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Motivating Quote for Queueing Models

“Good things come to those who wait”
- poet/writer Violet Fane, 1892

- song lyrics by Nayobe, 1984
- motto for Heinz Ketchup, USA, 1980’s
- slogan for Guinness stout, UK, 1990’s
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▪ M/M/1 queue is the most commonly used type of 
queueing model 

▪ Used to model single processor systems or to model 
individual devices in a computer system  

▪ Need to know only the mean arrival rate λ and the 
mean service rate μ

▪ State = number of jobs in the system 

M/M/1 Queue
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▪ Mean number of jobs in the system:

▪ Mean number of jobs in the queue: 

Results for M/M/1 Queue (cont’d)
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▪ Probability of n or more jobs in the system:

▪ Mean response time (using Little’s Law):

— Mean number in the system 
= Arrival rate ×Mean response time

— That is: 

Results for M/M/1 Queue (cont’d)
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M/M/1/K – Single Server, Finite Queuing Space
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▪ State-transition diagram:

▪ Solution

Analytic Results
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M/M/m - Multiple Servers
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▪ State-transition diagram:

▪ Solution

Analytic Results
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▪ Infinite number of servers - no queueing

M/M/ - Infinite Servers 
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▪ State-transition diagram:

▪ Solution

▪ Thus the number of customers in the system follows a Poisson
distribution with rate 𝜌

Analytic Results
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▪ Single-server queue with Poisson arrivals, general 
service time distribution, and unlimited capacity

▪ Suppose service times have mean 
1

𝜇
and variance 𝜎2

▪ For 𝜌 < 1, the steady-state results for 𝑀/𝐺/1 are:

M/G/1 Queue
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— No simple expression for the steady-state probabilities

— Mean number of customers in service: 𝜌 = 𝐸 𝑛 − 𝐸 𝑛𝑞

— Mean number of customers in queue, 𝐸[𝑛𝑞], can be 

rewritten as:

𝐸[𝑛𝑞] =
𝜌2

2 1 − 𝜌
+

𝜆2𝜎2

2 1 − 𝜌

▪ If 𝜆 and 𝜇 are held constant, 𝐸[𝑛𝑞] depends on the 

variability, 𝜎2, of the service times.

M/G/1 Queue
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▪ For almost all queues, if lines are too long, they can be reduced by 
decreasing server utilization (𝜌) or by decreasing the service time 
variability (𝜎2)

▪ Coefficient of Variation: a measure of the variability of a distribution

𝐶𝑉 =
𝑉𝑎𝑟 𝑋

𝐸[𝑋]

— The larger CV is, the more variable is the distribution relative to its 
expected value.

▪ Pollaczek-Khinchin (PK) mean value formula:

Effect of Utilization and Service Variability
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▪ Consider 𝐸[𝑛𝑞] for M/G/1 queue:

Effect of Utilization and Service Variability
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Same as for 
M/M/1
queue

Adjusts the M/M/1 
formula to account for 

a non-exponential 
service time 
distribution
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