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= Dynamic CPU speed scaling systems
= Service rate adjusted based on offered load

= (Classic tradeoff:
— Faster speed = lower response time, higher energy usage

= Two key design choices:
— Speed scaler: how fast to run? (static, coupled, decoupled)
— Scheduler: which job to run? (FCFS, PS, FSP, SRPT, LRPT)

= Research questions:

— What are the “autoscaling” properties of coupled (i.e., job-
count based) speed scaling systems under heavy load?

— In what ways are PS and SRPT similar or different?
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System Model (1 of 4)
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Review: Birth-death Markov chain model of classic M/M/1 queue
Fixed arrival rate A
Fixed service rate u
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Mean system occupancy: N=p/(1-p) P, =Py (ML)
Ergodicity requirement: p=A/u<1 U=1-p,=p



System Model (2 of 4)
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Birth-death Markov chain model of classic M/M/ee queue
Fixed arrival rate A
Service rate scales linearly with system occupancy (a = 1)
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n-1
Mean system occupancy: N =p=A/u Pr = Po T (M(i+1)u)

System occupancy has Poisson distribution u=1-p,#p
Ergodicity requirement: p = A/u < oo
FCFS = PS # SRPT



System Model (3 of 4)
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Birth-death Markov chain model of dynamic speed scaling system
Fixed arrival rate A
Service rate scales sub-linearly with system occupancy (a = 2)
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Mean system occupancy: N =p?=(A/H)? Pu= po]:(f)(?\/("iTl)u)
System occupancy has higher variance than Poisson distribution
Ergodicity requirement: p = A/u < oo



System Model (4 of 4)
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Birth-death Markov chain model of dynamic speed scaling system
Fixed arrival rate A
Service rate scales sub-linearly with system occupancy (a > 1)
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Mean system occupancy: N =p%=(A/Q)* Pn= po]:[)(?\/(m)u)
System occupancy has higher variance than Poisson distribution
Ergodicity requirement: p = A/u < oo



Analytical Insights and Observations
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= |n speed scaling systems, p and U differ

= Speed scaling systems stabilize even whenp > 1

" |n stable speed scaling systems, s =p (an invariant)
= PSis amenable to analysis; SRPT is not

= PS with linear speed scaling behaves like M/M/eo,
which has Poisson distribution for system occupancy

" |ncreasing a changes the Poisson structure of PS
= At high load, N =2 p® (another invariant property)



PS Modeling Results
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Steady-State Probabilities for System Occupancy (Lambda = 2)
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SRPT Simulation Results
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Steady-State Probabilities for System Occupancy (Lambda = 2)
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Comparing PS and SRPT
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= Similarities:
— Mean system speed (invariant property)
— Mean system occupancy (invariant property)
— Effect of a (i.e., the shift, the squish, and the squeeze)

= Differences:
— Variance of system occupancy (SRPT is lower)
— Mean response time (SRPT is lower)
— Variance of response time (SRPT is higher)
— PS is always fair; SRPT is unfair (esp. with speed scaling!)
— Compensation effect in PS
— Procrastination/starvation effect in SRPT



Busy Period Structure for PS and SRPT (simulation)
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Busy Period Characteristics for PS and SRPT
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Simulation Insights and Observations
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= Under heavy load, busy periods coalesce and U 2 1

= Saturation points for PS and SRPT are different

— Different “overload regimes” for PS and SRPT

— Gap always exists between them

— Gap shrinks as a increases

— Limiting case (a = o) requires p < 1 (i.e., fixed rate)
= SRPT suffers from starvation under very high load
= “Job count” stability and “work” stability differ



Conclusions
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* The autoscaling properties of dynamic speed scaling
systems are many, varied, and interesting!

— Autoscaling effect: stable even at very high offered load (s = p)
— Saturation effect: U = 1 at heavy load, with N = p®
— The a effect: the shift, the squish, and the squeeze

" |nvariant properties are helpful for analysis
= Differences exist between PS and SRPT

— Variance of system occupancy; mean/variance of response time
— Saturation points for PS and SRPT are different
— SRPT suffers from starvation under very high load

= Qur results suggest that PS becomes superior to SRPT for
coupled speed scaling, if the load is high enough



