B4 and After. Managing Hierarchy, Partitioning, and
Asymmetry for Availability and Scale in
Google's Software-Defined WAN

Google

(“Chi”) Chi-yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu,
Richard Alimi, Kondapa Naidu B., Chandan Bhagat, Sourabh Jain, Jay Kaimal,
Shiyu Liang, KirillMendelev, Steve Padgett, Faro Rabe, Saikat Ray, Malveeka
Tewari, Matt Tierney, Monika Zahn, Jonathan Zolla, Joon Ong, Amin Vahdat

Kazakhst

Uzbekistan
Pakis

eeeee

Madagascar

.......

99.99% availability

99.9% availability

99% availability

First-generation
B4 network
F\\r ~

toward
highly available:
massive-scalé

=i net‘@‘k
2017 2018

>100x more traffic

B4: Experience with a Globally-Deployed
Software Defined WAN

Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun Singh,
Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, Jonathan Zolla,
Urs Holzle, Stephgn Stuart and Amin Vahdat

Msigwmm@gaogle.com

ABSTRACT

‘We present the design, implementation, and evaluation of B4, a pri-
vate WAN connecting Googles data centers across the planet. By
has 2 number of unique characteristics: i) massive bandwidth re-
quirements deployed to a modest number of sites, i) elastic traf-
fic demand that secks to maximize average bandwidth, and i) full

Such overprovisioning delivers admirable reliabilty at the very real
costs of 2-3x bandwidth over-provisioning and high-end routing
gear.

building
ing multiple data centers with substantial bandwidth requirements.
However, Googlés data center WAN exhibits a number of unique

contolove he cdge
ing an the edge. led
o e Dot Networking architecture using OpenFlow to
control relatively simple switches built from merchant silicon. Ba's
centralized traffic engineering service drives links to near 100% uti-
lzaion, while spiting application flows amon muliple paths o
spplication We describe
experience with three years of B4 production deployment, lessons
learned, and areas for future work.

Categories and Subject Descriptors
C.2.2 [Network Protocols]: Routing Protocols

Keywords

Centralized Traffic Engineering; Wide-Area Networks; Software-
Defined Networking; Routing; OpenFlow

1. INTRODUCTION
Modern wide area networks (WAN) are critical to Internet per-
formance and reliability, delivering terabits/sec of aggregate band-
width across thousands of individual links. Because individual
WAN lnks are expensive and because WAN packet loss s typically
WAN

First, we control the applications, servers, and the
LAN all the way to the edge of the network. Second, our most
bandwidth-intensive applications perform large-scale data copies
from one site to another. These applications benefit most from high
levels of average bandwidth and can adapt their transmission rate
based on available capacity. They could similarly defer to higher pri-
ority interactive applications during periods of failure or resource
constraint. Third, we anticipated no more than a few dozen data
center deployments, making central control of bandwidth feasible.
We exploited these properties to adopt a software defined net-
working (SDN) architecture for our data center WAN interconnect.
‘We were most motivated by deploying routing and traffic engineer-
ing protocols customized to our unique requirements. Our de-
sign centers around: i) accepting failures as inevitable and com-
mon events, whose effects should be exposed to end applications,
and ii) switch hardware that exports a simple interface to program
forwarding table entries under central control. Network protocols
could then run on servers housing a variety of standard and custom
protocols. Our hope vastha deploying novel routing,scheduling,
be

both sm\plcr and result i a more eficient network.
We present our experience deploying Google's WAN, B, using
Software Defined Networking (SDN) principles and OpenFlow [31]
to manage individual switches. In particular, we discuss how we
support standard routing protocols and centralized

d, specialized
equipment that place a premium on high availability. Finally, WANs
typicall treatall bits the same. While this has many benefits, when

Traffic Engineering (TE) as our first SDN application. With TE, we:

demand forward-

the inevitable failure does take place, all appli are typically
treated equally, despite their highly variable sensitivity to available
capacity.

Given these considerations, WAN links are typically provisioned
to 30-40% average utilization. This allows the network service
provider to mask virtually all link or router failures from clients.

Permission to make digita or hard copies of all r part of this work for personal or

for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the fist page. Copyrights for companents of this work owned by others than
e

blish. specific permission
and/or a fee. Request permissions from permissions @acm.org.
SIGCOMM13. August 12-16, 2013, Hong Kong. Chin:
Copyright 2013 ACM 978-1-4503-2056-6/13/08 _.S15.00.

i)
ingluunading o leverage sralabie network capacity acconding to

T e lnkowich ey o shifting application demands. These
feturesallow many B lnks t0 run at near 100% wlzation and all

70%

ing to 2-3x efficiency improvements e o standard pracice.
B4 been thr ars,

fic than Google's public facing WAN, and has 2 higher growth rate.

It is among the first and largest SDN/OpenFlow deployments. B4

would otherwise be possible, supports rapid deployment and iter-
ation of novel control functionality such as TE, and enables tight
integration with end applications for adaptive behavior in response
to failures or changing communication patterns. SDN is of course

Previous B4 paper
published in
SIGCOMM 2013

Background: B4 with SDN Traffic Engineering (TE)
Deployed in 2012

Site-level tunnels
(tunnels & tunnel splits)

Central Per-Site
TE > Domain TE
Controller Controllers

=

Demand Matrlx
(via Google BwE)

Background: B4 with SDN Traffic Engineering (TE)
Deployed in 2012

Key Takeaways:

A High efficiency: Lower per-byte cost compared
with B2 (Google global backbone running RSVP TE
on vendor gears)

1 Deterministic convergence: Fast, global TE
optimization and failure handling

1 Rapid software iteration: ~1 month for developing
and deploying a median-size software features

But, it also comes with new challenges

Grand Challenge #1: High Availability Requirements

B4 initially S(ezlr:sc;e Application Examples Avasllfgmty
had 99%
availability in SCc4 Search ads, DNS, WWW 99.99%
2013 SC3 Proto service backend, Email 99.95%
SC2 Ads database replication 99.9%
SC1 Search index copies, logs 99%
SCo Bulk transfer N/A

Very demanding goal, given:
e inherent unreliability of long-haul links
® necessary management operations

Service L Availability
- Class Application Examples SLO
B4 Inltla”y SC4 S h ads, DNS, WWW 99.99%
earch ads, , .99%
had 99% =

availability SC3 Proto service backend, Email 99.95%
SC2 Ads database replication 99.9%

SC1 Search index copies, logs 99%

Sce Bulk transfer N/A

Grand Challenge #2: Scale Requirements

our bandwidth
requirement doubled
every ~9 months

10

traffic increased
100x :_ , ,, J by >1OOX in 5 years

Aggregate
traffic
(normalized

10x e *
logqo scale) : : : ’

% T

2012 2013 2014 2015 2016 2017

11

Grand Challenge #2: Scale Requirements

Scale increased across dimensions:
#Cluster prefixes: 8x

#B4 sites: 3x

#Control domains: 16x
#Tunnels: 60x

12

Other challenges: No disruption to existing traffic, maintain
high cost efficiency and high feature velocity

13

To meet these demanding requirements, we've had to
aggressively develop many point solutions

14

Lessons

Learned

Flat topology scales poorly and
hurts availability

. Solving capacity asymmetry

problem in hierarchical topology is
key to achieve high availability at
scale

. Scalable switch forwarding rule

management is essential to
hierarchical TE

15

5.12/ 6.4 Tbps To WAN (other B4 sites)

L L _1-_-'___ _1-_-'___
CF| |cF| icFi icFi| Saturn

N “ First-generation
se | lee| ler | |gF B4 site fabric

5.12/ 6.4 Tbps To WAN (other B4 sites)

——————————————

CF| |cF| icFi icFi| Saturn

PN _==="
’’’’’’’’’’’
- - -

First-generation

- -
-

B4 site fabric
U U Y
5.12 Tbps To Clusters
Scaling option #T.

Add more chassis--Up to 8
chassis per Saturn fabric

17

Scaling option #2:
Build multiple B4 sites
In close proximity

Slower central TE
controller
Limited switch table limit
Complicated capacity
planning and job allocation

18

80 Tbps toward
WAN / clusters /

sidelinks /

Jumpgate: Two-layer Topology

Jumpgate Site

1

/ Supernode .

spine switches ~—

edge switches .|

e mEEE-cE

19

Jumpgate: Two-layer Topology

Jumpgate Site

Support horizontal scaling by
adding more supernodes to a site

80 Tbps toward
WAN / clusters / /i

sidelink . :
ﬁ.{/ Support vertical scaling by
upgrading a supernode in place to

new generation

| Supernode ™
spine switches ——— DO EEEExs@

BT

Improve availability with granular,
per-supernode control domain

edge switches .| DDD nin[=in]= |:||:|x32|:|

20

Lessons

Learned

Flat topology scales poorly and
hurts availability

. Solving capacity asymmetry

problem in hierarchical
topology is key to achieve high
availability at scale

. Scalable switch forwarding rule

management is essential to
hierarchical TE

21

Site A

Site B

Site A

>
=
S

16

Site C

-
£

Site B

16

Site C

16

sum of supernode-level link capacity

22

Site B

Bottleneck!

Site C

23

100% capacity loss
100% in 18% cases

80%

Cumulative function of 60%
site-level links and

topology events Lo 2% capacity loss

at median case
20% ’ due to striping

_;'/ inefficiency
0%

0.1% 1% 10% 100%

Site-level link capacity loss due to topology
abstraction / total capacity [log,, scale]

24

Solution = Sidelinks + Supernode-level TE

25

Site B Site C

e 57% toward next site
e 43% toward self site

26

Solution = Sidelinks + Supernode-level TE

Multi-layer TE

(Site-level & supernode-level)
turns out to be challenging!

27

Design Proposals

Hierarchical Tunneling Supernode-level TE

Site-level tunnels +

Supernode-level tunnels
Supernode-level sub-tunnels P

Two layers of IP

Scaling challenges:
encapsulation lead to
inefficient hashing

Increase path allocation
run time by 188x longer

28

Site A Site B
(4 supernodes) (2 supernodes)

‘4{
L

Assume balanced
ingress traffic

Tunnel Split Group (TSG)
Supernode-level traffic splits; Maximize admissible

No packet encapsulation; demand subject to fairness
Calculated per site-level link and link capacity constraint

29

Site A Site B

ustive Waterfill Algorithm

lteratively allocate each flow on their direct path (w/o sidelinks) or alternatively on
their indirect paths (w/ sidelinks on source site) until any flow cannot be allocated
further

Provably Take less than 1 Low abstraction
forwarding loop second to run capacity loss
30

1000/0 _

809% I slaN

Cumulative function of 60%
site-level links and

topology events 40% |- sidlelinks
20% |
0% |

0.1% 1% 10% 100%

Site-level link capacity loss due to topology
abstraction / total capacity [log, , scale]

31

TSG Sequencing Problem

Current TSGs Target TSGs

Bad. properties Forwarding Loop Blackhole
during update:
3

2

Dependency Graph based TSG Update

1. Map target TSGs to a supernode dependency graph
2. Apply TSG update in reverse topological ordering*

* Share ideas with work in IGP updates:
e Francois & Bonaventure, Avoiding Transient Loops during IGP
convergence in IP Networks, INFOCOM'05
e Vanbever et al.,, Seamless Network-wide IGP Migrations,
SIGCOMM11

Loop-free and no Requires no One or two steps in
extra blackhole packet tagging >99.7% of TSG ops

33

Lessons

Learned

Flat topology scales poorly and
hurts availability

. Solving capacity asymmetry

problem in hierarchical topology is
key to achieve high availability at
scale

. Scalable switch forwarding rule

management is essential to
hierarchical TE

34

Multi-stage Hashing across Switches in Clos Supernode

Supernode

siu[s[s]=]spts

B4 Site

1. Ingress traffic at edge switches:

a. Site-level tunnel split

b. TSG site-level split (to self-site or next-site)
2. At spine switches:

a. TSG supernode-level split

b. Egress edge switch split
3. Egress traffic at edge switches:

a. Egress port/trunk split

35

99% availability 99.9% availability

Jumpgate:
Two-layer topology
3 toward

massive-scalé

copy)
 netwolt, —=—=>113
2011 2012 Efficient switch

rule management
Hierarchical TE & more service
classes
classes
36

Conclusions

Highly available WAN with plentiful bandwidth offers
unigue benefits to many cloud services (e.g., Spanner)

Future Work--Limit the blast radius of rare yet

catastrophic failures
A Reduce dependencies across components

A Network operation via per-QoS canary

37

B4 and After: Managing Hierarchy, Partitioning, and Asymmetry
for Availability and Scale in Google's Software-Defined WAN

Before After
Copy network with 99% availability High-available network with 99.99% availability
Inter-DC WAN with moderate number of sites 100x more traffic, 60x more tunnels
Saturn: flat site topology & Jumpgate: hierarchical topology &
per-site domain TE controller granular TE control domain

Site-level tunneling in conjunction with

Site-level tunneling supernode-level TE (“Tunnel Split Group”)

Multi-stage hashing across switches in Clos

Tunnel splits implemented at ingress switches
supernode Go gle

Switch Pipeline

Bl ACL ECMP Encap
Supernode ™ (Flow Match) | ™| (Port Hashing) | *| (+Tunnel IP)
DOOOOdxed

o T e

B4 Site

Switch Pipeline

ACL
(Flow Match)

ECMP
(Port Hashing)

Encap
(+Tunnel IP)

Scaling bottleneck: Hit ACL
table limit with ~32 sites

40

Switch Pipeline (Before)

ACL
(Flow Match)

ECMP
(Port Hashing)

Encap
(+Tunnel IP)

* Switch Pipeline (After)

VFP
(QoS Match)

Per-VRF LPM
(Prefix Match)

ECMP
(Port Hashing)

Encap
(+Tunnel IP)

Enable new features: Increase #

Disable per-flow tunneling supported sites by 60x

Switch Pipeline

VFP Per-VRF LPM

ECMP Ly Encap

(QoS Match) (Prefix Match) (Port Hashing) (+Tunnel IP)

/ X TSG_Splits X SwitchSplits)

Size(ECMP) > (#Sites X #PathingClasses X TunnelsSplits

198K entries required;

16K supported by our switches

42

Switch Pipeline

Per-VRF LPM
(Prefix Match)

VFP
(QoS Match)

ECMP
(Port Hashing)

Encap
(+Tunnel IP)

Size(ECMP) > (#Sites X #PathingClasses X TunnelsSplits

X TSG_Splits

X SwitchSplits)

Supernode

Support more sites &
pathing classes

!Illllx16!:

Overall throughput

improved by >6%

Supernode

COOO0O08xsd

B[w{nius

HHOoe

B4 Site

Switch Pipeline

ACL : ECMP Encap
(Floy.Match) (Port H&shing) . (+Tunnel IP)
N\

Support up to
only 32 sites

Efficient flow
matching via
virtual routing &
forwarding

(VRF)

N

Reduced efficiency with lower

path split granularity

Multi-stage hashing by
leveraging source MAC marking
and packet load balancing via

spine-layer switches

44

