Congestion Control in SDN-Enabled Networks

Carey Williamson Department of Computer Science University of Calgary

- There is a new emerging suite of high-bandwidth Internet apps based on interactive video
 - Example 1: 360-degree video
 - Example 2: Cloud-based gaming services
 - Example 3: JPEG 2000 Interactive Protocol (JPIP)
- Challenges:
 - High bandwidth requirements for interactive video
 - Latency sensitivity for remote user interactions
 - Need to support multiple service classes
 - Overhead of resource reservation mechanisms
 - Limited effectiveness of end-to-end congestion control

- Research Question: Can SDN provide effective and responsive congestion control for these applications?
- Answer: Yes!
- Proposed Solution:
 - Network-exposed API for network state visibility
 - SDN-assisted congestion control with low latency, high bw
 - Fair sharing between interactive and non-interactive flows
- Extensive evaluation of effectiveness and scalability

A. Naman, Y. Wang, H. Gharakheilia, V. Sivaraman, and D. Taubman, "Responsive High Throughput Congestion Control for Interactive Applications over SDN-Enabled Networks", Computer Networks, April 2018.

System Architecture

- RESTful API (HTTP-based)
- Registration required by interactive flows
- Network query response protocol for state info
- Request format:
 - GET /stats/<MyIP>/<PeerIP>/<LastIdx>/<MaxEntr>/
- Response format:
 - Network state entries: [ns entry1; ns entry2; ...]
 - Link state entries: [i, L, link_entry1, link_entry2, ...]
 - Information and format: [delta_i, b_i, q_i, R_i, d_i]

- Two queues: interactive and non-interactive
- Dynamic estimation of number of bytes queued at the bottleneck point on an end-to-end path
- Try to limit this queue size for interactive traffic
- Formulas derived for control-theoretic dynamics
- Analogous to "Rate-Delay (RD) Network Services" by M. Podlesny and S. Gorinsky, ACM SIGCOMM 2008

Experimental Evaluation

Experimental setup with Mininet

Experimental Results (1 of 12)

Figure 3: Average Bandwidth (Mbps) versus Time

Experimental Results (2 of 12)

Figure 4: Bottleneck Queue Size (bytes) vs Time

Figure 5: Video Quality (PSNR) versus Time (frames)

Experimental Results (4 of 12)

Figure 6: Multiple Flows

Experimental Results (5 of 12)

Figure 7: Bandwidth and Queued Bytes vs Time

Experimental Results (6 of 12)

Figure 8:
(a) Throughput vs Time

(b) RTT vs Time

(c) PSNR vs Time

Experimental Results (7 of 12)

Figure 9:(a) Num Flows vs Time

(b) Available Bandwidth vs Time

(c) Throughput vs Time

Experimental Results (8 of 12)

Figure 10:(a) RTT vs Time

UNIVERSITY OF

(b) Avg Queued Bytes vs Time

(c) PSNR vs Time

Federated Network Scenario

Figure 11: Interactive flows over a federated network,

Experimental Results (9 of 12)

Figure 12: Bandwidth and Queued Bytes vs Time

Experimental Results (10 of 12)

Figure 13:
(a) Bandwidth vs Time

(b) Queued Bytes at P1

(c) Queued Bytes at P2

Experimental Results (11 of 12)

Figure 14:
(a) Bandwidth vs Time

UNIVERSITY OF

(b) Queued Bytes at P1

(c) Queued Bytes at P2

Experimental Results (12 of 12)

Figure 15:
(a) Bandwidth vs Time

UNIVERSITY OF

(b) Queued Bytes at P1

(c) Queued Bytes at P2

- SDN-assisted congestion control can provide the responsiveness needed for interactive video apps
- Key idea is to expose and exploit network state info
- Experimental results show that the proposed approach is responsive and fair, even in the presence of highly dynamic network flows
- Future work:
 - More efficient protocols for streaming network state info
 - More effective solutions for high-latency federated networks