

Hit Ratio Results for First-Level Cache for Trace2 (Document Hit Ratio)

LRU
LFU

GDS
FIFO

RAND

0

5

10

15

20

25

30

35

40

45

50

1 10 100 1000 10000 100000 1e+06 1e+07 1e+08

B
yt

e
 H

it 
R

a
tio

 R
 (

%
)

Cache Size C (Bytes)

Hit Ratio Results for First-Level Cache for Trace2 (Byte Hit Ratio)

LRU
LFU

GDS
FIFO

RAND

(c) (d)

Figure 5. Example of Web Proxy Cache Simulation Results in WebTraff: (a) ‘Hit Ratio versus Time’
Plot for LRU Policy; (b) ‘Run Size’ Results for HR and BHR versus Cache Size; (c) ‘Run Policies’
Results for HR versus Cache Size; (d) ‘Run Policies’ Results for BHR versus Cache Size



Acknowledgements

Financial support for this research was provided by
iCORE (Informatics Circle of Research Excellence) in the
Province of Alberta, and by the Natural Sciences and Engi-
neering Research Council of Canada, through NSERC Re-
search Grant OGP0121969.

References

[1] V. Almeida, A. Bestavros, M. Crovella, and
A. Oliveira, “Characterizing Reference Locality in the
WWW”, Proceedings of the 1996 International Con-
ference on Parallel and Distributed Information Sys-
tems (PDIS’96), pp. 92-103, December 1996.

[2] M. Arlitt and C. Williamson, “Internet Web Servers:
Workload Characterization and Performance Impli-
cations”, IEEE/ACM Transactions on Networking,
Vol. 5, No. 5, pp. 631-645, October 1997.

[3] M. Arlitt and C. Williamson, “Trace-Driven Simula-
tion of Document Caching Strategies for Internet Web
Servers”, Simulation Journal, Vol. 68, No. 1, pp. 23-
33, January 1997.

[4] G. Bai and C. Williamson, “Time-Domain Analy-
sis of Web Cache Filter Effects”, Proceedings of
SCS International Symposium on Performance Eval-
uation of Computer and Telecommunication Systems
(SPECTS’02), San Diego, CA, pp. 195-205, July
2002.

[5] G. Bai and C. Williamson, “Workload Character-
ization in Web Caching Hierarchies”, Proceedings
of IEEE International Symposium on the Modeling,
Analysis, and Simulation of Computer and Telecom-
munication Systems (MASCOTS), Fort Worth, TX,
October 2002.

[6] R. Balakrishnan and C. Williamson, “The synTraff
Suite of Traffic Modeling Toolkits”, Proceedings of
IEEE MASCOTS, San Francisco, CA, pp. 333-340,
August 2000.

[7] P. Barford and M. Crovella, “Generating Representa-
tive Web Workloads for Network and Server Perfor-
mance Evaluation”, Proceedings of ACM SIGMET-
RICS Conference, Madison, WI, pp. 151-160, June
1998.

[8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker,
“Web Caching and Zipf-like Distributions: Evidence
and Implications”, Proceedings of the IEEE INFO-
COMM Conference, New York, NY, pp. 126-134,
March 1999.

[9] M. Busari and C. Williamson, “ProWGen: A Syn-
thetic Workload Generation Tool for Simulation Eval-
uation of Web Proxy Caches”, Computer Networks,
Vol. 38, No. 6, pp. 779-794, June 2002.

[10] M. Busari and C. Williamson, “On the Sensitivity of
Web Proxy Cache Performance to Workload Char-
acteristics”, Proceedings of IEEE INFOCOMM, An-
chorage, AL, pp. 1225-1234, April 2001.

[11] M. Crovella and A. Bestavros, “Self-Similarity in
World Wide Web Traffic: Evidence and Possible
Causes”, IEEE/ACM Transactions on Networking,
Vol. 5, No. 6, pp. 835-846, December 1997.

[12] W. Leland, M. Taqqu, W. Willinger, and D. Wilson,
“On the Self-Similar Nature of Ethernet Traffic (Ex-
tended Version)”, IEEE/ACM Transactions on Net-
working, Vol. 2, No. 1, pp. 1-15, February 1994.

[13] A. Mahanti, D. Eager, and C. Williamson, “Tempo-
ral Locality and its Impact on Web Proxy Cache Per-
formance”, Performance Evaluation, Vol. 42, No. 2-3,
pp. 187-203, October 2000.

[14] V. Paxson and S. Floyd, “Wide Area Traffic: The Fail-
ure of Poisson Modeling”, Proceedings of the 1994
ACM SIGCOMM Conference, London, UK, pp. 257-
268, August 1994.

[15] C. Williamson, “On Filter Effects in Web Caching Hi-
erarchies”, ACM Transactions on Internet Technology,
Vol. 2, No. 1, pp. 47-77, February 2002.


