An Empirical Analysis of Email Delivery Security

Zakir Durumeric et al. ACM IMC 2015

Slides Credit: Sogand Sadrhaghighi

Motivation

How is your everyday email protected?

SMTP (Simple Mail Transfer Protocol)

SMTP is the Internet standard for sending and relaying email.

SMTP Security

- The original SMTP (RFC 821) had no built-in security at all.
- There have been several security extensions over the years:

Confidentiality (encrypt email in transit)

Authenticate email on receipt

1 DKIM (Domain Keys	Identified Mail)
---------------------	------------------

2	SPF (Sender Policy Framework)
2	SPF (Sender Policy Framework)

2	DMARC (Domain-based Message
Э	Authentication, Reporting + Conformance

1

Deployment is voluntary and (usually) invisible to end users!

- 16 months of gmail inbound/outbound messages
 - Longitudinal view: January 2014 to April 2015
 - Used Google's "Transparency Report" for message stats
 - Also: analysis of ciphers negotiated with SMTP servers
- Mail servers from the top 1 million Alexa domains
 - Snapshot view: current state as of April 2015
 - Performed MX lookups in DNS for popular domains
 - For domains with mail servers (79%), a DNS query was used to identify security extensions supported (if any)
 - Attempted SMTP/STARTTLS handshake using Zmap

STARTTLS: TLS for SMTP

- Allows TLS session to be started during an SMTP connection
- Mail is transferred over an encrypted session
- Protection against passive eavesdroppers

STARTTLS: TLS for SMTP

8

- Based on the volume of messages protected by STARTTLS
- As of April 26, 2015

	STARTTLS Initiation	Increase from January 2014
Outgoing messages	80%	54%
Incoming messages	60%	82%

Cipher Suite Analysis

Findings:

- 80% of outbound connections are protected by TLS
- About half of all incoming connections chose a strong cipher suite
- About 45% of clients use RC4 despite its known weaknesses

Provider	Incoming Key Exchange	Incoming Cipher	Certificate Name	Outgoing Key exchange	Outgoing Cipher
Gmail	ECDHE	AES128-GCM	match	ECDHE	AES128-GCM
Yahoo	ECDHE	AES128-GCM	match	ECDHE	RC4-128
Microsoft	ECDHE	AES256-CBC	match	ECDHE	AES256
Apple iCloud	ECDHE	AES128-GCM	match	DHE	AES128-GCM
Facebook mail	RSA	AES128-CBC	mismatch	ECDHE	AES128-CBC
Comcast	RSA	RC4-128	match	DHE	AES128-CBC
AT&T	ECDHE	AES128-GCM	match	ECDHE	RC4-128

- STARTTLS provides protection against <u>passive</u> eavesdroppers, but not against <u>active</u> attackers who can tamper with packets
- STARTTLS is designed to "fail open" rather than "fail closed" (i.e., defaults to plain text if TLS negotiation fails)
- An active attacker can manipulate the packets containing STARTTLS to prevent servers from establishing a secure channel!

Geographical Analysis of Active Attacks

Organization Type	
Corporation	43%
ISP	18%
Financial Institution	14%
Academic Institution	8%
Healthcare Provider	3%
Unknown	3%
Airport	2%
Hosting Provider	2%
NGO	1%

Country	
Tunisia	96.1%
Iraq	25.6%
Papua New Guinea	25.0%
Nepal	24.3%
Kenya	24.1%
Uganda	23.3%
Lesotho	20.3%
Sierra Leone	13.4%
New Caledonia	10.1%
Zambia	10.0%

Country	
Reunion	9.3%
Belize	7.7%
Uzbekistan	6.9%
Bosnia and Herzegovina	6.5%
Тодо	5.5%
Barbados	5.3%
Swaziland	4.6%
Denmark	3.7%
Nigeria	3.6%
Serbia	3.1%

Cisco exploits this feature to detect spammers and prevent attacks.

Downfall: Every email from your country will be in plain text!

- When we receive a message, we want to see if it is sent from someone authorized in the source domain.
- Detecting spams

SPF (Sender Policy Framework)

- Allows a domain to put a DNS TXT record that lists the IP addresses of their legitimate mail servers
- Example: <spf-mail.example.com> "v=sfp1 ip4:64.18.0.0/20 -all"

DKIM (Domain Keys Identified Mail)

The sender publishes its public key in a DNS record

20120113._domainkey.gmail.com. 300 IN TXT "k=rsa\; p=MIIBIjAN...AQAB"

Sender attaches cryptographic signature in a message's header

Recipient checks the signature, using the public key p

- DMARC: Domain-based Message Authentication, Reporting, and Conformance
- Builds upon DKIM and SPF

_dmarc.yahoo.com. 1800 IN TXT "v=DMARC1; p=reject; pct=100; rua=mailto:dmarc_y_rua@yahoo.com;"

Recipient checks for the sender's policy

Empirical Measurements

Technology	Тор 1М
SPF Enabled	47%
DMARC Policy	1%
DMARC Policy	Тор 1М
DMARC Policy Reject	Top 1M 20%
DMARC Policy Reject Quarantine	Top 1M 20% 8%

Delivered Gmail Messages

Top Million Domains

April 2015

Conclusions

- SMTP by itself is NOT secure
- Mail community has started to deploy new security extensions, but progress is slow for small organizations
- STARTTLS is not a long-term solution, since active attacks are prevalent and potentially very serious