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Abstract—This paper develops a simple and accurate stochastic timeout events that Reno experiences [13]. TCP's selective

model for the steady-state throughput of a TCP NewReno bulk
data transfer as a function of round-trip time and loss behavour.
Our model builds upon extensive prior work on TCP Reno
throughput models but differs from these prior works in three
key aspects. First, our model introduces an analytical chacter-
ization of the TCP NewReno fast recovery algorithm. Second,
our model incorporates an accurate formulation of NewRens
timeout behaviour. Third, our model is formulated using a flexible
two-parameter loss model that can better represent the diwse
packet loss scenarios encountered by TCP on the Internet.

We validated our model by conducting a large number of
simulations using thens-2 simulator and by conducting emulation
and Internet experiments using a NewReno implementation in
the BSD TCP/IP protocol stack. The main findings from the
experiments are: (1) the proposed model accurately predistthe
steady-state throughput for TCP NewReno bulk data transfes
under a wide range of network conditions; (2) TCP NewReno
significantly outperforms TCP Reno in many of the scenarios
considered; and (3) using existing TCP Reno models to estinea
TCP NewReno throughput may introduce significant errors.

Index Terms—TCP, analytical modeling, simulation, ns-2

I. INTRODUCTION

The Transmission Control Protocol (TCP) [33] provide

reliable, connection-oriented, full-duplex, unicast aateliv-

ery on the Internet. Modern TCP implementations also i

acknowledgement (SACK) option was proposed to allow re-
ceivers to ACK out-of-order data [7]. With SACK TCP, a
sender may recover from multiple losses more quickly than
with NewReno. The aforementioned TCP variants use segment
losses to estimate available bandwidth. TCP Vegas uses a
novel congestion control mechanism that attempts to detect
congestion in the network before segment loss occurs [SP TC
Vegas, however, is not widely deployed on the Internet today

Analytic modeling of TCP’s congestion-controlled through
put has received considerable attention in the literatarg. (
[2], [4], [6], [9], [16], [22], [23], [25], [27]-[29], [32], [35]}-
[37]). These analytical models have: (1) improved our un-
derstanding of the sensitivity of TCP to different network
parameters; (2) provided insight useful for development of
new congestion control algorithms for high bandwidth-glela
networks and wireless networks; and (3) provided a means
for controlling the sending rate of non-TCP flows such that
network resources may be shared fairly with competing TCP
flows. Most of these throughput models are based on TCP
Reno [2], [6], [9], [16], [23], [25], [27]-[29], [32], while
some models are based on SACK [36], [37], Vegas [35],
and NewReno [22]. A detailed NewReno throughput model,

however, seems missing from the literature.

clude congestion control mechanisms that adapt the sourcg,;g paper develops an analytic model for the throughput

transmission behaviour to network conditions by dynantycal

of a TCP NewReno bulk data transfer as a function of round-

computing thecongestion windowsize. The goal of TCP i time (RTT) and loss rate. Our work is motivated, in part,
congestion control is to increase the congestion window sig, , eyious studies that indicate that TCP NewReno is widely
if there is additional bandwidth available on the networkd a deployed on the Internet [26], [30]. Furthermore, RFC 3782
decrease the congestion window size when there is Congesqﬂdicates that NewReno is preferable to Reno, as NewReno

It is widely agreed that the congestion control schemes Blovides better support for TCP peers without SACK [13].
TCP provide stability for the “best effort” Internet. These

mechanisms increase network utilization, prevent staymaif
flows, and ensure inter-protocol fairness [10].

Our TCP NewReno throughput model builds upon the well-
known Reno model proposed by Padleteal. [29], but differs

In today’s Internet, several variants of TCP are deployeffom this PFTK model in three important ways. First, we
These variants differ with respect to their congestion raint explicitly model the fast recovery algorithm of TCP NewReno
and segment loss recovery techniques. The basic congestiorprior work [29], Reno’s fast recovery feature was not

control algorithms, namelglow starf congestion avoidance modeled. Depending on the segment loss characteristics, a
and fast retransmit were introduced in TCP Tahoe [18].NewReno flow may spend significant time in the fast recovery
In TCP Reno [19], thefast recoveryalgorithm was added. phase, sending per RTT an amount of data approximately equal
This algorithm uses duplicate acknowledgements (ACKs) to the slow start threshold. Second, we present an accurate
trigger the transmission of new segments during the regovdormulation of NewReno’s timeout behaviour, including the
phase, so that the network “pipe” does not empty followingossibility of incurring a timeout following an unsuccedgsf

a fast retransmit. TCP NewReno introducedianprovedfast fast recovery. Third, our approach uses a two-parameter los
recovery algorithm that can recover from multiple lossesin model that can model the loss event rate, as well as the
single window of data, avoiding many of the retransmissidourstiness of segment losses within a loss event. These two
characteristics have orthogonal effects on TCP: a lossteven
triggers either fast recovery or a timeout, whereas thetburs
ness of losses affects the duration of the fast recoverpgeri
and thus the performance of NewReno [31].
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Table | summarizes the Reno and NewReno models dign Il presents an overview of NewReno's fast recovery
cussed in this paper. (The notation used is defined in Tal)le Rigorithm and our modeling assumptions. The proposed an-
While some researchers believe that the PFTK model agytic model for TCP NewReno throughput is presented in
adequate for modeling NewReno throughput, we show in thection 1ll. The model is validated using simulations in
paper that this is not the case. In general, using the sim@ection IV, network emulations in Section V, and Internet
version of PFTK overestimates throughput, since timeorgs axperiments in Section VI. Section VII concludes the paper.
ignored, while (incorrectly) parameterizing the PFTK mbde
with packet loss rate instead of loss event rate tends torunde
estimate throughput. In some cases, these two opposing erro
offset each other, coincidentally leading to gopd pred'rmi_ A. The NewReno Fast Recovery Algorithm
As the Full TCP Reno model has been applied extensively
in diverse areas, including TCP friendly rate control [12], This section presents an overview of NewReno's improved
[24], active queue management [8], and overlay bandwidi@st recovery algorithm [13]. All other congestion contcoim-
management [17], [21], we compare how accurately the F@pnents of NewReno, namely slow start, congestion avoijanc
Reno model estimates NewReno's throughput. Our resu@8d fast retransmit, are identical to that of Reno. The re&de
show that the Full Reno model overestimates throughput feferred to references [19], [39], [40] for a detailed treant
both Reno and NewReno bulk transfers. In general, we figfi TCP Reno congestion control.
that a detailed characterization of NewReno fast recoveryDuring congestion avoidance, receipt of four back-to-back
behaviour, as provided in our model, is required to charamte identical ACKs (referred to as “triple duplicate ACKs”) cas
NewReno throughput accurately. the sender to perform fast retransmit and to enter fast egov

We validated our model by conducting a comprehensive dstfast retransmit, the sender does the following:
of simulations using thes-2 simulator. In addition, we em- 1) retransmits the lost segment;
pirically validated our model by experimenting with the TCP 2 sets the slow start thresholeithresh to cwnd/2 (where
NewReno implementation in the BSD TCP/IP protocol stack  .n is the current congestion window size); and
in an emulation environment, and with Internet experiments 3) setscwnd to ssthresh (new) plus 3 segments.

Our results show that the proposed model can predict steady-

state throughput of a TCP NewReno bulk data transfer forﬁIn fast recovery (FR), the sender continues to increase
. s the congestion window by one segment for each subsequent
wide range of network conditions.

Our TCP NewReno model also differs substantially frorﬁuloll(.:ate ACK received. The |_ntU|t|on beh'r.]d t_he fast reagy
, . ; algorithm is that these duplicate ACKs indicate that some
Kumar's NewReno model [22]. First, Kumar's model was

developed for a local area network (LAN) environment and d%egments are reaching the destination, and thus can be used

not consider the effect of propagation delay on TCP througho- trigger new segment transmissions. The sender can tiansm

put. Propagation delays cannot be ignored in environmente”” segments if permitted by its congestion window.

such as the Internet, and our model explicitly considers RT'I'_In TCP Reno, receipt of a non-duplicate ACK results in

effects. Second. Kumar's model. unlike the model preseimrtedw'ndow deflationcwnd is set tossthresh (i.e., the congestion
' ’ ’ indow size in effect when the sender entered FR), FR ter-

this paper, does not have a closed form. Specifically, ttieug" . . .
inates, and normal congestion avoidance behaviour resume

put estimation using the Kumar model [22] requires use il ¢ d qf th ind
numerical methods to compute the expected window size a eén multiple segments are dropped from the same window
data, Reno may enter and leave FR several times, causing

the expected cycle time. In contrast, our model provides0 ltinle reducti fth : ind
simple closed form for throughput computation. The thirg?u'tip'e reductions o .t-e conge:stlon win OV,V' ,
(and probably the most significant) difference between the 1 CP NewReno modifies Reno’s FR behaviour on receipt of

two models is with respect to the modeling of NewReno@ Non-duplicate ACK, by distinguishing between a *full” ACK
(FA) and a “partial” ACK (PA). A full ACK acknowledges all

fast recovery behaviour. In Kumar’'s work, the transmissio _
of new segments and the duration of fast recovery are mggments that were outstanding at the start of FR, whereas a

explicitly modeled: his model considers only the probapitif partial ACK acknowledges some but_ not all of this (_)utstagdin
TCP transitioning to fast recovery. The improved fast rezgy d2ta. Unlike Reno, where a partial ACK terminates FR,
algorithm is NewReno's key innovation with respect to itleWRENo retransmits the segment next in sequence based on

parent Reno, and we explicitly model TCP NewReno's fagl?e partial ACK, and reduces the congestion window by one
recovery behaviour in detail. In addition, our extensivawia- €SS than the number of segments acknowledggdhe partial

tion experiments demonstrate substantially greater tfiput ACK. Thus NewReno recovers from multiple segment losses

differences between Reno and NewReno (e.g., 30-50%) t{gthe same window by retransmitting one lost segment per
in Kumar's work. We do not present any comparisons witR | I» remaining in FR until a full ACK is received.

Kumar's NewReno throughput model because that model wa2n receiving a full ACK, NewReno setsund to ssthresh,
developed for a fundamentally different network enviromme t€rminates FR, and resumes congestion avoidance.

(i.e., a LAN with negligible propagation delay, and a wissde

link with random packet |OSS), and furthermore, has not been This yvmdow redu_ctlon strategy is referred to partial W|nd_0w deflation
. I lidated 122 In full window deflation cwnd is set tossthresh when partial ACKs are
experimentally validated [22]. received. The current NewReno proposal in RFC 3782 recordmtite partial

The remainder of this paper is organized as follows. Seeindow deflation option.

Il. BACKGROUND AND ASSUMPTIONS



TABLE |
COMPARISON OFTCP THROUGHPUTMODELS (SEGMENTS PER ROUND TRIP TIMIR)

Model TCP Reno [29] (PFTK) TCP NewReno Details
Simple (NoTO) —V% w Section IlI-A (Eqg. 19)
R (FWai 3)R '
1 l*]‘f‘qu
2 q 1 -
Full Model Ry/(2p/3)+RTO min(1,34/(3p/8))p(1+32p2) NR+pro((14+2p+4p2) RTO+(1+1log W )R)’ Section 11I-B (Eq. 29)
where N = (% +3 4+ (1—pro)(1+ Wq))

B. Assumptions Loss Event Rate p
. . ) . . . LE LE LE LE
This section outlines our assumptions regarding the app'El]l]l] 01 0008 07 oooononofiaoe 0 donoonono fOG0 0§ 0ooo o
cation, the sender/receiver, and the network. Except fer th .
segment loss model, all our assumptions are similar to those . During Loss Event ™~ Time
in prior work (e.g., [6], [16], [25], [29], [35], [36]). " SegmentLossRateq "~

1) Application Layer: Our model focuses on the steady-
state throughput forTCP bulk transfers We consider an
application process that has an infinite amount of data td sen
from a source node to a destination node.

2) TCP Sender and Receive©ur model assumes thatFig. 1. The Two-Parameter Segment Loss Model
the sender is using the TCP NewReno congestion control
algorithm. The sender always transmits full-sized (i.eS3)
segments whenever the congestion window allows it to d¥pte that an LE can start at any segment, but once it starts, it
so. We assume that the sender is constrained only by &®ans at mostone RTT (equivalentl, ). The loss events are
congestion window size, and not by the receiver’s buffee siAssumed to occur independently with probabijitySegments
or advertised window. Also, the receiver sends one AcKansmitted during an LE (except the first) are assumed to
for each received segment, and ACKs are never lost. Thd¥ lost independently with probability (i.e., parametery
assumptions can be relaxed at the cost of somewhat méaPtures the “burstiness” of the segment losses within an LE
complex models using arguments similar to those in pridhe two parameters can be set separately, to model either
work [16], [29]. homogenous ¢( = p) or non-homogeneous; (# p) loss

Similar to assumptions in other bulk transfer models [29processes [41].

[35], our analysis ignores TCP’s three-way connection es-Many throughput models in the literature assume a restticte
tablishment phase and initial slow start phase because ¥§sion of the foregoing loss model (e.g., [6], [16], [36]).
Congestion avoidance algorithm dominates during a |0v@|| These models assume that f0||0Wing the first Segment loss in
TCP bulk data transfer. a round, all subsequent segments transmitted in that round

3) Latency Model: The latency of the TCP transfer is@re lost. This assumption is appropriate for networks where
measured in terms of “rounds”. The first round begins witRacket losses occur from buffer overrun in DropTail queues;
the start of congestion avoidance; its duration is one RTTOWever, this assumption is inappropriate when packeebss
All other rounds begin immediately after the previous roun@ccur because of active queue management policies or ecaus

and also last one RTT. The only exception is the round th@k the characteristics of the transmission medium, as in the

terminates fast recovery and switches to congestion amoila case of wireless networks.
its duration could be shorter than one RTT. Estimation of the two parameteps(the loss event rate) and

As in prior work [29], [35], we assume that the round! (th.e segment loss rate within a loss event) i_s specific to the
duration is much larger than the time required to transnfPPlication of the model. For example, for applicationssas
segments in a round, and that the round duration is independECP friendly rate control of non-TCP flows [12], [24], the $os
of the congestion window size. Segment transmission may B¥ent ratep can be estimated using the Average Loss Interval
bursty or arbitrarily spaced within the round. (AL_I) technique [12], which computegs as the inve_rse of the

4) Loss Model:Our work introduces a novel two-parametetveighted average of the number of packets received between
segment loss model that captures both the frequency of 638 events. Similar measurement-based approaches may be
events and the burstiness of segment losses within a loss evéSed to estimate using non-invasive sampling [16]. Another
We define a loss event (LE) to begin with the first segment loBgactical option, discussed in Section IV-B, is to estimate
in a round that eventually causes TCP to transition from tpadirectly from the measured characteristics (e.g., logne
congestion avoidance phase to either the fast recoveryepht{e overall packet loss rate).
or the timeout phase.

For a congestion window size ¥, all losses within the . THE ANALYTIC MODEL
nextW' segments (starting from the first loss) are consideredThis section develops the stochastic throughput model for
part of the same LE. This hierarchical relationship betwedefCP NewReno bulk data transfer. The model is developed in
an LE and losses within an LE is illustrated in Figure ltwo steps. In Section IlI-A, the model is developed assuming

One RIT ————

W' Segments ———————>|



TABLE Il

MODEL NOTATION fast recovery continues farn RTTs with TCP sending up to
Parameter T Definition approximately’?/2 new segments per RTT. TCP exits fast
p Loss event rate recovery and resumes normal congestion avoidance betraviou
q Segment loss rate vyithin a loss event when a full ACK (FA) is received.
ETO xgggg L%Ligg;;'poft'?r; I From our assumptions regarding statistically identical
a series of timeouts CAFR periods, we extrapolate and consider the case where
w Average of the peak congestion window size two adjacent CAFR periods are exactly identical, as shown

for example in Figure 2. From Figure 2 we see tbatirr
can be expressed as the sum of: 1) the expected number of

that all loss events are identified by triole duplicate ACKS€Imentsy transmitted between the end of one LE and the
v ! " y P upt gart of the next LE (e.g., between D and J in Figure 2); and

Subsequently, in Section IlI-B, an enhanced model is devgl: h q bor of N itted b h
oped that handles both triple duplicate ACKs and timeou ) the expected number of segmentsansmitte et\(veent €
irst loss and the last loss (e.g., between J and L in Figure 2)

The model notation is summarized in Table Il. i .
of a loss event. It follows from the assumptions regardirgs lo

events that the expected valuecofs 1/p [29], [35]. Therefore,
A. Model without Timeout (NoTO)

1

In this section, we assume that all loss events are identified ScArr = > + 6. 2)
by triple duplicate ACKs, so that no timeouts occur. The ntode . ) )
developed here is referred to as the “NoTO” model. Next, we derived. Form uniformly spaced drops in a

Ignoring the initial slow start phase, it follows from thelYPical window of sizeW’, the expected number of segments
arguments given in [29], [35] that the evolution of the cosngetransm'tteq between the first and th_e Ia§t loss in the same
tion window can be viewed as a concatenation of statisjicafAFR period (e.g., between J and L in Figure 2) is:
identical cycles where each cycle consists of a congestion 1 W
avoidance period, followed by detection of segment loss and o~ W-WE [E} ~W - m 3)
a fast recovery period. Each of these cycles is called a

Congestion Avoidance/Fast Recovery (CAFR) period. The expected value afi can be obtained as follows. Let

The throughput of the flow can be computed by analyzir@a/v’ ””%> denote the probability_o_ﬁ_z segment losses from_a
one such CAFR cycle. LeSc4r 5 be the expected number rop wmdoyv of 5|.zeW. By definition, the first segment in
of segments successfully transmitted during a CAFR periot@.e drop window is always lost. Because segments are lost

Let Dcarr denote the expected time duration of the perioﬂ)‘.‘dependently of other segments, Fh_e probability that- 1,
Then the average throughput of the flow is: segments are lost from the remainif — 1 segments in
the window follows the Binomial probability mass function.

ScAFRr ' 1) Therefore,
Dcarr

Before determining the expectations of the variables in
Equation 1, let us consider the illustration in Figure 2.Uf&gy2 Where(,’:;"__l1 represents the binomial coefficient.
shows the segment transmissions per round in two adjacenSince we have assumed that all losses are identifiable by
and identical CAFR periods. We focus on thk such CAFR triple duplicate ACKs, we know that < W — 3. Hencé,
period, and use this example to illustrate the differentnéve —
in a CAFR period. Each CAFR_conS|sts of congestion avo_ldE m] = Z mAW,m) ~1+ (W —1)g~1+Wgq. (5)
ance and fast recovery. The first round of a CAFR period
corresponds to the start of congestion avoidance (marked | . _ . .
in Figure 2). During congestion avoidance, the congestitﬁFbSt'tUt'ngE[m] into Equation 3, we obtain:

TNoTO =
AW,m) =Cp/ o (1 =gV g™, @)

m=1

window opens linearly, increasing by one (vertically) the W2q

number of segments transmitted per round. We note that the T 14 Wq' (6)
time gap between two horizontally adjacent rectangles én th. . . _ .

same CAFR period, on average, equals the RTT. In rou%fpa”y’ substituting into Equation 2 we obtain:

W/2+4 1 =7 in Figure 2, three (non-contiguous) transmitted 1 W2q

segments are lost. The first of these lost segments (marked J Scarr = PR M

in Figure 2) is detected in the following round upon receipt o

. . S L : To computelV in terms ofp and ¢, we need an alternate
triple duplicate ACKs, resulting in termination of congest P p q

avoidance and a fast retransmit (marked N in Figure 2). TCB P cooon forScarr. From Figure 2, note thabicarr
can be expressed as the sum of: 1) the expected number of

then enters fast recovery. segmentsSy; transmitted in the linear increase phase (from

We use the termjrop window to r_efer to the wmd_ows round 1 to roundiv/2 + 1); 2) the expected number of
worth of segments starting from the first lost segment in cbunS mentsS; transmitted from the start of rount’/2 + 2
W/2+ 1 to the segment transmitted just before the receipt o?g o
the first duplicate ACK. Suppose that segments are lost 2yps approximation assumegis small. All subsequent approximations

in the drop window. As shown in Figure 2 (and Figure 3)also assume that is small.



|:| : New transmission during congestion avoidance New transmission during congestion avoidance, but eventually lost

[ : New transmission during fast recovery Retransmission during fast recovery (except full ack (FA))

F i) $G paniH ean)i 1A § N R EO eaniP ea2)i Q a)

A E 1 M
Round —» 1 2 3 4 5 6 7 8 9 10 y 1 2 3 4 5 6 7 8 9 10 y
CAFR period (i-1) CAFR period i

Fig. 2. Segment Transmissions in Two Adjacent and Ident®&FR Periods

(marked M in Figure 2) until triple duplicate ACKs terminatdn the next RTT, TCP will transmit two new segments, and so
congestion avoidance (N in Figure 2); and 3) the expected. In general:
number of segment$rr transmitted during fast recovery — )
(from N to Q in Figure 2). Therefore, S?E% — Z <% —m+ k> — W? _ % (10)
Scarr =Srr+ 53+ Srr. (8) k=m—1 41
We will determineSgy first. The time view of a CAFR ~ USing Equations 4, 9, and 10, the expected number of new
period shown in Figure 3 may be helpful in following the enS€gments transmitted during fast recovery is:

suing discussion. When TCP detects a segment loss and enters w W_3
fast recovery, the expected number of outstanding segmepgis, — Z A(W,m) S}’f% + Z AW, m) S?;%
is W. With m drops from the window, the source receives =1 e 41

-2

W — m duplicate ACKs during the first RTT of fast recovery.

Each duplicate ACK increases the congestion window by one __ W

segment, so at the end of the first RTT the congestion WindowT (a—¢*) + 5 (1-5¢+3¢°) — (1—-2¢+¢*). (11)

size will be 31 —m. This inflated congestion window allows . . .

TCP to send”’ — m new segments during the first RTT We ne_xtdetermlnSU for Equation 8. !mmed!ately follow-

of fast recovery, providedn < . The second RTT startsNg receipt of_a full ACK, fast recovery |s_terr_n|nated and_ the
with the reception of the first partial ACK (PA1). Immediatel Congestion window is reset /2 (e.g., I in Figure 2). This
following the receipt of the partial ACK, TCP retransmitIS0 ends the current cycle and normal congestion avoidance
the next lost segment and also transmits one new Segmgqgms. In this phase, the congestion window increases by on
During this second RTT of fast recover% _ m additional Segment per round until it reaches the assumed peak value of

duplicate ACKs will arrive, increasing the congestion womd "W in round W/2 + 1. It therefore follows that:

size by the same amount. This window increase allows the w
O . 3., 3

transmission of5- — m new segments as well. In total, TCP Srr = E 1==-W*+-W. (12)
W . 8 4

transmits 3- — m + 1 segments in the second RTT. For =

segment losses, fast recovery requires exaetlyound-trip To determineS, for Equation 8, we consider its two

times to recover all the lost segments with TCP transmittineg;( !

W _m+j—1 new segments in thgth RTT of fast recovery. treme boundary cases. If the first loss occurs at thg gtart o

Generalizing we obtain: _round W/2+1, then f[he nu_mb(_ar of segmerﬁ% transr_mttgd
in the next round until termination of congestion avoidaize
0. Similarly, S;, = W — 1 if the first loss occurs at the end

of round W/2 + 1. Therefore, we approximateS; with its

median valugV/2.

If m > % TCP will not transmit any new data during the Substituting the expressions fd¥.;, Srr, and Ss into

first RTT of fast recovery, because the congestion windo® siEquation 8 and simplifying, we obtain:

%W—m at this time is smaller than the amount of outstanding

dataW. With each partial ACK, the congestion window size Scarr =

increases by one segment. Thus, TCP needs % partial ) )

ACKs to inflate the congestion window size to the number of (% +4- %) W2+ (% - 3%) W — (1-2q+¢*(13)

outstanding segmentd’. Therefore, on arrival of thém —

% + 1)th partial ACK, TCP can transmit one new segment. 3This approximation introduces a small amount of error iniw model.

S;n;%:z<%—m+j—l):%(W—m—l). )

J=1
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Fig. 3. Time View of a CAFR Period

Equating the right-hand sides of Equation 7 and Equ&er m segment losses in the drop window, fast recovery
tion 13, and neglecting high-order terms, we can express tteguiresm round-trip times. Therefore,

value of W in terms ofp andgq as:
bt Dpp = ElmR~ (1+Wq)R (17)

~10pg —5p + V/p(24 + 32¢ + 49p) (14) Using arguments similar to those used for determirfingwe
R

p(3+4q) approximate usind)s = 5. SubstitutingDr;, Dg, andDrr
i ) L into Equation 15, we obtain:
Equation 14 encapsulates the essential characteristiosirof -
_ . . .. 5
tvyo parameter Ios_s model, which are illustrated graphjdal Deargn = (_ LWt _) R (18)
Figure 4. Whenp is very small,W is large, but decreases 2 2
asq is increased (i.e., fast recovery takes longer, and is lessrinally, substituting Equation 7 and Equation 18 into Equa-
likely to succeed). Ag increases}V decreases, anglhas a tjon 1, we obtain:

negligible impact, since fast recovery is rarely applieabl

w

1 11r2q
W L (19)
W S\R’

whereW can be computed from Equation 14.

TNoTO = (

W Value from Equation 14

160 p=0.0001 ——
140

120

B. Full Model (Full)

This section extends the foregoing model to include time-
outs as loss indications. We refer to this as the “Full” model
We again view the congestion window evolution as a con-
catenation of statistically identical cycles. Each cyaagists
********* _— of several CAFR periods followed by a CATOSS period, where
0 02 04 06 08 1 a CATOSS period is the concatenation of congestion avo&lanc
a (CA), timeout (TO), and slow start (SS) periods, as shown in
Fig. 4. Effect ofp andq on Window ValueW Figure 5. Therefore, the throughput of a TCP NewReno flow
can be expresséds:

100

60
0 e

20

To obtain the expected time duration of a CAFR perio (1 =pro)Scarr +pro(Sca + Sro + Sss) (20)
we again refer to the time view of a CAFR period, shown in el = (1 =pro)Dcarr + pro(Dca + Dro + Dgs)

Figure 3. From this illustration, we note that:

where pro is the probability that a loss event leads to a
timeout. Sx is the expected number of successful segment
transmissions in a period of typ¥, and Dy is the expected

whereD; ; is the expected duration of a linear increase perioﬁuratlon of a period of typeX'. Obviously, Dca=Drz + Dg.

Dy is the expected delay from the start of round (W/2+2) tuitively, Sca=Scs + S5. However, we useSca = Si

the end of congestion avoidance, a5 is the expected Instead, since TCP forgets outstanding data after timeout.

duration of the fast recovery phase. The duration of thealine TCP '.“eWReT‘O may experience a timeout either from the
. o congestion avoidance phase or from the fast recovery phase.
increase phase is:

The former transition occurs when TCP does not receive

Dcarr=Drr+ Dg+ Dprg, (15)

—_ W 4This expression ignores the duration of an incomplete fastvery phase,
Dy = +1)R. (16) . :
as well as any new segments transmitted therein.



E any new segments. Thus,

= CAFR CAFR i, CAFR i {«CAFR CATOSS

b= cA I CA iTQi_SS Sto =0 and (25)

& ! ! 2 3 4 5 6

: w /L/ Dro = RTOM2E20" +4p ;_85 +16p°+32p° (26)

g i A

a W In the slow start phase, the initial window size is 1 and

z the window size is doubled every round until the slow start
1
0 >

threshold {¥7/2) is reached. In the last round of slow start, TCP
transmits W/2 segments and enters congestion avoidance. We
Fig. 5. Segment Transmissions in a Cycle (multiple CAFR&ofeéd by count the duration and segments of the last round of slow star
CATOSS ) as being part of congestion avoidance. Hence,

Time

Sss=1+2+4+--+ W =9ltlos’s 1 and (27)
enough duplicate ACKs to trigger fast retransmit/fast xecy, Dgs = (log% + 1) R. (28)
while the latter transition occurs when retransmitted sexgts

are lost during the fast recovery phase. We expfess as: Following the approach in [35], we can replace the nu-

merator of Equation 20 withzl; + K;flq- Substituting Equa-
PTO = PpDTO + PIFR (21) tions 18, 26, 28, and¢ 4 into Equation 20, we obtain:
where ppro is the probability of directly transitioning to Ty = %+% (29)

timeout from congestion avoidance and-x is the probability NR+pro((1+2p+4p?) RTO+(1+log F ) R)’

of a timeout due to an unsuccessful fast recovery. where N — (E +3 4001 - pro)1+ Wq)) and W can be
We determineppro as follows. TCP experiences directeompyted from Eq2uation 14. ’

timeout when more thail” — 3 segments are lost from a 14 gpply this model, the user should obtain the loss event
drop window of sizelV’. Recalling the definition of\(W,m)  rate;, packet loss ratg, and round-trip timeR. The ratio of

in Equation 4, we get: { to p determinesn, and then the value af in the model can

w be computed using Equation 5. (Also see Section IV-B and
PDTO = Z AW, m). (22) Equation 30.)
m=W -2
When TCP NewReno loses no more thHah— 3 segments IV. MODEL VALIDATION

from a drop window of sizelV/, it enters fast recovery. On This section validates the proposed NewReno throughput
entering fast recovery, a timeout will occur if any segmentsodel using thas-2network simulatot. The results reported
retransmitted during fast recovery are lost. We approxémalere also illustrate the performance advantages of NewReno
this condition by assuming that if a new loss event occuayver Reno. Finally, we quantify the ineffectiveness of BRip
during fast recovery, then the segment retransmitted in thBCP Reno models in predicting TCP NewReno throughput.
RTT of fast recovery is also lost, thus triggering timeout.

(While_ we do noF ex_plici'FIy_ model succ_essive occurrences g{ Network Model and Traffic Models

FR, this assumption implicitly captures its effect by irasing _ i _ i

the probability of timeout.) Fom losses in the drop window, ~Before discussing the simulation results, we present the
NewReno needsn round-trip times, sending approximatel)pas'c setup used in the ns-2 simulations. Specifically, we

W/2 segments (including retransmissions) per RTT. The proB_escribe the network model and the vari.ous traffic models
ability that theith segment is lost given that the previgus1 USed. To conserve space when presenting the results, we
segments arrived at the destination(ls— p)*~'p. Therefore, describe only the setup changes with respect to the default

it follows from our assumptions that: settings discussed here. _ , ,
The results reported here, with the exception of those in

mw Section IV-E, are for a simple dumbbell network topologytwit
prrr =) A(W,m) [pJF (I=pp+-+(1=p) = p] a single common bottleneck between all sources and sinks.
m=1 Each source/sink pair is connected to the bottleneck lirak vi
a high bandwidth access link. The propagation delays of the
- W access links are varied to simulate the desired round-&igyd
- Z AW, m) {1 —(1-p)= } : (23)  between a source/sink pair. We refer to the flows that aregoein
m=1 actively monitored as the “foreground” flows, with all other
Substituting Equations 22 and 23 in Equation 21, we get: traffic designated as “background” flows.
—_— All experiments have two long duration foreground flows:
4 \mW one NewReno flow and one Reno flow. These long duration
pro =1 Z AW, m) [(1 p) } (24) flows simulate the bulk data transfer sessions of interest.

o _ ) ~_ The receive buffers for the foreground flows are sufficiently
Derivation of the expected duration of timeout is similar

to [29]. Furthermore, during timeout TCP does not transmit Shttp:/www.isi.edu/nsnam/ns.

Ww-3

3

m=1



provisioned such that their buffer space advertisementsado times. The background flows start at uniformly distributed
limit the congestion window size. The experiments vary thimes between 0 and 2 seconds, and the foreground flows
bottleneck bandwidths (e.g., 15 Mbps to 60 Mbps), the rounsttart at uniformly distributed times between 5 and 7 secpnds
trip delays of the flows (e.g., 20 ms to 460 ms), the bottleneall measured in simulation time since the start of a run. Each
gueue management policies (e.g., DropTail and RED), and tgeriment simulates 1000 seconds of run. Results aretezpor
load/mix of background traffic (e.g., mix of long duration*T using data from the last 750 simulated seconds.
transfers, short duration HTTP sessions, and constanatst r
UDP flows). For RED queue management,th@ithresh ar!d B. Bursty Loss Model
the maathresh are set tol/3 and2/3 of the corresponding i ) ] o
queue size limit, based on recommendations in Section gOur first experiment illustrates the flexibility of our novel
of [11].6 two-parameter loss model, and the key differenceg betvv_een
Background HTTP traffic is simulated using a model simil&?Ur NewReno model and the PFTK model. The simulation
to that in [24], [35]. Specifically, each HTTP session cotssis’®Sults reported here are for single foreground NewReno
of a unique client/server pair. The client sends a singleesy flOW traversing a 45 Mbps bottleneck link. No background
packet across the (reverse) bottleneck link to its deditatfiows are present, and the round-trip propagation delay ef th

server. The server, upon receiving the request, uses TCPN@_NReno flow is 75 ms. A specialized drop module that tgkes
send the file to the client. Upon completion of the data transf S input two parameteysandrm was placed on the access link
the client waits for a period of time before issuing the nef the TCP Sink node. This drop module schedules Bernoulli
request. These waiting times are exponentially distrihated 0SS €vents at ratg; whenever a loss event occurs, back-
have a mean of 500 ms. The file sizes are drawn from a ParigPack packets are dropped. _

distribution with mean 48 KB and shape 1.2 to simulate the Ve first develop an approximation for computipgrom the
observed heavy-tailed nature of HTTP transfers [3]. measured characteristics of the flow. Given the average loss

Background HTTP and FTP sessions use TCP NewRekite ¢ observed over the entire duration of the transfer, and
with a maximum congestion window size of 64 KB. Thdhe loss eventratg, a relation betweeq, ¢, p, andW" can be
packet size is 1 KB. All packets are of identical size excefPtained as follows. The expected number of segment losses
HTTP request packets and possibly the last packet of el 10SS eventisn = g/p. Using Equation 5, we obtain:

HTTP response. The round-trip propagation delays of these q/p—1

background flows are uniformly distributed between 20 ms q~ W _1’ (30)

and 460 ms, consistent with measurements reported in th

literature [1], [20]. w
The background UDP flows are constant bit rate UDP flo

ﬁereW is computed from Equation 14 using= q.

Figure 6(a) shows the simulation throughput for the

with rate 1 Mbps each. The packet size is 1 KB and the O\I{llﬁ_ewReno flqw, along with thg results from the anglytlc mgdel.
n the experimentsy was varied from 1 to 20 while keeping

tion delay f h UDP flow is 35 ms. . .
We}lyhre)r(r)ep:‘u%?slfgpo?t:g hoerree (F:ie for the(‘)‘vlgullsl” TCrlgsNewRentge loss event rate fixed at 0.05%. The analytic results are

model, unless stated otherwise. As a representative TCB REAOWN for the full NewReno model, witly approximated

throughput model, we use the full PFTK model from Table Psing Equation 30. When the loss event rate is low (0.05%),

which has similar modeling assumptions [29]. This TCIénd there is a single packet loss per loss event, the results

Reno throughput model has been widely used in prior WOF sThg]iLTrsgveF:ec:‘O r:gfeil (?rgd theeri;rslé rgvoedn?l i?(r:?ezgnelar.
(e.g., [12], [17), [21], [24]). b s p *

The necessary input parameters for both analytical modgl‘f simulated NgwReno throughputde_creases ro_ughly linear
are obtained from the simulation trace file. All the lossesin>"c© the duration of fast recovery 1S proportional t_o the
single window of data are counted as one loss event. The | ber of drops. Our mode! tracks this trend well, while the
event ratep is taken to be the ratio of the total number of los TK model does not consider the number of packet drops
events to the total number of segment transmissions, in &’ _IOSS event. - .
period of interest. For simplicity, we assume a homogeneous':Igure 6(b) shows S|m|la_r results for a hlghe_r loss gvent
loss process¢( = p), unless stated otherwise. The averagr te. The value ofn was varied from 1 to 10, while keeping
round-trip time R was measured at the sender, &0 was the loss event rate fixed at 1.0%. These results show even
approximated a8 R. greater differences between the NewReno model and the PFTK

In simulations where multiple long duration flows sharénoclj(el' g\s the IOSIS event rate mcreasei, or as Ithedn'l\Jlmb;r of
a single bottleneck link, systematic discrimination hagrbe Pac et drops per loss event increases, the simulated NewRen

observed against some connections [14], [15]. Spichseef- tbhroaghput decregs?s sri]glnificantly compared (th It?altl pmdiiﬁ
fects, however, rarely arise in experiments that considena y the PFTK model, while our NewReno model follows the

of long and short duration flows, with heterogeneous roungQV\’m’Vard trend well.

trip propagation delays [15]. As a precautionary measine, t Thes? tr.esults " dleq_lr?nitrate the ac;curlacy andd r?pustniss of
experiments reported here start all flows at slightly defer our analylic model. 1he two-parameter loss modet1s pafticu
larly useful in scenarios that involve bursty packet lossaes
Swhile the difficulties of setting RED parameters are weltdmented in
the literature, our modeling results are consistent foeoteasonable settings  7In Figure 6, we used the loss event ratto parameterize the PFTK model.
of RED parameters. Using the packet loss rat@p makes the prediction error even worse.
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a separate paper [31], we use thearameter (and a fixed
loss event rat@) to study the effect of bursty packet losses
on two variants of NewReno, namely Slow-but-Steady (SB%}
and Impatient (IMP). Contrary to RFC 3782, we find that thfeo
SBS variant offers superior throughput to IMP in all but thGr}an e of loss rates considered. The prediction error of our
most extreme packet loss scenarios (e.g., 26 or more segmnelggel defined asimulation — n”.wdel|/simulation ranges
losses per window [31]). Similar experiments (not showremerfrom 0,% to 15% with an average error of 9.0% Fl,thhermore
clearly demonstrate the superiority of partial window dedlia o '

versus full window deflation in TCP NewReno. These insigh fsthe PFTK model PFTK in the figure) is naively used to

were made possible by the two-parameter loss model stimate NewReno throughput (based on the loss event rate
P y P ' experienced by the foreground NewReno flow), the prediction

errors range from 0% to 32%, with an average absolute
. prediction error of 11%.

C. Bemoulli Packet Loss The PFTK model is poor at predicting the simulated Reno
Before validating the model with background traffic, valithroughput PFTKreno in the figures, based on the observed
dation is carried out in isolation. The configuration coes@tl loss event rate for the foreground Reno flow), especially at
here consists ofwo foreground flows traversing a 15 Mbpshigh loss rates. At high loss rates, multiple packet loss#s p
bottleneck link. A Bernoulli packet drop module was placedindow are possible, leading to multiple window reductions
on the access link of each foreground flow. The bottleneck even timeout. The PFTK model essentially considers a
router's buffer was sufficiently provisioned such that thersingle drop per loss event, and is thus unable to predict the

were no congestion-induced packet losses. Experimentvathroughput accurately. The average prediction error is 25%
the imposed Bernoulli packet loss rate from 0.01% to 10%. The higher prediction errors in the PFTK model can be
Figure 7 shows the throughput from the simulations arattributed to the omission of the Reno fast recovery alparit

the models from representative experiments with rour-trfrom their model, and the correlated packet loss assumptibn
propagation delay of the foreground flows set to 75 ms. Ftreir model. Note that with the Bernoulli packet drop mogule
the imposed Bernoulli loss rates, the corresponding oleservmost packet losses are isolated single packet drops thdiecan
loss event rates (LER) and packet (segment) loss rates (Pk&)overed using a single fast recovery phase. For low packet
for both foreground flows are shown in Figure 8. loss rates (e.g., 2% or lower), the throughputs for simdlate

Several important observations are evident from the result
Figure 7. The results show that the proposed NewReno
roughput model NewRenoModel in the figures) is able
track accurately the simulation throughput over therenti
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Reno and NewReno flows are thus similar (because of the 4
Bernoulli packet loss assumption).

PFTK
NewRenoSim -4
NewRenoModel —=—

PFTKreno -
RenoSim v

D. HTTP/FTP Background Traffic

The simulation results reported in this section are for a 15
Mbps bottleneck link with a queue of capacity 150 packets.
In order to investigate the effect of varying degrees of mult
plexing, the total number of background flows is varied from
100 to 200, using a mix of 75% HTTP and 25% FTP flows. ‘ ‘
Both foreground flows have a round-trip propagation delay of 24 30 36 42
75 ms. Background Flows

Figure 9 shows the simulated throughputs of NevyReno aF%. 11. Model Accuracy with Background UDP Traffic
Reno as well as the throughputs from the analytic models
Figure 9(a) is for a DropTail bottleneck router, while Fig-

ure 9(b) is for a RED bottleneck router. The simulation resulthe bottleneck links such that each background flow traderse
in Figure 9(a) show that NewReno throughput is often 2@nly a single bottleneck link. Specifically, each bottldnec
30% higher than that of Reno. This is because the cragsk experienced background traffic mix that consisted %75
traffic generates bursty packet losses at the DropTail rouleTTP flows and 25% FTP flows. We varied the total number
buffer. NewReno is able to recover efficiently from theseséss of flows per bottleneck from 100 to 200.
using its improved fast recovery algorithm. The performanc Note that although statistically identical backgrounddds
differences between Reno and NewReno decrease when Réfdulated on each bottleneck link, randomness in the HTTP
queues are used, as can be seen in Figure 9(b). The ovaralfic generation process can result in slightly differéamd
throughput with RED is slightly lower as well. time-varying) background loads on the bottleneck links. It
From Figure 9, we also note that the proposed analyfi€ also noteworthy that the foreground flows may experience
model tracks the throughput of the foreground flow for thgysses aboth bottleneck links, and thus the results presented
range of background traffic considered. The predictionrerrgere are not directly comparable to those for the experiment
of our analytic model averages 4.4% with DropTail queuegjth a single bottleneck link.
and 8.9% for the RED queue management policy. Figure 10 shows the throughput from the simulations and
The results also show that the PFTK model overestimatg® results from the analytic models. As shown in Figure 10,
both Reno and NewReno throughputs. The average predigr NewReno throughput model closely tracks the simulation
tion error is 20% with DropTail queues, due to the burstjhroughput over the entire range of background load siredlat
losses induced by the HTTP workload. However, the averaghe average prediction error in these experiments is 3.4%.
prediction error for RED queues (9.9%) is lower. With RED Compared to the DropTail experiment results, the results
queues, the burstiness of packet losses decreases, @lowigm the experiments with RED queues show somewhat higher
some of the packet losses to be recovered by the Reno fagidiction errors. The prediction errors in this settingrage
recovery algorithm. The PFTK model essentially captures7as%. We note that the NewReno flow experienced slightly
single packet loss per loss event, though it assumes th@jher packet loss in the RED experiments.
packet losses are correlated within a round. While the PFTK Similar to earlier results, we observe that the prediction
model is intended for bottleneck routers with DropTail geeterrors increase significantly if the PFTK model is used to
management, rather than those with active queue managemesimate NewReno throughput. In the multiple bottleneck
the PFTK model has been applied in the latter context lperiments, the average prediction error of the PFTK model
others [9], [30]. (when tracking NewReno throughput) is 25% for DropTail
Our results indicate that our NewReno model providaguters and 27% for RED queue management. The inaccuracy
relatively robust results for both DropTail and RED packeif the PFTK model arises from its failure to consider the
loss scenarios. We have also shown that the PFTK mo@eimber of packet drops per loss event. Our model accurately

is inadequate for modeling NewReno throughput, especialiyiptures the effect of multiple drops on the duration of the
when the bottleneck link is shared by many bursty flows. fast recovery period.

Throughput (Mbps)
N

E. Multiple Bottlenecks F. UDP Background Traffic

This section reports validation results from an experiment This section considers the impact of background traffic
setup with multiple bottlenecks. The network topology usettiat is predominantly generated by On-Off Constant Bit Rate
here consists of two dumbbell networks connected in seri@BR) UDP flows. The experiments reported here are for a
at the bottlenecks. Each bottleneck link had a capacity 5 Mbps bottleneck link with a queue limit of 150 packets. The
15 Mbps with a buffer space for 150 packets. Two longackground traffic consists of a fixed number of HTTP/FTP
duration TCP flows, one NewReno and one Reno, traverdealckground flows (24 HTTP sessions and 8 FTP sessions), and
both bottleneck links. The foreground flows had a round-trig varying number of On-Off CBR UDP flows, whose On and
propagation delay of 75 ms. Background traffic was applied @ff times are drawn from a heavy-tailed Pareto distribution
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The next experiment studies the robustness of our model to
the scaling of network model and workload parameters.

Figure 12 shows the simulated throughput of the foreground
flows and the results from the analytic models for a range
of bottleneck bandwidths. Here, the initial experimenttugp
had a 15 Mbps bottleneck link with a buffer of 50 packets
and 100 background flows. The background flows consist of
10% FTP flows and 90% HTTP sessions. At each step, all sys-
tem resources and the background loads are scaled upwards.
Thus, for each new configuration, the bottleneck capacity is
increased by 15 Mbps, the queue size by 50 packets, and the
number of background flows by 100 (90 HTTP sessions and
with 1.2 as the shape parameter. The two foreground flowd) FTP sessions). The foreground NewReno and Reno flows
namely NewReno and Reno, each have a round-trip propagach have a round-trip propagation delay of 75 ms.
tion delay of 75 ms.

Throughput (Mbps)

15 30 45 60
Bottleneck Bandwidth (Mbps)

Fig. 12. Model Accuracy with System Scaling

The simulation results show that NewReno throughput is
The results in Figure 11 again show that TCP NewRengpically 20-35% higher than Reno throughput under idezitic
can significantly outperform TCP Reno under similar netwonketwork conditions. It can be observed that our NewReno
conditions. We also observe that the proposed analytic mod@alytic model accurately tracks the throughput observed i
closely tracks NewReno throughput, with an average predifie simulations for a wide range of bandwidths. The average
tion error of 3.1% in the DropTail experiments. Similar tath prediction error of the NewReno model is 5.1%. Similar to
results reported in the earlier sections, the PFTK model halsservations made in earlier sections, predicting NewReno
higher prediction error (9.0%). For RED queues (not showthroughput with the PFTK throughput model has higher pre-

here), the two models produce comparable results, each wdiltion errors (e.g., an average prediction error of 11%je T
an average prediction error below 10%. average prediction error of PFTK for Reno throughput is 17%.
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0.8

A. Testbed Configuration

"PFTKreno ~x-
07 ¢ NewRer oo a1 The testbgd consists of three physicql m_achines on a
’g; 0.6 | NewRe;gmosc;%I el 100 Mbps private Ethernet LAN, as shown in Figure 14. One
s ] machine serves as the TCP source node, with another as the
E TCP destination node, and the third as the network emulator.
= The TCP source node was a 1.8 GHz Intel Pentium 4
E machine with 512 MB of RAM, running the FreeBSD 4.11
o1l operating system. We verified that the NewReno implementa-
' tion in the FreeBSD kernel conformed to the TCP NewReno
O s 75 100 125 150 description in RFC 3782. In addition, we instrumented the
Bottleneck Buffer Size (packets) FreeBSD kernel to collect statistics required for model val
idation such as the number of timeout (TO) events, the
Fig. 13.  Model Accuracy with Varying Buffer Size number of fast recovery (FR) events, the total transfer tibma
(in seconds), the total bytes successfully transferredg8y
and the fine-grained RTT. The TCP destination node was a
S 2.8 GHz Intel Xeon with 1 GB of RAM. This machine was

running Linux 2.6.8 as the operating system.

We usediperf 8 for generating TCP bulk data transfers.
{Frossgn 41 (Rod Hat Entorprise Linux AS 4) (Red Hat Linu) This software, freely available from NLANR, is used for
measuring TCP and UDP performance. In our experiments, we
raniperf in the TCP-mode to generate traffic representing
bulk data transfer.
) We used the Internet Protocol and Traffic Network Emulator
H. Bottleneck Buffer Size (IP-TNE) [38] to emulate a wide area network. IP-TNE is
gkhigh-performance internetwork emulation tool that uses a

buffer size, which affects the overall packet loss rate ab Wgarallel discrete-event simulation kernel. In our expeins,

as the burstiness of packet losses. In this experiment, we %'é .|perf traffic betwqen the .TCP source and TCP desti-
ﬂ;’ﬂtmn traverses the virtual (simulated) wide area network

the number of background flows to 100, with 50 FTP flow -TNE transfers IP packets as needed between the real and

and 50 HTTP flows. The bottleneck buffer is changed frot imulated network d del ket t - .
25 packets to 150 packets in increments of 25. The oth F simulated NEWork, and models packet transmissions in
emulated wide area network. IP-TNE was running on

simulation parameters are kept identical to the experimeﬁ € : . )
in Section IV-D. a 3.2 GHz Intel Xeon machine with 4 GB of RAM; the

' , operating system on this machine was Red Hat Enterprise
Figure 13 shows the throughput results along with mod ng sy : Ine w pri

predictions for the different buffer sizes. The NewReno elod nux Academic Server Edition 4.

tracks the simulation throughput reasonably well, with a3 £ulated Network

average prediction error of 2.9%. The PFTK model prediction . .

for NewReno throughput is poor, with an average prediction The experiments reported_ here use a S|mp_le dumbbell _net—
ork topology. There is a single bottleneck link of capacity

error of 28%. The accuracy of our model stems from its caref i

consideration of the fast recovery process for bursty kss 0 M_l?%spbetween thedTgP source nodg and the TCE sink node(.j

As in other cases with bursty packet losses, the PFTK moJJIe source an estination nodes are eac connecte
to the bottleneck link by a 100 Mbps access link. In the

overestimates the throughput, since it implicitly assurtineg . h d-tri ion del fth dl
all losses are recoverable within a simple fast recoverjoder experiments, the round-trip propagation delay of the etedla

that lasts only a single RTT (assuming a timeout does nré(?twork s 50_ms. .
occur) y g ( g All routers in the emulated network use FIFO queueing,

This experiment reinforces the generalized observatiowgh DropTail queue management. We installed a Bernoulli
made in Section IV-B, and shows that the proposed NewRe% cket drop module on the access link of the TCP destination

. o Sde to drop packets at a predetermined rate. The buffer at
model prowde; more robusF throughputpredmhonsthank@FT{‘he bottleneck router was sufficiently provisioned sucht tha
when congestion loss dominates.

there were no congestion-induced packet losses. This &tup
simple, but allows us to compare the emulation results with
those fromns-2 simulations.

Fig. 14. Testbed for Emulation Experiments

The next experiment tests the sensitivity to the bottlene

V. EMULATION EXPERIMENTS

C. Results
We validated our TCP NewReno throughput model using a1n our emulation experiments, we varied the imposed packet

real TCP source and a real TCP sink on an emulated wi s rate from 0.5% to 3%, in steps of 0.5%. Table Il summa-

area _network in our laboratory. Th'.s section describes ﬂ?ﬁes statistics obtained from the emulation experimextte
experimental testbed used for emulation, the emulatedarktw

configuration, and the experimental results. 8http://dast.nlanr.net/Projects/Iperf/
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TABLE Il TABLE IV

SUMMARY OF EMULATION EXPERIMENTS EXPERIMENTAL RESULTS FROMCALGARY TO JAPAN
Loss | TO | FR | RTT (ms) Duration Bytes _
Rate (sec.) Imposed| TO | FR | Actual | RTT | Duration Expt Model
050% | 5 | 556 | 55.56 50054 | 169,942,625 PLR LER | (ms) | (sec) | (Kbps) | (Kbps)
1.00% | 21 | 765 57.31 502.33 | 116,768,593 0.00% 7 27 | 0.98% | 229 | 106.34 379 497
150% | 38 | 841 58.48 502.62 | 89,441,537 382+
2.00% | 68 | 864 59.06 501.92 | 72,544,825 050% | 5 | 39 | 1.27% | 245 | 120.12 | 335 394
250% | 113 | 775 59.65 502.11 | 55,202,129 100% | 9 | 58 | 1.93% | 237 | 134.84 | 299 297
3.00% | 129 | 777 60.23 502.92 | 47,554,586 150% | 24 | 87 | 3.19% | 253 | 195.73 | 206 202
250% | 59 | 100 | 4.57% | 256 | 277.23 | 145 147
2.00% | 26 | 76 | 2.93% | 300 | 302.13 | 133 173
3.00% | 59 | 119 | 5.12% | 260 | 290.15 | 139 141
3.5
E Emulation
= E Model To validate our model predictions at different loss rates,
é‘ 257 we added controlled levels of packet loss to our experiments
5 2] using DummyNet [34]. We varied the imposed packet loss
Q . .
< 151 rate (PLR) from 0.5% to 3%, leaving bandwidth and delay
3 .
2 1y unchanged. Actual losses always exceed the imposed PLR.
F s Table IV shows the results from the Japan experiment.
0l The (Full) NewReno model predicts the observed throughputs
050 100 150 200 250  3.00 reasonably well, with an average prediction error of 12%.
Imposed Packet Loss Rate (%) These model predictions use the assumptjor= p. The
native network path (i.e., with zero imposed PLR) is lossy,
Fig. 15. Model Accuracy in WAN Emulation experiencing a loss event rate (LER) of 0.98%, and a PLR

of 6.21%. The prediction error for this case is high at 31%,
because the average number of segment losses per loss event
that summing the number of FR and TO events represepts — 621 _ .4) is relatively large, and the assumptigr- p

the total number of loss events experienced by the T%’wolated Usingg = =1 in the model (denoted with **

flow. The segment size (dBegsizpfor all transfers is 1448 in Table IV) reduces the prediction error to 0.94%.

byte excluding TCP and IP headers. As in [29], we use the
FR+TO

expressmqm to estimate the loss event rateThis
computed Ioss event rate and the measured RTT are used as
inputs to our “Full” TCP NewReno throughput model. In our This paper presents an analytic model for the bulk data
computation of the model estimated throughputs, we used tgnsfer performance of TCP NewReno. The model expresses
approximationg = p. steady-state throughput in terms of RTT and loss rate.

In the absence of loss (p=0%), the NewReno flow fully uti- Our NewReno throughput model has three important fea-
lizes the 10 Mbps bottleneck link. The achieved throughputiures. First, we explicitly model the fast recovery algomit
9.59 Mbps excluding TCP/IP header overhead, and 9.93 Mb§isTCP NewReno, which is important since a NewReno flow
including TCP/IP overhead. may spend a significant amount of time in the fast recovery

Figure 15 shows the (emulated) throughput attained by thase. Second, we also consider the possibility of incgrain
TCP flow, along with the throughput predicted by our modefimeout following an unsuccessful fast recovery phaserdrhi
All these throughput calculations exclude the TCP/IP headgur analytical model uses a flexible two-parameter loss mode
overhead. At 1.5% imposed loss rate, the emulation throughat captures both the loss event rate, as well as the besstin
put is 1.42 Mbps and the model prediction is 1.46 Mbpgf segment losses within a loss event, and thus is able terbett
correspondingly the prediction error is 3.0%. The maximumapture the dynamics of TCP loss events on the Internet.
estimation error observed is 21% (at an imposed packet 10SSye validated our model with extensives-2 simulation

VIl. CONCLUSIONS

rate of 3%), and the average prediction error is 11%. experiments. We also validated our model using a real TCP
In general, our model predicts the TCP NewReno througRrewReno implementation. Our results show that the proposed
put successfully in the experiments considered. model can predict steady-state TCP NewReno throughput for
a wide range of network conditions, unlike existing Reno
VI. INTERNET EXPERIMENTS models. The results also illustrate the significant pertamoe

As a final step for model validation, we conducted sewadvantages of NewReno over Reno in many scenarios because
eral experiments on the Internet. With help from selecteaf NewReno's improved fast recovery algorithm.
colleagues around the globe, we measured the throughpuDur ns-2 simulation scripts are available from
achieved for 5 MB file transfers from our BSD Unix servehttp://www.cpsc.ucalgary.ca/"carey/software.htm|
site in Calgary to 6 different client locations: USA, Canaddalhe authors thank Martin Arlitt, Derek Eager, Sally Floyd,
UK, Australia, Bangladesh, and Japan. For space reasons,Majid Ghaderi, and the ToN reviewers for constructive
only present results from the latter experiment, which Head tcomments on earlier versions of this paper. Financial sttppo
worst-case prediction error observed. for this work was provided by NSERC and iCORE.
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