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Motivating Quote for Queueing Models
CALGARY

“Good things come to those who wait”

- poet/writer Violet Fane, 1892

- song lyrics by Nayobe, 1984

- motto for Heinz Ketchup, USA, 1980’s
- slogan for Guinness stout, UK, 1990’s



M/M/1 Queue
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= M/M/1 queue is the most commonly used type of
gueueing model

= Used to model single processor systems or to model
individual devices in a computer system

* Need to know only the mean arrival rate A and the
mean service rate

= State = number of jobs in the system
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Results for M/M/1 Queue (cont’d)
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= Mean number of jobs in the system:

= Mean number of jobs in the queue:
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Results for M/M/1 Queue (cont’d)
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= Probability of n or more jobs in the system:

P(nxk)=> p,=) (1-p)p" =p"
n=Kk n=Kk

= Mean response time (using Little’s Law):

— Mean number in the system
= Arrival rate X Mean response time

— That is: E[n] = AE]r]



M/M/1/K — Single Server, Finite Queuing Space
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Analytic Results
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= State-transition diagram:
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M/M/m - Multiple Servers
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Analytic Results
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= State-transition diagram:
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= [nfinite number of servers - no queueing

M/M/0 - Infinite Servers
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Analytic Results
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= State-transition diagram:
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* Thus the number of customers in the system follows a Poisson
distribution with rate p

11



M/G/1 Queue
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= Single-server queue with Poisson arrivals, general
service time distribution, and unlimited capacity

L. 1 .
= Suppose service times have mean . and variance g*

" For p < 1, the steady-state results for M /G /1 are:

p=Alu, p,=1-p
‘A+0°u’ ‘(l+ 0%’
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— No simple expression for the steady-state probabilities
— Mean number of customers in service: p = E[n E[nq]

— Mean number of customers in queue, E[n,], can be
rewritten as:

02 12 52
2(1—-0p) 2(1 —p)

Elng| =

= If Aand u are held constant, E[n,] depends on the
variability, o2, of the service times.

M/G/1 Queue
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Effect of Utilization and Service Variability

UNIVERSITY OF

CALGARY

= For almost all queues, if lines are too long, they can be reduced by
decreasing server utilization (p) or by decreasing the service time

variability (2)

= Coefficient of Variation: a measure of the variability of a distribution

3 \/Var(X)
- E[X]

— The larger CV is, the more variable is the distribution relative to its
expected value.

= Pollaczek-Khinchin (PK) mean value formula:
p°(1+(CV)*)
2(1-p)

E[n]=p+



Effect of Utilization and Service Variability
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= Consider E[n,] for M/G/1 queue:
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