
1

An Analytic Throughput Model for TCP NewReno
Nadim Parvez, Anirban Mahanti, and Carey Williamson,Member, IEEE

Abstract—This paper develops a simple and accurate stochastic
model for the steady-state throughput of a TCP NewReno bulk
data transfer as a function of round-trip time and loss behaviour.
Our model builds upon extensive prior work on TCP Reno
throughput models but differs from these prior works in thre e
key aspects. First, our model introduces an analytical character-
ization of the TCP NewReno fast recovery algorithm. Second,
our model incorporates an accurate formulation of NewReno’s
timeout behaviour. Third, our model is formulated using a flexible
two-parameter loss model that can better represent the diverse
packet loss scenarios encountered by TCP on the Internet.

We validated our model by conducting a large number of
simulations using thens-2 simulator and by conducting emulation
and Internet experiments using a NewReno implementation in
the BSD TCP/IP protocol stack. The main findings from the
experiments are: (1) the proposed model accurately predicts the
steady-state throughput for TCP NewReno bulk data transfers
under a wide range of network conditions; (2) TCP NewReno
significantly outperforms TCP Reno in many of the scenarios
considered; and (3) using existing TCP Reno models to estimate
TCP NewReno throughput may introduce significant errors.

Index Terms—TCP, analytical modeling, simulation, ns-2

I. I NTRODUCTION

The Transmission Control Protocol (TCP) [33] provides
reliable, connection-oriented, full-duplex, unicast data deliv-
ery on the Internet. Modern TCP implementations also in-
clude congestion control mechanisms that adapt the source
transmission behaviour to network conditions by dynamically
computing thecongestion windowsize. The goal of TCP
congestion control is to increase the congestion window size
if there is additional bandwidth available on the network, and
decrease the congestion window size when there is congestion.
It is widely agreed that the congestion control schemes in
TCP provide stability for the “best effort” Internet. These
mechanisms increase network utilization, prevent starvation of
flows, and ensure inter-protocol fairness [10].

In today’s Internet, several variants of TCP are deployed.
These variants differ with respect to their congestion control
and segment loss recovery techniques. The basic congestion
control algorithms, namelyslow start, congestion avoidance,
and fast retransmit, were introduced in TCP Tahoe [18].
In TCP Reno [19], thefast recoveryalgorithm was added.
This algorithm uses duplicate acknowledgements (ACKs) to
trigger the transmission of new segments during the recovery
phase, so that the network “pipe” does not empty following
a fast retransmit. TCP NewReno introduced animprovedfast
recovery algorithm that can recover from multiple losses ina
single window of data, avoiding many of the retransmission

N. Parvez and C. Williamson are with the Department of Computer Sci-
ence, University of Calgary, Canada. Email:{parvez, carey}@cpsc.ucalgary.ca
A. Mahanti is with National ICT Australia (NICTA), Eveleigh, NSW, Aus-
tralia. Email:anirban.mahanti@nicta.com.au

timeout events that Reno experiences [13]. TCP’s selective
acknowledgement (SACK) option was proposed to allow re-
ceivers to ACK out-of-order data [7]. With SACK TCP, a
sender may recover from multiple losses more quickly than
with NewReno. The aforementioned TCP variants use segment
losses to estimate available bandwidth. TCP Vegas uses a
novel congestion control mechanism that attempts to detect
congestion in the network before segment loss occurs [5]. TCP
Vegas, however, is not widely deployed on the Internet today.

Analytic modeling of TCP’s congestion-controlled through-
put has received considerable attention in the literature (e.g.,
[2], [4], [6], [9], [16], [22], [23], [25], [27]–[29], [32], [35]–
[37]). These analytical models have: (1) improved our un-
derstanding of the sensitivity of TCP to different network
parameters; (2) provided insight useful for development of
new congestion control algorithms for high bandwidth-delay
networks and wireless networks; and (3) provided a means
for controlling the sending rate of non-TCP flows such that
network resources may be shared fairly with competing TCP
flows. Most of these throughput models are based on TCP
Reno [2], [6], [9], [16], [23], [25], [27]–[29], [32], while
some models are based on SACK [36], [37], Vegas [35],
and NewReno [22]. A detailed NewReno throughput model,
however, seems missing from the literature.

This paper develops an analytic model for the throughput
of a TCP NewReno bulk data transfer as a function of round-
trip time (RTT) and loss rate. Our work is motivated, in part,
by previous studies that indicate that TCP NewReno is widely
deployed on the Internet [26], [30]. Furthermore, RFC 3782
indicates that NewReno is preferable to Reno, as NewReno
provides better support for TCP peers without SACK [13].

Our TCP NewReno throughput model builds upon the well-
known Reno model proposed by Padhyeet al. [29], but differs
from this PFTK model in three important ways. First, we
explicitly model the fast recovery algorithm of TCP NewReno.
In prior work [29], Reno’s fast recovery feature was not
modeled. Depending on the segment loss characteristics, a
NewReno flow may spend significant time in the fast recovery
phase, sending per RTT an amount of data approximately equal
to the slow start threshold. Second, we present an accurate
formulation of NewReno’s timeout behaviour, including the
possibility of incurring a timeout following an unsuccessful
fast recovery. Third, our approach uses a two-parameter loss
model that can model the loss event rate, as well as the
burstiness of segment losses within a loss event. These two
characteristics have orthogonal effects on TCP: a loss event
triggers either fast recovery or a timeout, whereas the bursti-
ness of losses affects the duration of the fast recovery period,
and thus the performance of NewReno [31].

2

Table I summarizes the Reno and NewReno models dis-
cussed in this paper. (The notation used is defined in Table II.)
While some researchers believe that the PFTK model is
adequate for modeling NewReno throughput, we show in this
paper that this is not the case. In general, using the simple
version of PFTK overestimates throughput, since timeouts are
ignored, while (incorrectly) parameterizing the PFTK model
with packet loss rate instead of loss event rate tends to under-
estimate throughput. In some cases, these two opposing errors
offset each other, coincidentally leading to good predictions.
As the Full TCP Reno model has been applied extensively
in diverse areas, including TCP friendly rate control [12],
[24], active queue management [8], and overlay bandwidth
management [17], [21], we compare how accurately the Full
Reno model estimates NewReno’s throughput. Our results
show that the Full Reno model overestimates throughput for
both Reno and NewReno bulk transfers. In general, we find
that a detailed characterization of NewReno fast recovery
behaviour, as provided in our model, is required to characterize
NewReno throughput accurately.

We validated our model by conducting a comprehensive set
of simulations using thens-2 simulator. In addition, we em-
pirically validated our model by experimenting with the TCP
NewReno implementation in the BSD TCP/IP protocol stack
in an emulation environment, and with Internet experiments.
Our results show that the proposed model can predict steady-
state throughput of a TCP NewReno bulk data transfer for a
wide range of network conditions.

Our TCP NewReno model also differs substantially from
Kumar’s NewReno model [22]. First, Kumar’s model was
developed for a local area network (LAN) environment and did
not consider the effect of propagation delay on TCP through-
put. Propagation delays cannot be ignored in environments
such as the Internet, and our model explicitly considers RTT
effects. Second, Kumar’s model, unlike the model presentedin
this paper, does not have a closed form. Specifically, through-
put estimation using the Kumar model [22] requires use of
numerical methods to compute the expected window size and
the expected cycle time. In contrast, our model provides a
simple closed form for throughput computation. The third
(and probably the most significant) difference between the
two models is with respect to the modeling of NewReno’s
fast recovery behaviour. In Kumar’s work, the transmission
of new segments and the duration of fast recovery are not
explicitly modeled; his model considers only the probability of
TCP transitioning to fast recovery. The improved fast recovery
algorithm is NewReno’s key innovation with respect to its
parent Reno, and we explicitly model TCP NewReno’s fast
recovery behaviour in detail. In addition, our extensive simula-
tion experiments demonstrate substantially greater throughput
differences between Reno and NewReno (e.g., 30-50%) than
in Kumar’s work. We do not present any comparisons with
Kumar’s NewReno throughput model because that model was
developed for a fundamentally different network environment
(i.e., a LAN with negligible propagation delay, and a wireless
link with random packet loss), and furthermore, has not been
experimentally validated [22].

The remainder of this paper is organized as follows. Sec-

tion II presents an overview of NewReno’s fast recovery
algorithm and our modeling assumptions. The proposed an-
alytic model for TCP NewReno throughput is presented in
Section III. The model is validated using simulations in
Section IV, network emulations in Section V, and Internet
experiments in Section VI. Section VII concludes the paper.

II. BACKGROUND AND ASSUMPTIONS

A. The NewReno Fast Recovery Algorithm

This section presents an overview of NewReno’s improved
fast recovery algorithm [13]. All other congestion controlcom-
ponents of NewReno, namely slow start, congestion avoidance,
and fast retransmit, are identical to that of Reno. The reader is
referred to references [19], [39], [40] for a detailed treatment
of TCP Reno congestion control.

During congestion avoidance, receipt of four back-to-back
identical ACKs (referred to as “triple duplicate ACKs”) causes
the sender to perform fast retransmit and to enter fast recovery.
In fast retransmit, the sender does the following:

1) retransmits the lost segment;
2) sets the slow start thresholdssthresh to cwnd/2 (where

cwnd is the current congestion window size); and
3) setscwnd to ssthresh (new) plus 3 segments.

In fast recovery (FR), the sender continues to increase
the congestion window by one segment for each subsequent
duplicate ACK received. The intuition behind the fast recovery
algorithm is that these duplicate ACKs indicate that some
segments are reaching the destination, and thus can be used
to trigger new segment transmissions. The sender can transmit
new segments if permitted by its congestion window.

In TCP Reno, receipt of a non-duplicate ACK results in
window deflation: cwnd is set tossthresh (i.e., the congestion
window size in effect when the sender entered FR), FR ter-
minates, and normal congestion avoidance behaviour resumes.
When multiple segments are dropped from the same window
of data, Reno may enter and leave FR several times, causing
multiple reductions of the congestion window.

TCP NewReno modifies Reno’s FR behaviour on receipt of
a non-duplicate ACK, by distinguishing between a “full” ACK
(FA) and a “partial” ACK (PA). A full ACK acknowledges all
segments that were outstanding at the start of FR, whereas a
partial ACK acknowledges some but not all of this outstanding
data. Unlike Reno, where a partial ACK terminates FR,
NewReno retransmits the segment next in sequence based on
the partial ACK, and reduces the congestion window by one
less than the number of segments acknowledged1 by the partial
ACK. Thus NewReno recovers from multiple segment losses
in the same window by retransmitting one lost segment per
RTT, remaining in FR until a full ACK is received.

On receiving a full ACK, NewReno setscwnd to ssthresh,
terminates FR, and resumes congestion avoidance.

1This window reduction strategy is referred to aspartial window deflation.
In full window deflation, cwnd is set tossthresh when partial ACKs are
received. The current NewReno proposal in RFC 3782 recommends the partial
window deflation option.

3

TABLE I
COMPARISON OFTCP THROUGHPUTMODELS (SEGMENTS PER ROUND TRIP TIMER)

Model TCP Reno [29] (PFTK) TCP NewReno Details

Simple (NoTO)

q

3
2p

R

1
p
+

W2q
1+Wq

(W
2

+Wq+ 5
2)R

Section III-A (Eq. 19)

Full Model 1

R
√

(2p/3)+RTO min(1,3
√

(3p/8))p(1+32p2)

1
p
+ W2q

1+W q

NR+pT O((1+2p+4p2)RTO+(1+log W
4)R)

, Section III-B (Eq. 29)

whereN =
“

W
2

+ 3
2

+ (1 − pTO)(1 + Wq)
”

B. Assumptions

This section outlines our assumptions regarding the appli-
cation, the sender/receiver, and the network. Except for the
segment loss model, all our assumptions are similar to those
in prior work (e.g., [6], [16], [25], [29], [35], [36]).

1) Application Layer: Our model focuses on the steady-
state throughput forTCP bulk transfers. We consider an
application process that has an infinite amount of data to send
from a source node to a destination node.

2) TCP Sender and Receiver:Our model assumes that
the sender is using the TCP NewReno congestion control
algorithm. The sender always transmits full-sized (i.e., MSS)
segments whenever the congestion window allows it to do
so. We assume that the sender is constrained only by the
congestion window size, and not by the receiver’s buffer size
or advertised window. Also, the receiver sends one ACK
for each received segment, and ACKs are never lost. These
assumptions can be relaxed at the cost of somewhat more
complex models using arguments similar to those in prior
work [16], [29].

Similar to assumptions in other bulk transfer models [29],
[35], our analysis ignores TCP’s three-way connection es-
tablishment phase and initial slow start phase because the
congestion avoidance algorithm dominates during a long-lived
TCP bulk data transfer.

3) Latency Model: The latency of the TCP transfer is
measured in terms of “rounds”. The first round begins with
the start of congestion avoidance; its duration is one RTT.
All other rounds begin immediately after the previous round,
and also last one RTT. The only exception is the round that
terminates fast recovery and switches to congestion avoidance:
its duration could be shorter than one RTT.

As in prior work [29], [35], we assume that the round
duration is much larger than the time required to transmit
segments in a round, and that the round duration is independent
of the congestion window size. Segment transmission may be
bursty or arbitrarily spaced within the round.

4) Loss Model:Our work introduces a novel two-parameter
segment loss model that captures both the frequency of loss
events and the burstiness of segment losses within a loss event.
We define a loss event (LE) to begin with the first segment loss
in a round that eventually causes TCP to transition from the
congestion avoidance phase to either the fast recovery phase
or the timeout phase.

For a congestion window size ofW
′

, all losses within the
nextW

′

segments (starting from the first loss) are considered
part of the same LE. This hierarchical relationship between
an LE and losses within an LE is illustrated in Figure 1.

During Loss Event

Segment Loss Rate q

LELE LE LE

Loss Event Rate p

One RTT

W¢ Segments

Time

Fig. 1. The Two-Parameter Segment Loss Model

Note that an LE can start at any segment, but once it starts, it
spans at most one RTT (equivalently,W

′

). The loss events are
assumed to occur independently with probabilityp. Segments
transmitted during an LE (except the first) are assumed to
be lost independently with probabilityq (i.e., parameterq
captures the “burstiness” of the segment losses within an LE).
The two parameters can be set separately, to model either
homogenous (q = p) or non-homogeneous (q 6= p) loss
processes [41].

Many throughput models in the literature assume a restricted
version of the foregoing loss model (e.g., [6], [16], [35], [36]).
These models assume that following the first segment loss in
a round, all subsequent segments transmitted in that round
are lost. This assumption is appropriate for networks where
packet losses occur from buffer overrun in DropTail queues;
however, this assumption is inappropriate when packet losses
occur because of active queue management policies or because
of the characteristics of the transmission medium, as in the
case of wireless networks.

Estimation of the two parametersp (the loss event rate) and
q (the segment loss rate within a loss event) is specific to the
application of the model. For example, for applications such as
TCP friendly rate control of non-TCP flows [12], [24], the loss
event ratep can be estimated using the Average Loss Interval
(ALI) technique [12], which computesp as the inverse of the
weighted average of the number of packets received between
loss events. Similar measurement-based approaches may be
used to estimateq using non-invasive sampling [16]. Another
practical option, discussed in Section IV-B, is to estimateq
indirectly from the measured characteristics (e.g., loss event
rate, overall packet loss rate).

III. T HE ANALYTIC MODEL

This section develops the stochastic throughput model for
TCP NewReno bulk data transfer. The model is developed in
two steps. In Section III-A, the model is developed assuming

4

TABLE II
MODEL NOTATION

Parameter Definition
p Loss event rate
q Segment loss rate within a loss event
R Average round-trip time
RTO Average duration of first timeout in

a series of timeouts
W Average of the peak congestion window size

that all loss events are identified by triple duplicate ACKs.
Subsequently, in Section III-B, an enhanced model is devel-
oped that handles both triple duplicate ACKs and timeouts.
The model notation is summarized in Table II.

A. Model without Timeout (NoTO)

In this section, we assume that all loss events are identified
by triple duplicate ACKs, so that no timeouts occur. The model
developed here is referred to as the “NoTO” model.

Ignoring the initial slow start phase, it follows from the
arguments given in [29], [35] that the evolution of the conges-
tion window can be viewed as a concatenation of statistically
identical cycles, where each cycle consists of a congestion
avoidance period, followed by detection of segment loss and
a fast recovery period. Each of these cycles is called a
Congestion Avoidance/Fast Recovery (CAFR) period.

The throughput of the flow can be computed by analyzing
one such CAFR cycle. LetSCAFR be the expected number
of segments successfully transmitted during a CAFR period.
Let DCAFR denote the expected time duration of the period.
Then the average throughput of the flow is:

TNoTO =
SCAFR

DCAFR
. (1)

Before determining the expectations of the variables in
Equation 1, let us consider the illustration in Figure 2. Figure 2
shows the segment transmissions per round in two adjacent
and identical CAFR periods. We focus on theith such CAFR
period, and use this example to illustrate the different events
in a CAFR period. Each CAFR consists of congestion avoid-
ance and fast recovery. The first round of a CAFR period
corresponds to the start of congestion avoidance (marked I
in Figure 2). During congestion avoidance, the congestion
window opens linearly, increasing by one (vertically) the
number of segments transmitted per round. We note that the
time gap between two horizontally adjacent rectangles in the
same CAFR period, on average, equals the RTT. In round
W/2 + 1 = 7 in Figure 2, three (non-contiguous) transmitted
segments are lost. The first of these lost segments (marked J
in Figure 2) is detected in the following round upon receipt of
triple duplicate ACKs, resulting in termination of congestion
avoidance and a fast retransmit (marked N in Figure 2). TCP
then enters fast recovery.

We use the termdrop window to refer to the window’s
worth of segments starting from the first lost segment in round
W/2 + 1 to the segment transmitted just before the receipt of
the first duplicate ACK. Suppose thatm segments are lost
in the drop window. As shown in Figure 2 (and Figure 3),

fast recovery continues form RTTs with TCP sending up to
approximatelyW/2 new segments per RTT. TCP exits fast
recovery and resumes normal congestion avoidance behaviour
when a full ACK (FA) is received.

From our assumptions regarding statistically identical
CAFR periods, we extrapolate and consider the case where
two adjacent CAFR periods are exactly identical, as shown
for example in Figure 2. From Figure 2 we see thatSCAFR

can be expressed as the sum of: 1) the expected number of
segmentsα transmitted between the end of one LE and the
start of the next LE (e.g., between D and J in Figure 2); and
2) the expected number of segmentsδ transmitted between the
first loss and the last loss (e.g., between J and L in Figure 2)
of a loss event. It follows from the assumptions regarding loss
events that the expected value ofα is 1/p [29], [35]. Therefore,

SCAFR =
1

p
+ δ. (2)

Next, we deriveδ. For m uniformly spaced drops in a
typical window of sizeW , the expected number of segments
transmitted between the first and the last loss in the same
CAFR period (e.g., between J and L in Figure 2) is:

δ ≈ W − WE

[
1

m

]
≈ W −

W

E[m]
(3)

The expected value ofm can be obtained as follows. Let
A(W, m) denote the probability ofm segment losses from a
drop window of sizeW . By definition, the first segment in
the drop window is always lost. Because segments are lost
independently of other segments, the probability thatm − 1
segments are lost from the remainingW − 1 segments in
the window follows the Binomial probability mass function.
Therefore,

A(W, m) = CW−1
m−1 (1 − q)W−mqm−1, (4)

whereCW−1
m−1 represents the binomial coefficient.

Since we have assumed that all losses are identifiable by
triple duplicate ACKs, we know thatm ≤ W − 3. Hence2,

E[m] =

W−3∑

m=1

mA(W, m) ≈ 1 + (W − 1)q ≈ 1 + Wq. (5)

SubstitutingE[m] into Equation 3, we obtain:

δ =
W 2q

1 + Wq
. (6)

Finally, substitutingδ into Equation 2 we obtain:

SCAFR =
1

p
+

W 2q

1 + Wq
. (7)

To computeW in terms ofp and q, we need an alternate
expression forSCAFR. From Figure 2, note thatSCAFR

can be expressed as the sum of: 1) the expected number of
segmentsSLI transmitted in the linear increase phase (from
round 1 to roundW/2 + 1); 2) the expected number of
segmentsSβ transmitted from the start of roundW/2 + 2

2This approximation assumesq is small. All subsequent approximations
also assume thatq is small.

5

: New transmission during congestion avoidance

: New transmission during fast recovery : Retransmission during fast recovery (except full ack (FA))

: New transmission during congestion avoidance, but eventually lost

Round ® 2 3 4 5 6 7

B

C

D

E

8

F (FR)

9

G (PA1)

10

H (PA2)

11

I (FA)

CAFR period (i-1)

A

1 2 3 4 5 6 7

J

K

L

M

8

N (FR)

9

O (PA1)

10

P (PA2)

11

Q (FA)

CAFR period i

I

1

Fig. 2. Segment Transmissions in Two Adjacent and IdenticalCAFR Periods

(marked M in Figure 2) until triple duplicate ACKs terminate
congestion avoidance (N in Figure 2); and 3) the expected
number of segmentsSFR transmitted during fast recovery
(from N to Q in Figure 2). Therefore,

SCAFR = SLI + Sβ + SFR. (8)

We will determineSFR first. The time view of a CAFR
period shown in Figure 3 may be helpful in following the en-
suing discussion. When TCP detects a segment loss and enters
fast recovery, the expected number of outstanding segments
is W . With m drops from the window, the source receives
W −m duplicate ACKs during the first RTT of fast recovery.
Each duplicate ACK increases the congestion window by one
segment, so at the end of the first RTT the congestion window
size will be 3

2W −m. This inflated congestion window allows
TCP to sendW

2 − m new segments during the first RTT
of fast recovery, providedm ≤ W

2 . The second RTT starts
with the reception of the first partial ACK (PA1). Immediately
following the receipt of the partial ACK, TCP retransmits
the next lost segment and also transmits one new segment.
During this second RTT of fast recovery,W

2 − m additional
duplicate ACKs will arrive, increasing the congestion window
size by the same amount. This window increase allows the
transmission ofW2 − m new segments as well. In total, TCP
transmits W

2 − m + 1 segments in the second RTT. Form
segment losses, fast recovery requires exactlym round-trip
times to recover all the lost segments with TCP transmitting
W
2 −m+ j−1 new segments in thejth RTT of fast recovery.

Generalizing we obtain:

S
m≤W

2

FR =

m∑

j=1

(
W

2
− m + j − 1

)
=

m

2
(W − m − 1) . (9)

If m > W
2 , TCP will not transmit any new data during the

first RTT of fast recovery, because the congestion window size
3
2W −m at this time is smaller than the amount of outstanding
dataW . With each partial ACK, the congestion window size
increases by one segment. Thus, TCP needsm − W

2 partial
ACKs to inflate the congestion window size to the number of
outstanding segmentsW . Therefore, on arrival of the(m −
W
2 + 1)th partial ACK, TCP can transmit one new segment.

In the next RTT, TCP will transmit two new segments, and so
on. In general:

S
m> W

2

FR =

m−1∑

k=m− W
2

+1

(
W

2
− m + k

)
=

W 2

8
−

W

4
. (10)

Using Equations 4, 9, and 10, the expected number of new
segments transmitted during fast recovery is:

SFR =

W
2∑

m=1

A(W, m) S
m≤W

2

FR +

W−3∑

m= W
2

+1

A(W, m) S
m> W

2

FR

≈
W 2

2

(
q − q2

)
+

W

2

(
1 − 5q + 3q2

)
−

(
1 − 2q + q2

)
. (11)

We next determineSLI for Equation 8. Immediately follow-
ing receipt of a full ACK, fast recovery is terminated and the
congestion window is reset toW/2 (e.g., I in Figure 2). This
also ends the current cycle and normal congestion avoidance
begins. In this phase, the congestion window increases by one
segment per round until it reaches the assumed peak value of
W in roundW/2 + 1. It therefore follows that:

SLI =
W∑

i= W
2

i =
3

8
W 2 +

3

4
W. (12)

To determineSβ for Equation 8, we consider its two
extreme boundary cases. If the first loss occurs at the start of
roundW/2 + 1, then the number of segmentsS

′

β transmitted
in the next round until termination of congestion avoidanceis
0. Similarly, S

′

β = W − 1 if the first loss occurs at the end
of round W/2 + 1. Therefore, we approximate3 Sβ with its
median valueW/2.

Substituting the expressions forSLI , SFR, and Sβ into
Equation 8 and simplifying, we obtain:

SCAFR =

(
3
8 + q

2 − q2

2

)
W 2 +

(
7
4 − 5q

2 + 3q2

2

)
W −

(
1 − 2q + q2

)
.(13)

3This approximation introduces a small amount of error into our model.

6

RTT

Round 11

(<RTT)

J

K

L

Round 7

I

Round 1

DLI = (W/2+1) RTT

M

N

Round 8

O

Round 9

P

Round 10

Q

Db RTT RTT RTT

. . .

DFR = m.RTT

Fig. 3. Time View of a CAFR Period

Equating the right-hand sides of Equation 7 and Equa-
tion 13, and neglecting high-order terms, we can express the
value ofW in terms ofp andq as:

W≈
10pq − 5p +

√
p(24 + 32q + 49p)

p(3 + 4q)
. (14)

Equation 14 encapsulates the essential characteristics ofour
two-parameter loss model, which are illustrated graphically in
Figure 4. Whenp is very small,W is large, but decreases
as q is increased (i.e., fast recovery takes longer, and is less
likely to succeed). Asp increases,W decreases, andq has a
negligible impact, since fast recovery is rarely applicable.

0

20

40

60

80

100

120

140

160

0 0.2 0.4 0.6 0.8 1

W

q

W Value from Equation 14

p = 0.0001
p = 0.001

p = 0.01
p = 0.1

Fig. 4. Effect ofp andq on Window ValueW

To obtain the expected time duration of a CAFR period,
we again refer to the time view of a CAFR period, shown in
Figure 3. From this illustration, we note that:

DCAFR = DLI + Dβ + DFR, (15)

whereDLI is the expected duration of a linear increase period,
Dβ is the expected delay from the start of round (W/2+2) to
the end of congestion avoidance, andDFR is the expected
duration of the fast recovery phase. The duration of the linear
increase phase is:

DLI =

(
W

2
+ 1

)
R. (16)

For m segment losses in the drop window, fast recovery
requiresm round-trip times. Therefore,

DFR = E[m]R ≈ (1 + Wq)R (17)

Using arguments similar to those used for determiningSβ, we
approximate usingDβ = R

2 . SubstitutingDLI , Dβ , andDFR

into Equation 15, we obtain:

DCAFR =

(
W

2
+ Wq +

5

2

)
R (18)

Finally, substituting Equation 7 and Equation 18 into Equa-
tion 1, we obtain:

TNoTO =

1
p + W 2q

1+Wq(
W
2 + Wq + 5

2

)
R

, (19)

whereW can be computed from Equation 14.

B. Full Model (Full)

This section extends the foregoing model to include time-
outs as loss indications. We refer to this as the “Full” model.

We again view the congestion window evolution as a con-
catenation of statistically identical cycles. Each cycle consists
of several CAFR periods followed by a CATOSS period, where
a CATOSS period is the concatenation of congestion avoidance
(CA), timeout (TO), and slow start (SS) periods, as shown in
Figure 5. Therefore, the throughput of a TCP NewReno flow
can be expressed4 as:

TFull =
(1 − pTO)SCAFR + pTO(SCA + STO + SSS)

(1 − pTO)DCAFR + pTO(DCA + DTO + DSS)
(20)

where pTO is the probability that a loss event leads to a
timeout. SX is the expected number of successful segment
transmissions in a period of typeX , andDX is the expected
duration of a period of typeX . Obviously,DCA=DLI + Dβ.
Intuitively, SCA=SLI + Sβ . However, we useSCA = SLI

instead, since TCP forgets outstanding data after timeout.
TCP NewReno may experience a timeout either from the

congestion avoidance phase or from the fast recovery phase.
The former transition occurs when TCP does not receive

4This expression ignores the duration of an incomplete fast recovery phase,
as well as any new segments transmitted therein.

7

W/2

CATOSS

SSCA

CAFRCAFR

CA

CAFRCAFR

TOFR

1

W

0

N
ew

S
eg

m
en

ts
S

en
t

p
er

R
T

T

Time

. . .

Fig. 5. Segment Transmissions in a Cycle (multiple CAFRs followed by
CATOSS)

enough duplicate ACKs to trigger fast retransmit/fast recovery,
while the latter transition occurs when retransmitted segments
are lost during the fast recovery phase. We expresspTO as:

pTO = pDTO + pIFR (21)

where pDTO is the probability of directly transitioning to
timeout from congestion avoidance andpIFR is the probability
of a timeout due to an unsuccessful fast recovery.

We determinepDTO as follows. TCP experiences direct
timeout when more thanW − 3 segments are lost from a
drop window of sizeW . Recalling the definition ofA(W, m)
in Equation 4, we get:

pDTO =

W∑

m=W−2

A(W, m). (22)

When TCP NewReno loses no more thanW − 3 segments
from a drop window of sizeW , it enters fast recovery. On
entering fast recovery, a timeout will occur if any segments
retransmitted during fast recovery are lost. We approximate
this condition by assuming that if a new loss event occurs
during fast recovery, then the segment retransmitted in that
RTT of fast recovery is also lost, thus triggering timeout.
(While we do not explicitly model successive occurrences of
FR, this assumption implicitly captures its effect by increasing
the probability of timeout.) Form losses in the drop window,
NewReno needsm round-trip times, sending approximately
W/2 segments (including retransmissions) per RTT. The prob-
ability that theith segment is lost given that the previousi−1
segments arrived at the destination is(1 − p)i−1p. Therefore,
it follows from our assumptions that:

pIFR =

W−3∑

m=1

A(W, m)
[
p + (1 − p)p + · · · + (1 − p)

mW
2

−1p
]

=

W−3∑

m=1

A(W, m)
[
1 − (1 − p)

mW
2

]
. (23)

Substituting Equations 22 and 23 in Equation 21, we get:

pTO = 1 −

W−3∑

m=1

A(W, m)
[
(1 − p)

mW
2

]
. (24)

Derivation of the expected duration of timeout is similar
to [29]. Furthermore, during timeout TCP does not transmit

any new segments. Thus,

STO = 0 and (25)

DTO = RTO 1+p+2p2+4p3+8p4+16p5+32p6

1−p . (26)

In the slow start phase, the initial window size is 1 and
the window size is doubled every round until the slow start
threshold (W/2) is reached. In the last round of slow start, TCP
transmits W/2 segments and enters congestion avoidance. We
count the duration and segments of the last round of slow start
as being part of congestion avoidance. Hence,

SSS = 1 + 2 + 4 + · · · + W
4 = 21+log W

4 − 1 and (27)

DSS =
(
log W

4 + 1
)
R. (28)

Following the approach in [35], we can replace the nu-
merator of Equation 20 with1p + W 2q

1+Wq . Substituting Equa-
tions 18, 26, 28, andDCA into Equation 20, we obtain:

TFull =
1
p
+ W2q

1+Wq

NR+pT O((1+2p+4p2)RTO+(1+log W
4)R)

, (29)

whereN =
(

W
2 + 3

2 + (1 − pTO)(1 + Wq)
)
, andW can be

computed from Equation 14.
To apply this model, the user should obtain the loss event

ratep, packet loss ratẽq, and round-trip timeR. The ratio of
q̃ to p determinesm, and then the value ofq in the model can
be computed using Equation 5. (Also see Section IV-B and
Equation 30.)

IV. M ODEL VALIDATION

This section validates the proposed NewReno throughput
model using thens-2network simulator5. The results reported
here also illustrate the performance advantages of NewReno
over Reno. Finally, we quantify the ineffectiveness of existing
TCP Reno models in predicting TCP NewReno throughput.

A. Network Model and Traffic Models

Before discussing the simulation results, we present the
basic setup used in the ns-2 simulations. Specifically, we
describe the network model and the various traffic models
used. To conserve space when presenting the results, we
describe only the setup changes with respect to the default
settings discussed here.

The results reported here, with the exception of those in
Section IV-E, are for a simple dumbbell network topology with
a single common bottleneck between all sources and sinks.
Each source/sink pair is connected to the bottleneck link via
a high bandwidth access link. The propagation delays of the
access links are varied to simulate the desired round-trip delay
between a source/sink pair. We refer to the flows that are being
actively monitored as the “foreground” flows, with all other
traffic designated as “background” flows.

All experiments have two long duration foreground flows:
one NewReno flow and one Reno flow. These long duration
flows simulate the bulk data transfer sessions of interest.
The receive buffers for the foreground flows are sufficiently

5http://www.isi.edu/nsnam/ns.

8

provisioned such that their buffer space advertisements donot
limit the congestion window size. The experiments vary the
bottleneck bandwidths (e.g., 15 Mbps to 60 Mbps), the round-
trip delays of the flows (e.g., 20 ms to 460 ms), the bottleneck
queue management policies (e.g., DropTail and RED), and the
load/mix of background traffic (e.g., mix of long duration FTP
transfers, short duration HTTP sessions, and constant bit rate
UDP flows). For RED queue management, theminthresh and
the maxthresh are set to1/3 and2/3 of the corresponding
queue size limit, based on recommendations in Section 6
of [11].6

Background HTTP traffic is simulated using a model similar
to that in [24], [35]. Specifically, each HTTP session consists
of a unique client/server pair. The client sends a single request
packet across the (reverse) bottleneck link to its dedicated
server. The server, upon receiving the request, uses TCP to
send the file to the client. Upon completion of the data transfer,
the client waits for a period of time before issuing the next
request. These waiting times are exponentially distributed and
have a mean of 500 ms. The file sizes are drawn from a Pareto
distribution with mean 48 KB and shape 1.2 to simulate the
observed heavy-tailed nature of HTTP transfers [3].

Background HTTP and FTP sessions use TCP NewReno
with a maximum congestion window size of 64 KB. The
packet size is 1 KB. All packets are of identical size except
HTTP request packets and possibly the last packet of each
HTTP response. The round-trip propagation delays of these
background flows are uniformly distributed between 20 ms
and 460 ms, consistent with measurements reported in the
literature [1], [20].

The background UDP flows are constant bit rate UDP flows
with rate 1 Mbps each. The packet size is 1 KB and the one-
way propagation delay for each UDP flow is 35 ms.

The results reported here are for the “Full” TCP NewReno
model, unless stated otherwise. As a representative TCP Reno
throughput model, we use the full PFTK model from Table I,
which has similar modeling assumptions [29]. This TCP
Reno throughput model has been widely used in prior work
(e.g., [12], [17], [21], [24]).

The necessary input parameters for both analytical models
are obtained from the simulation trace file. All the losses ina
single window of data are counted as one loss event. The loss
event ratep is taken to be the ratio of the total number of loss
events to the total number of segment transmissions, in the
period of interest. For simplicity, we assume a homogeneous
loss process (q = p), unless stated otherwise. The average
round-trip timeR was measured at the sender, andRTO was
approximated as3R.

In simulations where multiple long duration flows share
a single bottleneck link, systematic discrimination has been
observed against some connections [14], [15]. Suchphaseef-
fects, however, rarely arise in experiments that consider amix
of long and short duration flows, with heterogeneous round-
trip propagation delays [15]. As a precautionary measure, the
experiments reported here start all flows at slightly different

6While the difficulties of setting RED parameters are well-documented in
the literature, our modeling results are consistent for other reasonable settings
of RED parameters.

times. The background flows start at uniformly distributed
times between 0 and 2 seconds, and the foreground flows
start at uniformly distributed times between 5 and 7 seconds,
all measured in simulation time since the start of a run. Each
experiment simulates 1000 seconds of run. Results are reported
using data from the last 750 simulated seconds.

B. Bursty Loss Model

Our first experiment illustrates the flexibility of our novel
two-parameter loss model, and the key differences between
our NewReno model and the PFTK model. The simulation
results reported here are for asingle foreground NewReno
flow traversing a 45 Mbps bottleneck link. No background
flows are present, and the round-trip propagation delay of the
NewReno flow is 75 ms. A specialized drop module that takes
as input two parametersp andm was placed on the access link
of the TCP Sink node. This drop module schedules Bernoulli
loss events at ratep; whenever a loss event occurs,m back-
to-back packets are dropped.

We first develop an approximation for computingq from the
measured characteristics of the flow. Given the average loss
rate q̃ observed over the entire duration of the transfer, and
the loss event ratep, a relation betweeñq, q, p, andW can be
obtained as follows. The expected number of segment losses
per loss event ism = q̃/p. Using Equation 5, we obtain:

q ≈
q̃/p− 1

W − 1
, (30)

whereW is computed from Equation 14 usingq = q̃.
Figure 6(a) shows the simulation throughput for the

NewReno flow, along with the results from the analytic model.
In the experiments,m was varied from 1 to 20 while keeping
the loss event rate fixed at 0.05%. The analytic results are
shown for the full NewReno model, withq approximated
using Equation 30. When the loss event rate is low (0.05%),
and there is a single packet loss per loss event, the results
from the NewReno model and the PFTK model are similar.
As the number of packet dropsm per loss event increases,
the simulated NewReno throughput decreases roughly linearly,
since the duration of fast recovery is proportional to the
number of drops. Our model tracks this trend well, while the
PFTK model does not consider the number of packet drops7

per loss event.
Figure 6(b) shows similar results for a higher loss event

rate. The value ofm was varied from 1 to 10, while keeping
the loss event rate fixed at 1.0%. These results show even
greater differences between the NewReno model and the PFTK
model. As the loss event rate increases, or as the number of
packet drops per loss event increases, the simulated NewReno
throughput decreases significantly compared to that predicted
by the PFTK model, while our NewReno model follows the
downward trend well.

These results demonstrate the accuracy and robustness of
our analytic model. The two-parameter loss model is particu-
larly useful in scenarios that involve bursty packet losses. In

7In Figure 6, we used the loss event ratep to parameterize the PFTK model.
Using the packet loss ratemp makes the prediction error even worse.

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Packet Drops (m) per Loss Event

PFTK
NewRenoModel

NewRenoSim

 0

 0.5

 1

 1.5

 2

 0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Number of Packet Drops (m) per Loss Event

PFTK
NewRenoModel

NewRenoSim

(a) Loss Event Ratep = 0.05% (b) Loss Event Ratep = 1.0%

Fig. 6. Model Accuracy with Bursty Packet Losses)

 0.125

 0.25

 0.5

 1

 2

 4

 8

 0 1 2 3 4 5 6 7 8 9 10

T
hr

ou
gh

pu
t (

M
bp

s)

Loss Rate (%)

PFTKreno
PFTK

NewRenoModel
NewRenoSim

RenoSim

Fig. 7. Model Throughput Accuracy (log scale) with Bernoulli Packet Loss

a separate paper [31], we use theq parameter (and a fixed
loss event ratep) to study the effect of bursty packet losses
on two variants of NewReno, namely Slow-but-Steady (SBS)
and Impatient (IMP). Contrary to RFC 3782, we find that the
SBS variant offers superior throughput to IMP in all but the
most extreme packet loss scenarios (e.g., 26 or more segment
losses per window [31]). Similar experiments (not shown here)
clearly demonstrate the superiority of partial window deflation
versus full window deflation in TCP NewReno. These insights
were made possible by the two-parameter loss model.

C. Bernoulli Packet Loss

Before validating the model with background traffic, vali-
dation is carried out in isolation. The configuration considered
here consists oftwo foreground flows traversing a 15 Mbps
bottleneck link. A Bernoulli packet drop module was placed
on the access link of each foreground flow. The bottleneck
router’s buffer was sufficiently provisioned such that there
were no congestion-induced packet losses. Experiments varied
the imposed Bernoulli packet loss rate from 0.01% to 10%.

Figure 7 shows the throughput from the simulations and
the models from representative experiments with round-trip
propagation delay of the foreground flows set to 75 ms. For
the imposed Bernoulli loss rates, the corresponding observed
loss event rates (LER) and packet (segment) loss rates (PLR)
for both foreground flows are shown in Figure 8.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 1 2 3 4 5 6 7 8 9 10

E
xp

er
ie

nc
ed

 L
os

s
R

at
e

(%
)

Imposed Bernoulli Loss Rate (%)

PLR(NewReno)
PLR(Reno)

LER(NewReno)
LER(Reno)

Fig. 8. Packet Loss Rate (PLR) and Loss Event Rate (LER) for the Imposed
Bernoulli Loss Rate

Several important observations are evident from the results
in Figure 7. The results show that the proposed NewReno
throughput model (NewRenoModel in the figures) is able
to track accurately the simulation throughput over the entire
range of loss rates considered. The prediction error of our
model, defined as|simulation−model|/simulation, ranges
from 0% to 15% with an average error of 9.0%. Furthermore,
if the PFTK model (PFTK in the figure) is naively used to
estimate NewReno throughput (based on the loss event rate
experienced by the foreground NewReno flow), the prediction
errors range from 0% to 32%, with an average absolute
prediction error of 11%.

The PFTK model is poor at predicting the simulated Reno
throughput (PFTKreno in the figures, based on the observed
loss event rate for the foreground Reno flow), especially at
high loss rates. At high loss rates, multiple packet losses per
window are possible, leading to multiple window reductions,
or even timeout. The PFTK model essentially considers a
single drop per loss event, and is thus unable to predict the
throughput accurately. The average prediction error is 25%.

The higher prediction errors in the PFTK model can be
attributed to the omission of the Reno fast recovery algorithm
from their model, and the correlated packet loss assumptions of
their model. Note that with the Bernoulli packet drop module,
most packet losses are isolated single packet drops that canbe
recovered using a single fast recovery phase. For low packet
loss rates (e.g., 2% or lower), the throughputs for simulated

10

Reno and NewReno flows are thus similar (because of the
Bernoulli packet loss assumption).

D. HTTP/FTP Background Traffic

The simulation results reported in this section are for a 15
Mbps bottleneck link with a queue of capacity 150 packets.
In order to investigate the effect of varying degrees of multi-
plexing, the total number of background flows is varied from
100 to 200, using a mix of 75% HTTP and 25% FTP flows.
Both foreground flows have a round-trip propagation delay of
75 ms.

Figure 9 shows the simulated throughputs of NewReno and
Reno as well as the throughputs from the analytic models.
Figure 9(a) is for a DropTail bottleneck router, while Fig-
ure 9(b) is for a RED bottleneck router. The simulation results
in Figure 9(a) show that NewReno throughput is often 20-
30% higher than that of Reno. This is because the cross
traffic generates bursty packet losses at the DropTail router
buffer. NewReno is able to recover efficiently from these losses
using its improved fast recovery algorithm. The performance
differences between Reno and NewReno decrease when RED
queues are used, as can be seen in Figure 9(b). The overall
throughput with RED is slightly lower as well.

From Figure 9, we also note that the proposed analytic
model tracks the throughput of the foreground flow for the
range of background traffic considered. The prediction error
of our analytic model averages 4.4% with DropTail queues,
and 8.9% for the RED queue management policy.

The results also show that the PFTK model overestimates
both Reno and NewReno throughputs. The average predic-
tion error is 20% with DropTail queues, due to the bursty
losses induced by the HTTP workload. However, the average
prediction error for RED queues (9.9%) is lower. With RED
queues, the burstiness of packet losses decreases, allowing
some of the packet losses to be recovered by the Reno fast
recovery algorithm. The PFTK model essentially captures a
single packet loss per loss event, though it assumes that
packet losses are correlated within a round. While the PFTK
model is intended for bottleneck routers with DropTail queue
management, rather than those with active queue management,
the PFTK model has been applied in the latter context by
others [9], [30].

Our results indicate that our NewReno model provides
relatively robust results for both DropTail and RED packet
loss scenarios. We have also shown that the PFTK model
is inadequate for modeling NewReno throughput, especially
when the bottleneck link is shared by many bursty flows.

E. Multiple Bottlenecks

This section reports validation results from an experiment
setup with multiple bottlenecks. The network topology used
here consists of two dumbbell networks connected in series
at the bottlenecks. Each bottleneck link had a capacity of
15 Mbps with a buffer space for 150 packets. Two long
duration TCP flows, one NewReno and one Reno, traversed
both bottleneck links. The foreground flows had a round-trip
propagation delay of 75 ms. Background traffic was applied to

 0

 1

 2

 3

 4

 24 30 36 42

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows

PFTK
NewRenoSim

NewRenoModel
PFTKreno
RenoSim

Fig. 11. Model Accuracy with Background UDP Traffic

the bottleneck links such that each background flow traversed
only a single bottleneck link. Specifically, each bottleneck
link experienced background traffic mix that consisted of 75%
HTTP flows and 25% FTP flows. We varied the total number
of flows per bottleneck from 100 to 200.

Note that although statistically identical background load is
simulated on each bottleneck link, randomness in the HTTP
traffic generation process can result in slightly different(and
time-varying) background loads on the bottleneck links. It
is also noteworthy that the foreground flows may experience
losses atboth bottleneck links, and thus the results presented
here are not directly comparable to those for the experiments
with a single bottleneck link.

Figure 10 shows the throughput from the simulations and
the results from the analytic models. As shown in Figure 10,
our NewReno throughput model closely tracks the simulation
throughput over the entire range of background load simulated.
The average prediction error in these experiments is 3.4%.

Compared to the DropTail experiment results, the results
from the experiments with RED queues show somewhat higher
prediction errors. The prediction errors in this setting average
7.5%. We note that the NewReno flow experienced slightly
higher packet loss in the RED experiments.

Similar to earlier results, we observe that the prediction
errors increase significantly if the PFTK model is used to
estimate NewReno throughput. In the multiple bottleneck
experiments, the average prediction error of the PFTK model
(when tracking NewReno throughput) is 25% for DropTail
routers and 27% for RED queue management. The inaccuracy
of the PFTK model arises from its failure to consider the
number of packet drops per loss event. Our model accurately
captures the effect of multiple drops on the duration of the
fast recovery period.

F. UDP Background Traffic

This section considers the impact of background traffic
that is predominantly generated by On-Off Constant Bit Rate
(CBR) UDP flows. The experiments reported here are for a
15 Mbps bottleneck link with a queue limit of 150 packets. The
background traffic consists of a fixed number of HTTP/FTP
background flows (24 HTTP sessions and 8 FTP sessions), and
a varying number of On-Off CBR UDP flows, whose On and
Off times are drawn from a heavy-tailed Pareto distribution

11

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows

PFTKreno
PFTK

NewRenoSim
NewRenoModel

RenoSim

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows

PFTKreno
PFTK

NewRenoSim
NewRenoModel

RenoSim

(a) DropTail (b) RED

Fig. 9. Model Accuracy with Background HTTP/FTP Traffic

 0

 0.1

 0.2

 0.3

 0.4

 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows (per bottleneck)

PFTKreno
PFTK

NewRenoModel
NewRenoSim

RenoSim

 0

 0.1

 0.2

 0.3

 0.4

 100 120 140 160 180 200

T
hr

ou
gh

pu
t (

M
bp

s)

Background Flows (per bottleneck)

PFTKreno
PFTK

NewRenoSim
NewRenoModel

RenoSim

(a) DropTail (b) RED

Fig. 10. Model Accuracy with Multiple Bottlenecks

 0

 0.4

 0.8

 1.2

 15 30 45 60

T
hr

ou
gh

pu
t (

M
bp

s)

Bottleneck Bandwidth (Mbps)

PFTK
PFTKreno

NewRenoSim
NewRenoModel

RenoSim

Fig. 12. Model Accuracy with System Scaling

with 1.2 as the shape parameter. The two foreground flows,
namely NewReno and Reno, each have a round-trip propaga-
tion delay of 75 ms.

The results in Figure 11 again show that TCP NewReno
can significantly outperform TCP Reno under similar network
conditions. We also observe that the proposed analytic model
closely tracks NewReno throughput, with an average predic-
tion error of 3.1% in the DropTail experiments. Similar to the
results reported in the earlier sections, the PFTK model has
higher prediction error (9.0%). For RED queues (not shown
here), the two models produce comparable results, each with
an average prediction error below 10%.

G. System Scaling

The next experiment studies the robustness of our model to
the scaling of network model and workload parameters.

Figure 12 shows the simulated throughput of the foreground
flows and the results from the analytic models for a range
of bottleneck bandwidths. Here, the initial experimental setup
had a 15 Mbps bottleneck link with a buffer of 50 packets
and 100 background flows. The background flows consist of
10% FTP flows and 90% HTTP sessions. At each step, all sys-
tem resources and the background loads are scaled upwards.
Thus, for each new configuration, the bottleneck capacity is
increased by 15 Mbps, the queue size by 50 packets, and the
number of background flows by 100 (90 HTTP sessions and
10 FTP sessions). The foreground NewReno and Reno flows
each have a round-trip propagation delay of 75 ms.

The simulation results show that NewReno throughput is
typically 20-35% higher than Reno throughput under identical
network conditions. It can be observed that our NewReno
analytic model accurately tracks the throughput observed in
the simulations for a wide range of bandwidths. The average
prediction error of the NewReno model is 5.1%. Similar to
observations made in earlier sections, predicting NewReno
throughput with the PFTK throughput model has higher pre-
diction errors (e.g., an average prediction error of 11%). The
average prediction error of PFTK for Reno throughput is 17%.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 25 50 75 100 125 150

T
hr

ou
gh

pu
t (

M
bp

s)

Bottleneck Buffer Size (packets)

PFTKreno
PFTK

NewRenoSim
NewRenoModel

RenoSim

Fig. 13. Model Accuracy with Varying Buffer Size

Fig. 14. Testbed for Emulation Experiments

H. Bottleneck Buffer Size

The next experiment tests the sensitivity to the bottleneck
buffer size, which affects the overall packet loss rate as well
as the burstiness of packet losses. In this experiment, we set
the number of background flows to 100, with 50 FTP flows
and 50 HTTP flows. The bottleneck buffer is changed from
25 packets to 150 packets in increments of 25. The other
simulation parameters are kept identical to the experiments
in Section IV-D.

Figure 13 shows the throughput results along with model
predictions for the different buffer sizes. The NewReno model
tracks the simulation throughput reasonably well, with an
average prediction error of 2.9%. The PFTK model prediction
for NewReno throughput is poor, with an average prediction
error of 28%. The accuracy of our model stems from its careful
consideration of the fast recovery process for bursty losses.
As in other cases with bursty packet losses, the PFTK model
overestimates the throughput, since it implicitly assumesthat
all losses are recoverable within a simple fast recovery period
that lasts only a single RTT (assuming a timeout does not
occur).

This experiment reinforces the generalized observations
made in Section IV-B, and shows that the proposed NewReno
model provides more robust throughput predictions than PFTK
when congestion loss dominates.

V. EMULATION EXPERIMENTS

We validated our TCP NewReno throughput model using a
real TCP source and a real TCP sink on an emulated wide
area network in our laboratory. This section describes the
experimental testbed used for emulation, the emulated network
configuration, and the experimental results.

A. Testbed Configuration

The testbed consists of three physical machines on a
100 Mbps private Ethernet LAN, as shown in Figure 14. One
machine serves as the TCP source node, with another as the
TCP destination node, and the third as the network emulator.

The TCP source node was a 1.8 GHz Intel Pentium 4
machine with 512 MB of RAM, running the FreeBSD 4.11
operating system. We verified that the NewReno implementa-
tion in the FreeBSD kernel conformed to the TCP NewReno
description in RFC 3782. In addition, we instrumented the
FreeBSD kernel to collect statistics required for model val-
idation such as the number of timeout (TO) events, the
number of fast recovery (FR) events, the total transfer duration
(in seconds), the total bytes successfully transferred (Bytes),
and the fine-grained RTT. The TCP destination node was a
2.8 GHz Intel Xeon with 1 GB of RAM. This machine was
running Linux 2.6.8 as the operating system.

We usediperf 8 for generating TCP bulk data transfers.
This software, freely available from NLANR, is used for
measuring TCP and UDP performance. In our experiments, we
ran iperf in the TCP-mode to generate traffic representing
bulk data transfer.

We used the Internet Protocol and Traffic Network Emulator
(IP-TNE) [38] to emulate a wide area network. IP-TNE is
a high-performance internetwork emulation tool that uses a
parallel discrete-event simulation kernel. In our experiments,
all iperf traffic between the TCP source and TCP desti-
nation traverses the virtual (simulated) wide area network.
IP-TNE transfers IP packets as needed between the real and
the simulated network, and models packet transmissions in
the emulated wide area network. IP-TNE was running on
a 3.2 GHz Intel Xeon machine with 4 GB of RAM; the
operating system on this machine was Red Hat Enterprise
Linux Academic Server Edition 4.

B. Emulated Network

The experiments reported here use a simple dumbbell net-
work topology. There is a single bottleneck link of capacity
10 Mbps between the TCP source node and the TCP sink node.
The TCP source and destination nodes are each connected
to the bottleneck link by a 100 Mbps access link. In the
experiments, the round-trip propagation delay of the emulated
network is 50 ms.

All routers in the emulated network use FIFO queueing,
with DropTail queue management. We installed a Bernoulli
packet drop module on the access link of the TCP destination
node to drop packets at a predetermined rate. The buffer at
the bottleneck router was sufficiently provisioned such that
there were no congestion-induced packet losses. This setupis
simple, but allows us to compare the emulation results with
those fromns-2simulations.

C. Results

In our emulation experiments, we varied the imposed packet
loss rate from 0.5% to 3%, in steps of 0.5%. Table III summa-
rizes statistics obtained from the emulation experiments.Note

8http://dast.nlanr.net/Projects/Iperf/

13

TABLE III
SUMMARY OF EMULATION EXPERIMENTS

Loss TO FR RTT (ms) Duration Bytes
Rate (sec.)

0.50% 5 556 55.56 500.54 169,942,625
1.00% 21 765 57.31 502.33 116,768,593
1.50% 38 841 58.48 502.62 89,441,537
2.00% 68 864 59.06 501.92 72,544,825
2.50% 113 775 59.65 502.11 55,202,129
3.00% 129 777 60.23 502.92 47,554,586

0

0.5

1

1.5

2

2.5

3

3.5

0.50 1.00 1.50 2.00 2.50 3.00

Imposed Packet Loss Rate (%)

T
h

ro
u

g
h

p
u

t
(M

b
p

s
)

Emulation

Model

Fig. 15. Model Accuracy in WAN Emulation

that summing the number of FR and TO events represents
the total number of loss events experienced by the TCP
flow. The segment size (orSegsize) for all transfers is 1448
byte excluding TCP and IP headers. As in [29], we use the
expression FR+TO

Bytes/Segsize to estimate the loss event ratep. This
computed loss event rate and the measured RTT are used as
inputs to our “Full” TCP NewReno throughput model. In our
computation of the model estimated throughputs, we used the
approximationq = p.

In the absence of loss (p=0%), the NewReno flow fully uti-
lizes the 10 Mbps bottleneck link. The achieved throughput is
9.59 Mbps excluding TCP/IP header overhead, and 9.93 Mbps
including TCP/IP overhead.

Figure 15 shows the (emulated) throughput attained by the
TCP flow, along with the throughput predicted by our model.
All these throughput calculations exclude the TCP/IP header
overhead. At 1.5% imposed loss rate, the emulation through-
put is 1.42 Mbps and the model prediction is 1.46 Mbps,
correspondingly the prediction error is 3.0%. The maximum
estimation error observed is 21% (at an imposed packet loss
rate of 3%), and the average prediction error is 11%.

In general, our model predicts the TCP NewReno through-
put successfully in the experiments considered.

VI. I NTERNET EXPERIMENTS

As a final step for model validation, we conducted sev-
eral experiments on the Internet. With help from selected
colleagues around the globe, we measured the throughput
achieved for 5 MB file transfers from our BSD Unix server
site in Calgary to 6 different client locations: USA, Canada,
UK, Australia, Bangladesh, and Japan. For space reasons, we
only present results from the latter experiment, which had the
worst-case prediction error observed.

TABLE IV
EXPERIMENTAL RESULTS FROMCALGARY TO JAPAN

Imposed TO FR Actual RTT Duration Expt Model
PLR LER (ms) (sec) (Kbps) (Kbps)

0.00% 7 27 0.98% 229 106.34 379 497
382*

0.50% 5 39 1.27% 245 120.12 335 394
1.00% 9 58 1.93% 237 134.84 299 297
1.50% 24 87 3.19% 253 195.73 206 202
2.50% 59 100 4.57% 256 277.23 145 147
2.00% 26 76 2.93% 300 302.13 133 173
3.00% 59 119 5.12% 260 290.15 139 141

To validate our model predictions at different loss rates,
we added controlled levels of packet loss to our experiments
using DummyNet [34]. We varied the imposed packet loss
rate (PLR) from 0.5% to 3%, leaving bandwidth and delay
unchanged. Actual losses always exceed the imposed PLR.

Table IV shows the results from the Japan experiment.
The (Full) NewReno model predicts the observed throughputs
reasonably well, with an average prediction error of 12%.
These model predictions use the assumptionq = p. The
native network path (i.e., with zero imposed PLR) is lossy,
experiencing a loss event rate (LER) of 0.98%, and a PLR
of 6.21%. The prediction error for this case is high at 31%,
because the average number of segment losses per loss event
(m = 6.21

0.98 = 6.4) is relatively large, and the assumptionq = p
is violated. Usingq = m−1

W−1 in the model (denoted with ‘*’
in Table IV) reduces the prediction error to 0.94%.

VII. CONCLUSIONS

This paper presents an analytic model for the bulk data
transfer performance of TCP NewReno. The model expresses
steady-state throughput in terms of RTT and loss rate.

Our NewReno throughput model has three important fea-
tures. First, we explicitly model the fast recovery algorithm
of TCP NewReno, which is important since a NewReno flow
may spend a significant amount of time in the fast recovery
phase. Second, we also consider the possibility of incurring a
timeout following an unsuccessful fast recovery phase. Third,
our analytical model uses a flexible two-parameter loss model
that captures both the loss event rate, as well as the burstiness
of segment losses within a loss event, and thus is able to better
capture the dynamics of TCP loss events on the Internet.

We validated our model with extensivens-2 simulation
experiments. We also validated our model using a real TCP
NewReno implementation. Our results show that the proposed
model can predict steady-state TCP NewReno throughput for
a wide range of network conditions, unlike existing Reno
models. The results also illustrate the significant performance
advantages of NewReno over Reno in many scenarios because
of NewReno’s improved fast recovery algorithm.

Our ns-2 simulation scripts are available from
http://www.cpsc.ucalgary.ca/˜carey/software.html

The authors thank Martin Arlitt, Derek Eager, Sally Floyd,
Majid Ghaderi, and the ToN reviewers for constructive
comments on earlier versions of this paper. Financial support
for this work was provided by NSERC and iCORE.

14

REFERENCES

[1] M. Allman. A Web Server’s View of the Transport Layer.ACM
Computer Communications Review, 30(5):10–20, October 2000.

[2] E. Altman, K. Avrachenkov, and C. Barakat. A Stochastic Model of
TCP/IP with Stationary Random Losses. InProc. of ACM SIGCOMM,
pages 231–242, Stockholm, Sweden, August 2000.

[3] M. Arlitt and C. Williamson. Internet Web Servers: Workload Charac-
terization and Performance Implications.IEEE/ACM Transactions On
Networking, 5(5):631–645, October 1997.

[4] D. Bansal and H. Balakrishnan. Binomial Congestion Control Algo-
rithms. InProc. of IEEE INFOCOM, pages 631–640, Anchorage, USA,
April 2001.

[5] L. Brakmo, S. O’Malley, and L. Peterson. TCP Vegas: New Techniques
for Congestion Detection and Avoidance. InProc. of ACM SIGCOMM,
pages 24–35, New York, USA, August 1994.

[6] N. Cardwell, S. Savage, and T. Anderson. Modeling TCP Latency. In
Proc. of IEEE INFOCOM, pages 1742–1751, Tel-Aviv, March 2000.

[7] K. Fall and S. Floyd. Simulation-Based Comparisons of Tahoe, Reno,
and Sack TCP.ACM Computer Communication Review, 26(3):5–21,
July 1996.

[8] V. Firoiu and M. Borden. A Study of Active Queue Management for
Congestion Control. InProc. of IEEE INFOCOM, Tel-Aviv, Israel,
March 2000.

[9] S. Floyd. Connections with Multiple Congested Gatewaysin Packet-
Switched Networks.ACM Comp. Comm. Rev., 21(5):30–47, 1997.

[10] S. Floyd and K. Fall. Promoting the Use of End-to-End Congestion
Control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458–472, 1999.

[11] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An Algorithms
for Increasing the Robustness of RED’s Active Queue Management.
Technical Report, August 2001.

[12] S. Floyd, M. Handley, J. Padhye, and J. Widmer. Equation-Based Con-
gestion Control for Unicast Applications. InProc. of ACM SIGCOMM,
pages 43–56, Stockholm, Sweden, August 2000.

[13] S. Floyd, T. Henderson, and A. Gurtov. The NewReno Modification to
TCP’s Fast Recovery Algorithm. RFC 3782, April 2004.

[14] S. Floyd and V. Jacobson. On Traffic Phase Effects in Packet-Switched
Gateways. Internetworking: Research and Experience, 3(3):115–156,
September 1992.

[15] S. Floyd and E. Kohler. Internet Research Needs Better Models. In
Proc. of First Workshop on Hot Topics in Networking, Princeton, USA,
October 2002.

[16] M. Goyal, R. Guerin, and R. Rajan. Predicting TCP Throughput
from Non-Invasive Network Sampling. InProc. of IEEE INFOCOM,
Hiroshima, Japan, March 2002.

[17] Q. He, C. Dovrolis, and M. Ammar. On the Predictability of Large
Transfer TCP Throughput. InProc. of ACM SIGCOMM, Philadelphia,
USA, August 2005.

[18] V. Jacobson. Congestion Avoidance and Control. InProc. of ACM
SIGCOMM, pages 314–329, Stanford, CA, USA, August 1988.

[19] V. Jacobson. Berkeley TCP evolution from 4.3-Tahoe to 4.3 Reno. In
Proc. of the 18th IETF, Vancouver, Canada, August 1990.

[20] H. Jiang and C. Dovorolis. Passive Estimation of TCP Round-trip Times.
ACM Computer Communication Review, 32(3):75–88, July 2002.

[21] D. Kosti, A. Rodriguez, J. Albrecht, and A. Vahdat. Bullet: High
Bandwidth Data Dissemination using an Overlay Mesh. InProc. of
ACM SOSP, Bolton Landing, USA, October 2003.

[22] A. Kumar. Comparative Performance Analysis of Versions of TCP
in a Local Network with a Lossy Link. IEEE/ACM Transactions on
Networking, 6(4):485–498, August 1998.

[23] T. Lakshman and U. Madhow. The Performance of TCP/IP forNetworks
with High Bandwidth-Delay Products and Random Loss.IEEE/ACM
Transactions on Networking, 5(3):336–350, July 1997.

[24] A. Mahanti, D. Eager, and M. Vernon. Improving Multirate Congestion
Control Using a TCP Vegas Throughput Model.Computer Networks,
48(2):113–136, June 2005.

[25] M. Mathis, J. Semke, J. Mahdavi, and T. Ott. The Macroscopic
Behavior of the TCP Congestion Avoidance Algorithm.ACM Computer
Communication Review, 27(3):67–82, July 1997.

[26] A. Medina, M. Allman, and S. Floyd. Measuring the Evolution of
Transport Protocols in the Internet.Computer Communications Review,
35(2):37–51, April 2005.

[27] A. Misra and T. Ott. The Window Distribution for Idealized TCP
Congestion Avoidance with Variable Packet Loss. InProc. of IEEE
INFOCOM, pages 1564–1572, New York, USA, March 1999.

[28] V. Misra, W. Gong, and D. Towsley. Stochastic Differential Equation
Modeling and Analysis of TCP-Windowsize Behavior. InProc. of IFIP
Performance, Istanbul, Turkey, October 1999.

[29] J. Padhye, V. Firioiu, D. Towsley, and J. Kurose. Modeling TCP
Throughput: A Simple Model and its Empirical Validation. InProc.
of ACM SIGCOMM, Vancouver, Canada, September 1998.

[30] J. Padhye and S. Floyd. On Inferring TCP Behavior. InProc. of ACM
SIGCOMM, pages 287–298, San Deigo, USA, August 2001.

[31] N. Parvez, A. Mahanti, and C. Williamson. TCP NewReno: Slow-
but-Steady or Impatient? InProceedings of IEEE ICC 2006, Istanbul,
Turkey, June 2006.

[32] V. Paxson. Empirically Derived Analytic Models of Wide-Area TCP
Connections.IEEE/ACM Trans. on Networking, 2(4):316–336, 1994.

[33] J. Postel. Transmission Control Protocol. RFC 793, September 1980.
[34] L. Rizzo. Dummynet and Forward Error Correction. InProc. of Freenix,

New Orleans, USA, June 1998.
[35] C. Samios and M. Vernon. Modeling the Throughput of TCP Vegas. In

Proc. of ACM SIGMETRICS, San Diego, USA, June 2003.
[36] B. Sikdar, S. Kalyanaraman, and K. Vastola. An Integrated Model for the

Latency and Steady-State Throughput of TCP Connections.Performance
Evaluation, 46(2-3):139–154, September 2001.

[37] B. Sikdar, S. Kalyanaraman, and K. Vastola. Analytic Models for
the Latency and Steady-State Throughput of TCP Tahoe, Reno and
SACK. IEEE/ACM Transactions on Networking, 11(6):959–971, De-
cember 2003.

[38] R. Simmonds, R. Bradford, and B. Unger. Applying Parallel Discrete
Event Simulation to Network Emulation. InProc. ACM Parallel and
Distributed Simulation, pages 15–22, Bologna, Italy, May 2000.

[39] W. Stevens.TCP/IP Illustrated Vol. 1: The Protocols. Addison-Wesley,
Boston, USA, 1994.

[40] W. Stevens and G. Wright.TCP/IP Illustrated Vol. 2: The Implementa-
tion. Addison-Wesley, Boston, USA, 1995.

[41] M. Yajnik, S. Moon, J. Kurose, and D. Towsley. Measurement and
Modeling of the Temporal Dependence in Packet Loss. InProc. of
IEEE INFOCOM, pages 345–352, New York, NY, March 1999.

Nadim Parvez is a Ph.D. candidate in the De-
partment of Computer Science at the University
of Calgary. He holds a B.E. in Computer Science
and Engineering from the Bangladesh University of
Engineering Technology and a M.Sc. in Electrical
and Computer Engineering from the University of
Manitoba. His research interests include Internet
protocols, TCP modeling, peer-to-peer systems, and
media streaming systems.

Anirban Mahanti is a Senior Researcher at NICTA.
He holds a B.E. in Computer Science and Engi-
neering from the Birla Institute of Technology (at
Mesra), India, and a M.Sc. and a Ph.D. in Com-
puter Science from the University of Saskatchewan.
His research interests include network measurement,
TCP/IP protocols, performance evaluation, and dis-
tributed systems.

Carey Williamson is a Professor in the Department
of Computer Science at the University of Calgary,
where he holds an iCORE Chair inBroadband
Wireless Networks, Protocols, Applications, and Per-
formance. He has a B.Sc.(Honours) in Computer
Science from the University of Saskatchewan, and
a Ph.D. in Computer Science from Stanford Univer-
sity. His research interests include Internet protocols,
wireless networks, network traffic measurement, net-
work simulation, and Web performance.

