
Understanding the Networking Performance
of Wear OS

Xiao Zhu1 Yihua Ethan Guo2 Ashkan Nikravesh1

Feng Qian3 Z. Morley Mao1

1University of Michigan 2Uber Techologies Inc. 3Univeristy of Minnesota

1

Wearable Networking Is Important

Increased popularity Third-party apps Multiple network interfaces

2

It Is Different from Smartphone Networking

• Bluetooth (BT) communication
• Different protocol stack and radio state machine

3

It Is Different from Smartphone Networking

• Bluetooth (BT) communication
• Different protocol stack and radio state machine

• Smartphone as a “gateway”
• A pair of proxies in Wear OS

Client app

Wear OS proxy

BT stack

TCP/IP stack

BT stack

Wear OS proxy

TCP/IP stack TCP/IP stack

Server app

4

It Is Different from Smartphone Networking

• Bluetooth (BT) communication
• Different protocol stack and radio state machine

• Smartphone as a “gateway”
• A pair of proxies in Wear OS

• Network interface switching
• BT has a much shorter range

• Vertical handover under mobility

5

Wearable Networking Stack Is Under-explored

OS
[Liu APSys 15]
[Liu Mobisys 16]

Application [Nirjon MobiSys 15][Shen MobiSys 16]

UI
[Chen CHI 14]
[Xu MobiCom 17]

Power [Liu Mobisys 17][Yang ICNP 17]

The networking performance and application QoE on commercial
wearables is not well-studied.

Networking
Traffic characterization: [Kolamunna IMC 18]
Core networking stack: ?

6

Wearable Networking Testbed

uplink

downlink

7

The Wearable Network Measurement Toolkit

• Active Measurements
• Bulk data transfer and constant bitrate traffic

• Automatic reconnection upon network failure

• Passive Measurements
• Collect WiFi and BT traces from multiple entities and layers

• Packet transmission/reception pipeline Instrumentation

• Signal strength and network states

• Open-source
• 3K lines of C++, Java, and Python code

• https://github.com/XiaoShawnZhu/WearMan.

8

Overview of Measurement Findings

1. Proxy at paired smartphone
• End-to-end latency is inflated to tens of seconds
• Phone’s TCP receive buffer causes bufferbloat

2. Network handover
• Handovers are performed reactively
• BT-WiFi handovers may take 60+ seconds

3. Bluetooth radio resource management
• Different state machine models on phone and wearable
• BT download experiences frequent “blackout” periods

4. Network interface selection
• Wear OS’s default interface selection policy is often suboptimal
• Multipath on wearables faces obstacles

9

Overview of Measurement Findings

1. Proxy at paired smartphone
• End-to-end latency is inflated to tens of seconds
• Phone’s TCP receive buffer causes bufferbloat

2. Network handover
• Handovers are performed reactively
• BT-WiFi handovers may take 60+ seconds

3. Bluetooth radio resource management
• Different state machine models on phone and wearable
• BT download experiences frequent “blackout” periods

4. Network interface selection
• Wear OS’s default interface selection policy is often suboptimal
• Multipath on wearables faces obstacles

10

Impact of Smartphone Proxying

• End-to-end (E2E) latency characterization
• Constant bitrate (CBR) traffic and bulk transfer

E2E latency is dramatically inflated to 30+ seconds for high bitrate traffic.
11

Impact of Smartphone Proxying

• Root cause analysis
• Breaking down the E2E latency

data is transmitted out

data is received in the phone OS kernel

data is copied to the proxy’s userspace

data is sent to the BT stack

data is delivered to the wearable OS

12

Impact of Smartphone Proxying

• d2 dominates the E2E latency
• Delay incurred by TCP receive buffer

13

Impact of Smartphone Proxying

• Phone’s TCP receive buffer size impact on E2E latency

Smaller TCP receiver buffer size reduces the E2E latency, but setting it to
be too small may throttle the server-phone connection throughput.

14

Impact of Smartphone Proxying

• Mitigating the bufferbloat
• Examine the queue length (𝑄) on the phone and phone-wearable bandwidth (𝐵𝑊)

• Throttle the server-phone connection when
𝑄

𝐵𝑊
becomes high

Dynamic server-phone flow control that considers the phone-wearable
network condition reduces the E2E delay.

15

Overview of Measurement Findings

1. Proxy at paired smartphone
• End-to-end latency is inflated to tens of seconds
• Phone’s TCP receive buffer causes bufferbloat

2. Network handover
• Handovers are performed reactively
• BT-WiFi handovers may take 60+ seconds

3. Bluetooth radio resource management
• Different state machine models on phone and wearable
• BT download experiences frequent “blackout” periods

4. Network interface selection
• Wear OS’s default interface selection policy is often suboptimal
• Multipath on wearables faces obstacles

16

BT-WiFi Handover Performance

• Monitoring the network state
• ConnectivityManager in Wear OS

• Avaliable or not: whether the network interface is up

• Connected or not: whether the interface provides actual network connectivity

• Experiment setup
• Both BT and WiFi are enabled

• Real-time streaming traffic

• tinyCam app: stream real-time videos captured from an IP camera

• A user wearing a smartwatch moves away from the paired smartphone

17

BT-WiFi Handover Performance

• Throughput and frame delay severely degrade during the handover
• 60+ seconds of interruption time when no video data is received

18

Root Cause Analysis: Delay Breakdown

• P1: BT is connected but data cannot be actually transmitted
• P2: no network available
• P3: WiFi available (interface up) but not connected
• P4: WiFi connected but no application data transmission 19

Root Cause Analysis: Delay from the Wear OS
(P1, P2, and P3)

Reactive in nature: Only after BT connection gets lost completely (P1), the
Wear OS turn on (P2) and then connect to (P3) WiFi.

20

Root Cause Analysis: Delay Incurred by the
Wearable App (P4)

Insufficient protocol support for applications: wearable apps need to
implement their own data migration logic.

21

Root Cause Analysis: Delay Incurred by the
Wearable App (P4)

• P4: 33.3s (tinyCam) v.s. 5.6s (RTApp)
• RTApp: downloading a 3KB data chunk every 160ms, establish new connection
once a new network interface is connected after a handover.

• Overall handover interruption time

Improved application data migration logic (in RTApp) reduces P4 as
well as the overall interruption time.

22

Reducing the Handover Delay

• Proactively performing a handover to WiFi when BT quality degrades
• Variant 1: establish WiFi when performing handovers (on-demand WiFi)

• Variant 2: pre-established WiFi (always-on WiFi)

23

Summary

• First in-depth study on the networking performance of Wear OS.

• Developed a toolkit for wearable networking measurement and
analysis.

• Identified performance issues regarding key aspects of wearable
networking.

• Analyzed the root causes and proposed practical solutions.

24

Thank you!

25

Thank you!

26

BT State Machines on Wearable and Phone

27

QoE-energy Tradeoffs of Different Networks

28

