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= A classic network traffic measurement study has
shown that aggregate Ethernet LAN traffic is
self-similar [Leland et al 1993]

= A statistical property that is very different from the
traditional Poisson-based models

= This presentation: definition of network traffic self-
similarity, Bellcore Ethernet LAN data, implications of
self-similarity




Measurement Methodology
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= Collected lengthy traces of Ethernet LAN traffic on
Ethernet LAN(s) at Bellcore

= High resolution time stamps

= Analyzed statistical properties of the resulting time
series data

= Each observation represents the number of packets
(or bytes) observed per time interval
(e.g., 1048127205179 8 8 2..)



Self-Similarity: The Intuition
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= |f you plot the number of packets observed per time
interval as a function of time, then the plot looks
“similar” regardless of what interval size you choose

= E.g., 10 msec, 100 msec, 1 sec, 10 sec,...

= Same applies if you plot number of bytes observed
per interval of time



Self-Similarity: The Intuition
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" |n other words, self-similarity implies a “fractal-
like”” behaviour: no matter what time scale you
use to examine the data, you see similar patterns

" |mplications:
— Burstiness exists across many time scales
— No natural length of a burst

— Traffic does not necessarilty get “smoother” when you
aggregate it (unlike Poisson traffic)



Self-Similarity: The Mathematics
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= Self-similarity is a rigourous statistical property
(i.e., a lot more to it than just the pretty “fractal-
like”” pictures)

= Assumes you have time series data with finite
mean and variance (i.e., covariance stationary
stochastic process)

= Must be a very long time series (infinite is best!)

= Can test for presence of self-similarity



Self-Similarity: The Mathematics
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= Self-similarity manifests itself in several equivalent
fashions:

= Slowly decaying variance

" Long range dependence

= Non-degenerate autocorrelations
= Hurst effect




Slowly Decaying Variance
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= The variance of the sample decreases more slowly
than the reciprocal of the sample size

= For most processes, the variance of a sample
diminishes quite rapidly as the sample size is
increased, and stabilizes soon

= For self-similar processes, the variance decreases

very slowly, even when the sample size grows quite
large




- Variance-Time Plot
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= The “variance-time plot” is one method to test for
the slowly decaying variance property

= Plots the variance of the sample versus the sample
size, on a log-log plot

= For most processes, the result is a straight line with
slope -1

= For self-similar, the line is much flatter




Variance




Variance-Time Plot
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Variance-Time Plot
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Variance-Time Plot
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Variance-Time Plot
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Long Range Dependence

UNIVERSITY OF

CALGARY

= Correlation is a statistical measure of the
relationship, if any, between two random variables

= Positive correlation: both behave similarly
= Negative correlation: behave in opposite fashion

= No correlation: behaviour of one is statistically
unrelated to behaviour of other



ey Long Range Dependence (Cont’d)

= Autocorrelation is a statistical measure of the
relationship, if any, between a random variable and
itself, at different time lags

= Positive correlation: big observation usually followed
by another big, or small by small

= Negative correlation: big observation usually
followed by small, or small by big

= No correlation: observations unrelated



umvessir o Long Range Dependence (Cont’d)

= Autocorrelation coefficient can range between +1
(very high positive correlation) and -1 (very high
negative correlation)

= Zero means no correlation

= Autocorrelation function shows the value of the
autocorrelation coefficient for different time lags k



Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Autocorrelation Function
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Long Range Dependence (Cont’d)
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" For most processes (e.g., Poisson, or compound
Poisson), the autocorrelation function drops to
zero very quickly (usually immediately, or
exponentially fast)

" For self-similar processes, the autocorrelation

function drops very slowly (i.e., hyperbolically)
toward zero, but may never reach zero

= Non-summable autocorrelation function



Autocorrelation Function
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vessir o Non-Degenerate Autocorrelations

= For self-similar processes, the autocorrelation
function for the aggregated process is
indistinguishable from that of the original process

= |f autocorrelation coefficients match for all lags k,
then called exactly self-similar

= |f autocorrelation coefficients match only for large
lags k, then called asymptotically self-similar




Autocorrelation Function

UNIVERSITY OF

CALGARY

=)

S +1

G Original self-similar
= / process

Q )

O

O

C

o O

- .
% Aggregated self-similar
- process

O

O

O

5 -1

<

0 lag k 100



@ Aggregation
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= Aggregation of a time series X(t) means smoothing
the time series by averaging the observations over

non-overlapping blocks of size m to get a new time
series X (t)

2



Aggregation: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291...
* Then the aggregated series for m = 2 is:



Aggregation: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291...
* Then the aggregated series for m = 2 is:
45 80 2.55060 75 7.0 4.0 45 5.0...



Aggregation: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291...
Then the aggregated time series for m =5 is:



Aggregation: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291...
Then the aggregated time series for m =5 is:
6.0 4.4 6.4 4.8 ...



Autocorrelation Function
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" For almost all naturally occurring time series, the
rescaled adjusted range statistic (also called the
R/S statistic) for sample size n obeys the
relationship

E[R(n)/S(n)] =cn"

where:
R(n) = max(0, Wy, ... Wp) - min(0, Wy, ... Wy)

S(n) iskthe sample standard deviation, and

W = _glxi -k X, fork=1,2,..n



The Hurst Effect (Cont’d)
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= For models with only short range dependence, H is
almost always 0.5

= For self-similar processes, 0.5 <H< 1.0

= This discrepancy is called the Hurst Effect, and H is
called the Hurst parameter

= Single parameter to characterize self-similar process!



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291
= There are 20 data points in this example



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291
= There are 20 data points in this example

= For R/S analysis with n = 1, you get 20 samples, each
of size 1: (boring base case)

Block1: X =2, W;=0,R(n)=0, S(n) =0

Block 2: X =7, W;=0,R(n)=0,S(n)=0

Block 3: X =4, W;=0,R(n)=0, S(n)=0




R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n = 2, you get 10 samples, each
of size 2:



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n = 2, you get 10 samples, each
of size 2:

Block 1: X,=4.5, W,;=-2.5, W, =0,
R(n)=0-(-2.5)=2.5, S(n) = 2.5,
R(n)/S(n) =1.0



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n = 2, you get 10 samples, each
of size 2:

Block 2: X,=8.0, W, =-4.0, W, =0,
R(n) =0-(-4.0) = 4.0, S(n) = 4.0,
R(n)/S(n) =1.0



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n =5, you get 4 samples, each
of size 5:



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n =5, you get 4 samples, each
of size 4:

Block 1:Yn= 60, W1 = -4.0, W2= -3.0,
W,=-5.0, W, =1.0, W, =0, S(n) = 3.41,
R(n) = 1.0 - (-5.0) = 6.0, R(n)/S(n) = 1.76



R/S Statistic: An Example
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= Suppose the original time series X(t) contains the
following (made up) values:

2741250828469113357291

= For R/S analysis with n =5, you get 4 samples, each
of size 4:

Block 2: X .= 4.4, Wy =-4.4, W, =-0.8,
W;=-3.2,W,;=0.4,W;=0, S(n) =3.2,
R(n) =0.4 - (-4.4) = 4.8, R(n)/S(n) = 1.5



R/S Plot
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= Another way of testing for self-similarity, and
estimating the Hurst parameter

= Plot the R/S statistic for different values of n, with a
log scale on each axis

= |f time series is self-similar, the resulting plot will
have a straight line shape with a slope H that is
greater than 0.5

= Called an R/S plot, or R/S pox diagram



R/S Pox Diagram
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R/S Pox Diagram
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R/S statistic R(n)/S(n)
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R/S Pox Diagram
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R/S Pox Diagram
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= Self-similarity is an important mathematical
property that has been identified as present in
network traffic measurements

" |mportant property: burstiness across many time
scales, traffic does not aggregate well

" There exist several mathematical methods to test
for the presence of self-similarity, and to estimate
the Hurst parameter H

= There exist models for self-similar traffic



