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Abstract

Recent measurement studies have shown that traffic generated by peer-to-peer (P2P) file-sharing applications has started to
dominate the bandwidth consumption on Internet access links. The prevailing use of P2P applications carries with it significant
implications for Internet Service Providers (ISPs): on the one hand increased levels of P2P traffic result in additional costs for an
ISP, which has to provide a satisfactory service level to its subscribers. On the other hand, P2P applications are a major driving force
for the adoption of broadband access, which is a significant source of revenue for the ISPs. A successful strategy to manage P2P
traffic must address both the ISP perspective of costs and the subscriber perspective of quality of service. While several practical
solutions have been identified to manage P2P traffic in a network, no analytical studies have been proposed so far to evaluate their
effectiveness in specific contexts. In this paper we propose a modeling framework that allows the optimal strategy to be identified
for an ISP as a function of the several factors that come into play. In particular, our model shows that P2P-friendly solutions become
lucrative when the ISP can attract a sufficiently large number of subscribers. Our modeling framework also illustrates several other
interesting phenomena that occur in the tussle between the ISP and its subscribers.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Peer-to-Peer (P2P) file-sharing applications have reached a level of popularity among Internet users such that the
volume of traffic generated by such applications nowadays represents a significant fraction of the overall Internet
traffic [1]. Bandwidth consumption due to P2P file sharing applications continues to grow unabatedly, edging ahead
of the traffic volume generated by traditional Internet applications (i.e. web browsing, email, etc.) [2,3].

As P2P file-sharing applications gain popularity, Internet service providers (ISPs) are increasingly faced with the
problem of how to manage the vast amount of traffic generated by such applications. Indeed, P2P traffic represents
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a huge problem for last-mile providers, where it makes up 80% or more of the traffic volume, according to some
reports [1]. Such traffic levels can cause congestion and overall performance degradation in an ISP’s network,
ultimately leading to customer dissatisfaction. At the same time, P2P file-sharing applications are a major driving
force for the adoption of residential broadband access, which is a significant source of revenue to ISPs. Thus, ISPs
today face the following dilemma: Are P2P file-sharing applications friends or foes? In particular, should ISPs curb
P2P file-sharing traffic in their network? What strategies should the ISP take in order to keep P2P file-sharing traffic
under control, while continuing to maximize the subscribers’ experience? Such a dilemma has been transforming
broadband business models worldwide.

Many providers that have chosen completely to block P2P traffic (thus eliminating the additional costs generated
by such applications) are now starting to realize that this approach, in the long term, does not pay off, since it
dramatically increases customer churn in today’s competitive broadband market. Moreover, many users of P2P file-
sharing applications are now able to circumvent standard traffic-blocking techniques deployed by ISPs. As a result,
P2P-friendly solutions are currently being sought and some approaches have recently appeared in the literature. For
example, ISPs can try to exploit traffic locality or content-caching of P2P applications in order to reduce the transit
costs [4,1]. Nevertheless, it is still unclear whether an ISP can indeed make any profit by embracing P2P file-sharing
applications in an operational environment, with a given customer base.

The goal of this work is to shed some light on this dilemma by providing an analytical study of the impact of
different strategies that might be available to an ISP. In particular, we propose an analytical framework that captures the
economical and performance aspects of the problem and models the tussle between the ISP and its potential customers.
Our approach is fairly general and captures many parameters of this complex interaction, such as the quality of service
expected by users, the dynamics of content popularity and replication, the effects of limited bandwidth-sharing and
user impatience, and, of course, the influence of the specific choices adopted by the ISP to manage P2P traffic.

The proposed framework can be applied to specific operational conditions to analyze the best strategy that an ISP
should adopt to manage P2P traffic generated by its customers. For example, the framework can be used to determine
the required effectiveness of mechanisms that reduce transit costs by exploiting traffic locality (e.g. caching content)
in order for P2P file-sharing traffic to be a profitable business for both the ISP and its customers.

Interestingly, our analysis reveals that costs incurred by an ISP exhibit a counter-intuitive, non-monotonic behavior
as the number of subscribers grows. This occurs because increasing levels of P2P usage also augment the probability
that a given object request can be served from another peer within the ISP boundaries. Moreover, for a given number
of subscribers, there exists an optimal subscription fee that the ISP should charge so as to maximize its profit. Our
framework also quantitatively shows that the current practice of providing asymmetric access bandwidths to the users
(i.e. download bandwidth greater than upload bandwidth) can be very detrimental for an ISP.

An important aspect of the problem is the temporal dynamics of the content available to users. In particular, new
content is constantly being introduced into the system, replicated by the downloads of users, and suffering changes
in its popularity (i.e. number of queries it receives). While developing our framework, we also introduce a novel and
general approach to account for this temporal dynamics. This module of our framework could also be applied for other
purposes.

The paper is organized as follows. Section 2 summarizes related work on the topic including a discussion of the
measurement studies that we have used to set the parameters of our model. Section 3 describes the network scenario
we address. Section 4 introduces a simple model that allows the derivation of basic insights into the system dynamics.
Section 5 presents a selection of the most interesting results we obtained by exploring the parameter space of our
simple model. Section 6 describes the approach that we have used in our framework to capture resource popularity
and replication. Section 7 describes a refined model that allows some important limitations of the simple model
previously introduced to be removed. Section 8 presents a few results obtained by solving our refined model. Finally,
Section 9 draws conclusions and outlines directions of future work.

2. Related work

Peer-to-peer (P2P) file-sharing applications are a disruptive technology in many different ways. In particular, traffic
generated by these applications can have a significant impact on networks, mainly due to its high volume. In fact,
recent studies [3] have pointed out that, in contrast to some rumors spread by popular media, the traffic volume due to
P2P file-sharing is still increasing. One pressing issue is how to identify accurately and measure P2P traffic, as more
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and more applications become available to users which deploy obfuscation techniques in order not to be identified
(e.g. random port numbers, packet encryption). Recent efforts to cope with this problem require sophisticated traffic
identification techniques at the transport [2] or even at the application layer [1].

Besides large volume, traffic generated by P2P file sharing also exhibits other peculiar characteristics that can
impact network performance. For example, traffic patterns of these applications differ substantially from Web traffic,
being mainly driven by a “fetch-at-most-one” behavior coupled with the birth of new objects and users [5]. Moreover,
application-level topologies generated by P2P applications tend poorly to match the underlying Internet topology [6],
leading to ineffective use of the network resources. Finally, as with several other applications, it has been observed that
content popularity in P2P file-sharing applications is highly skewed. In [7] it is shown that 20% of the files account
for more than 80% of the downloads. A comprehensive study of the characteristics of the P2P file-sharing workload
is presented in [5].

Given the potential impact that P2P file-sharing applications have on networks, ISPs have started to search for
mechanisms to control and cope with this type of traffic. Several alternatives are discussed in [4], among which:
(1) acquire more bandwidth; (2) block P2P file-sharing traffic; (3) utilize caching; (4) implement pricing schemes
based on traffic volume; (5) shape P2P file-sharing traffic by means of service differentiation policies; (6) introduce
application-layer redirection of P2P file-sharing traffic to exploit traffic locality. The consequences of adopting one or
more of these alternatives have been partially investigated in the literature, as we discuss in the following. However,
the feasibility and effectiveness of practical implementations of the proposed alternatives are still an open issue.

The effectiveness of caching content generated by P2P file sharing applications has been discussed in [7–9].
Caching reduces the transit costs for downstream bandwidth by serving requests within the ISP network. This solution
looks particularly attractive due to substantial skewness of content popularity [5]. In [7] the authors conclude that the
disk space required for effective caching of P2P traffic is small enough to be practical. In [9] the authors propose a
caching solution which leverages existing web cache proxies. Despite its clear advantages, P2P-caching remains a
controversial approach. The foremost concern for ISPs is the legality of such a solution. The provider would no longer
be merely providing network infrastructure but would also be storing and forwarding potentially copyrighted content,
which could push the ISP into copyright violation.

The gains achievable by exploiting traffic locality have also been investigated in the literature, mainly by simulation
[5,10]. In [5] the authors present a set of small-scale simulation experiments based on a P2P workload model derived
from traces. They quantify the potential bandwidth saving that locality-aware P2P file-sharing applications would
achieve in various operational conditions. Similarly, in [10] the authors explore what-if scenarios of locality-aware
solutions using real BitTorrent trace logs. Both studies above suggest that bandwidth savings of the order of 60% are
achievable by exploiting traffic locality.

In yet a different way, P2P file-sharing traffic may also disrupt economic agreements between ISPs. Since traffic
can be routed at the application layer, transit traffic agreements between ISPs can be violated. In [11], the authors
propose an analytical framework to model the dynamics between two competing ISPs and understand their transit
agreements. Their model is based on the economics and performance aspects of the problem, although the end users’
point of view is not considered.

In our work we consider a very different problem; namely, the tussle between an ISP and its customers. In particular,
we propose an analytical framework to highlight fundamental insights on the system behavior, as well as a basic
understanding of the impact of the various parameters lying inside or outside the sphere of influence of the ISP. Our
model considers both the economics and the performance aspects of the problem and takes into consideration both
the ISP and its customers. To the best of our knowledge, we are the first to propose an analytical study of the tussle
between ISPs and P2P users based on a comprehensive and extensible model.

3. Network scenario and assumptions

Consider the network scenario illustrated in Fig. 1. An ISP provides Internet access to a set of n customers who are
interested in running P2P file-sharing applications to download content from other peers. The total number of peers
in the P2P file-sharing community as a whole is denoted by N . The network of the ISP is connected to the rest of the
Internet by a single link of downstream1 bandwidth Bd and upstream bandwidth Bu . Users who subscribe to the ISP

1 In this paper downstream refers to the direction from the Internet to the user, whereas upstream refers to the direction from the user to the
Internet.
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Fig. 1. Network scenario.

pay a fixed price c and get a downstream bandwidth bd and an upstream bandwidth bu , which are assumed to be the
same for all of the ISP subscribers. We consider that traffic generated by P2P applications dominates the remaining
traffic, and thus neglects the bandwidth consumption due to applications different from P2P. Alternatively, Bd could
represent the bandwidth allocated to P2P traffic on a virtual link, in case the ISP is able to identify and segregate P2P
traffic from the remaining traffic. The internal details of the ISP network are also neglected, as we assume that this
part of the network is largely overprovisioned; hence, it does not affect the system performance. Moreover, we assume
that the upstream link of capacity Bu connecting the ISP to the rest of the Internet does not constitute a bottleneck,
and thus we neglect it in the remaining analysis.

The probability that a peer is on (i.e. running one or more P2P applications) is denoted by pon. Let λq be the
average demand of a peer for content, which can be interpreted as the mean rate at which a user generates queries
using one or more P2P applications. We denote by σ the average probability that a query generated by a user results
in a successful object retrieval. Notice that σ is not a system parameter, but a variable determined by the interaction
between the ISP and its subscribers, as we soon describe.

We assume that the level of satisfaction of a user is just an increasing function of the successful object download
probability σ . We chose this simple metric alone, instead of jointly considering the object transfer delay, because
many P2P users are patient, and can tolerate long but reasonable download times; for example, because they keep the
transfer active overnight. More specifically, we express the utility Ui (σ, c) of user i as

Ui (σ, c) = log(αiσ + 1) − c (1)

where αi is a shape parameter that can depend on the particular user. The log function has been chosen to model
diminishing returns as σ increases, and in such a way that σ = 0 provides zero benefit to the user.

Users subscribe to the ISP only if they are minimally satisfied with the service provided. Thus, if Ui (σ, c) ≥ 0
then user i subscribes to the ISP, otherwise the user prefers not to subscribe. Equivalently, user i subscribes to the ISP
provided that σ ≥ σmini where σmini = (ec

− 1)/αi .
The ISP receives revenue from its subscribers and must pay for the connection to a higher tier ISP. We assume

the cost of the ISP is composed of a fixed component plus a cost proportional to the allocated bandwidth Bd . As
mentioned above, subscribers only pay for subscription when they are minimally satisfied. Therefore, the ISP’s utility
function can be expressed as:

UISP(Bd , c) =

n∑
i=1

cI(Ui (σ,c)≥0) − (β2 Bd + β1) (2)

where I(·) is the indicator function, β1 is the fixed cost of providing bandwidth and β2 is the cost for each unit of
bandwidth. The objective of the ISP is to maximize its utility function over the control parameters Bd and c, for given
values of β2, β1 and user population n.

4. Simple model

We now introduce a simple model to shed some light on the problem and acquire basic insights into the system
dynamics. We consider, for simplicity, that all users are identical (αi = α, ∀i). In this case, the ISP will convince all
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Fig. 2. Simple model for the outcome of queries generated by ISP subscribers.

of them to subscribe to the service, provided that σ ≥ σmin = (ec
− 1)/α, otherwise no user will decide to subscribe.

Clearly, in order to minimize its costs, the ISP will allocate just the minimum amount of bandwidth Bd to guarantee
that σ ≥ σmin. Let us denote by Bmin the minimum amount of bandwidth necessary to ensure that σ = σmin. We now
describe a simple model that allows us to compute Bmin.

Fig. 2 illustrates the possible outcomes of queries generated by users subscribing to the ISP. Part of the queries
generated by the users might fail to locate any copy of the desired content within the P2P community as a whole. This
can happen because of several reasons, which are usually not under the control of the ISP. We thus treat the probability
that a query is solved (i.e. at least one copy of the desired object is found) as a given parameter, and denote it by q.
In general, a fraction of the queries that are solved can be served from within the ISP, while another fraction has to be
served from peers residing outside the ISP. Let p be the probability that a solved query is served from within the ISP.
To simplify the analysis further, we assume that internal downloads (i.e. data transfers between peers belonging to the
ISP) always complete successfully. This corresponds to the best-case scenario of unlimited bandwidth within the ISP
network. This assumption will be relaxed in Section 7.

If an object cannot be served from within the ISP, the downstream link of limited bandwidth Bd has to be used.
Since this link is shared by all flows transferring objects from external peers, using elastic rate adaptation mechanisms
(e.g. TCP), we adopt an M/G/1-Processor Sharing model to describe its dynamics. Insensitivity of this model with
respect to the service time distribution permits to consider just the average object size, which is assumed to be known.
We will actually normalize the object size to 1, and measure the bandwidth allocated on the link in objects per second.

We consider that users are impatient and tend to abort downloads that do not receive a minimum throughput. This
is motivated by the fact that many P2P applications allow the user to inspect the current download rate of an object
and abort the transfer. It is reasonable to assume that the abort decision is taken in the early phase of the transfer,
relative to the total time required to download the object. Under these assumptions, the shared link is always stable
and no bandwidth is wasted by partial downloads. Moreover, we will further assume that the shared link is always
fully utilized (i.e. there is always at least one transfer in progress), yielding a throughput (expressed in objects per
second) equal to Bd .

Let λ = nλq be the aggregate generation rate of queries by the population of users belonging to the ISP. The
aggregate system throughput µ, which is the rate at which objects are successfully retrieved by the users, can be
expressed as

µ = λqp + Bd (3)

where the first term of the sum corresponds to the throughput obtained by the queries that are served within the ISP
and the second term corresponds to the throughput obtained by the queries served from outside the ISP. It follows that
the probability that a query generated by a user results in a successful download is σ = µ/λ, which is given by

σ = qp +
Bd

λ
. (4)

Notice that, if qp ≥ σmin, the ISP can allocate a bandwidth Bd = 0. This means that the system sustains itself even
in isolation, i.e. without any connection to the rest of the P2P file-sharing community. Instead, if qp < σmin, the ISP
has to allocate a minimum bandwidth Bmin = λ(σmin − qp) so as to provide the minimum service for which users are
willing to subscribe to the ISP. The ISP will actually do so (allocate Bmin) provided that this strategy leads to positive
utility according to Eq. (2), i.e. nc − β1 − β2 Bmin > 0, otherwise the ISP will not allow its users to run P2P file-
sharing applications.



824 M. Garetto et al. / Performance Evaluation 64 (2007) 819–837

Finally, we introduce a simple model to determine the probability p that a query generated by a user is served by
some other peer belonging to the ISP. In general a solved query will find one or more replicas of an object, part of
them stored inside the ISP and part of them stored outside the ISP. The probability that at least one replica of a desired
object resides within the ISP can be expressed as 1 − (1 − f/F)r , where f denotes the total number of files stored
by users belonging to the ISP, F denotes the total number of files stored by the P2P community, and r denotes the
number of replicas of the object that are present in the P2P system at the time the object is requested.

Under the assumption that f � F , which naturally stems from the assumption that n � N , the probability that at
least one replica of a requested object resides within the ISP can be approximated by r f/F . Let γ be the probability
that an object is indeed downloaded from an internal peer, given that at least one replica exists within the ISP. This
probability represents the efficacy of the system in exploiting traffic locality. We do not model the details of how γ

depends on the optimizations already incorporated in the P2P applications (e.g. preference mechanisms based on RTT
measurements), or how γ can be influenced by ISP choices (e.g. query filtering/redirection). We observe that γ = 1
represents a best-case scenario to save bandwidth Bd (although we will later show that γ = 1 is not always optimal).

We further assume that a copy of an object is cancelled/removed by a user after an average time τ . In addition, users
introduce new objects in the shared folder of their computers at rate λo. Quantities such as τ , λo, and λq are assumed
to be equal for users residing inside or outside the ISP. Instead, we consider the possibility that users belonging to the
ISP are treated differently from the rest of the users belonging to the P2P community. Indeed, different ISPs around the
world can offer different types of contract to their customers, who in turn expect different service levels (in terms of
object throughput). We take this fact into account introducing the average probability σ̂ that objects are successfully
retrieved by a generic user belonging to the P2P community. The value of σ̂ can, in general, be different from the
value of σ resulting from the interaction of the given ISP with its customers.

Applying Little’s law, we have f = n(λo + λqσ)τ , F = N (λo + λq σ̂ )τ , and we obtain the approximation (valid
for n � N ),

p ≈ γ r
n
N

λo + λqσ

λo + λq σ̂
. (5)

Putting things together, we obtain that the minimum amount of bandwidth that the ISP has to allocate (provided
that this leads to positive utility for the ISP), can be expressed as

Bmin = max
[

0, nλq

(
σmin − qγ r

n
N

λo + λqσmin

λo + λq σ̂

)]
. (6)

We observe that Bmin = 0 (which means that the P2P community within the ISP network sustains itself even in
isolation) can be a solution for sufficiently large n (but, recall, we assume n � N ). In the special case, in which all
users of the P2P community are treated the same (σmin = σ̂ ), we obtain the simplified expression

Bmin = max
[
0, nλq

(
σmin − qγ r

n
N

)]
(7)

which does not depend on λo. The native parameters of our model are summarized in Table 1.

5. Basic insights obtained with the simple model

In this section we present a selection of the most interesting results that we have obtained while exploring the
parameter space of our simple model. Some of the parameters have been chosen according to measurement studies
of P2P file-sharing traffic recently appearing in the literature. The values that will be kept fixed throughout the
experiments of this section, unless otherwise specified, are the following:

• N = 5 · 107. This number has been chosen because the number of online users of popular P2P applications is
typically around a few million, while the percentage of online time is quite small (less than 10%) [12], hence the
size of the P2P file-sharing community is estimated in the order of tens to hundreds of millions of users.

• λo =
((20∗5475)/365)

N objects/day. The average number of new video objects (movies) introduced by users in one
year is 5475, according to [5]. Although video objects account for about 65% of overall P2P traffic, they represent
only about 5% of all file requests [5]. Using the same introduction rate for all types of file (a factor of 20) and
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Table 1
Native parameters

N Number of peers in the global P2P community
n Number of potential subscribers of the ISP
pon Probability that a peer is online
λo Average introduction rate of new objects by a peer
λq Average object request rate by a peer
α Shape factor of users’ utility function
c Subscription cost per user
Bd Downstream capacity of ISP access link to the Internet
β1 Fixed costs for the ISP
β2 Cost per unit of external bandwidth contracted by ISP
q Probability that a query is solved by the P2P application
r Mean number of replicas available for a requested object
γ Probability to download an internal copy (if any)
σ̂ Successful object retrieval probability for all peers
τ Average time before an object is removed by a user

Fig. 3. The utility function Ui for α = 5 and c = 1.

dividing by the number of days in one year (365), we obtain the above expression for the mean rate at which new
objects are introduced per day by one user.

• λq = 1. This estimate of the mean object request rate by a user (per day) has been taken from the workload model
proposed in [5].

At last, we set the parameters of the user utility function (1) as follows. We normalize the subscription cost c of
a user to 1, and we choose the shape parameter α = 5 so that the minimum value σmin = (ec

− 1)/α = 0.34. This
means that we consider a population of users who are minimally satisfied when they are able successfully to retrieve
about one third of requested objects. The actual user utility function is depicted in Fig. 3.

5.1. Analyzing Bmin

We start considering how Bmin, the minimum amount of external bandwidth that the ISP must allocate to convince
the users to subscribe, depends on various system parameters. Looking at Eq. (6), we notice that Bmin is given
by a second-order polynomial of the population size n. We observe that equation Bmin = 0 has always one root
corresponding to n = 0. The other root, denoted by nmax, represents the critical value of n above which no external
bandwidth is needed2: this happens when the local P2P community is large enough to sustain itself. It follows that
Bmin exhibits a counter-intuitive, non monotonic behavior as a function of n (see plots in Fig. 4). In the following we
explore the effect of several parameters.
The impact of r . In this set of experiments we take a scenario in which γ = 1, q = 0.9, σ̂ = σmin, and we consider
three different values of the average number of replicas r , 500, 1000, and 1500. Fig. 4 (left upper plot) depicts the

2 Notice that when Bmin = 0 new contents are still introduced into the system by internal users.
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Fig. 4. Bmin as a function n, for different values of r (upper left plot); Bmin as a function of n, for different values of γ (upper right plot); Bmin as
a function of n, for different values of q (lower left plot); Bmin as a function of n, for different values of σ̂ (lower right plot).

behavior of Bmin as a function of n for the three considered values of r . Note that the larger the r , the smaller the value
of nmax at which the ISP community could self-sustain.
The impact of γ . In the previous set of experiments we have considered the best-case scenario in which the efficacy
of the system in selecting an internal copy of a desired object (provided that it exists) is maximum, i.e. γ = 1. Of
course this is possible only in an ideal system. In practice, γ depends on native optimizing mechanisms implemented
by P2P applications, but it can also be influenced by the ISP through application-layer redirection of queries, which,
according to [4], is the preferred strategy for an ISP.

To evaluate the impact of γ , we fix r = 1000, q = 0.9, σ̂ = σmin and we let γ vary. Fig. 4 (upper-right plot)
depicts the behavior of Bmin as a function of n for four different values of γ , namely, 0.25, 0.5, 0.75, and 1.

We observe that, if the redirection mechanism to internal peers is not perfect (γ < 1), the value of nmax can increase
considerably with respect to the ideal case (γ = 1), possibly making the solution Bmin = 0 impractical. In this case,
for a given population size n < nmax, curves such as those in Fig. 4 (upper-right plot) provide the additional external
bandwidth that is needed for different values of γ .

The role played by γ is quite interesting because it could also be used to model the hit ratio of a content-caching
solution.
The impact of q . Another important parameter that affects the system performance is q, the probability that a query is
solved in the first place, i.e. the P2P application is able to locate at least one copy of the requested object at another peer
of the P2P community. The value of q essentially depends on the effectiveness of the search mechanisms implemented
by the P2P architecture, so it is only marginally modifiable by the ISP. In principle, an ISP could artificially drop
queries (for example, in a probabilistic manner) to a priori limit the use of the external bandwidth. However, according
to our model, this is not a sensible strategy. To prove this, we consider a scenario in which γ = 0.75, σ̂ = σmin,
r = 1000, and we vary q: 0.5, 0.75, and 1. Fig. 4 (lower-left plot) shows that, by reducing q, an ISP can only increase
the amount of external bandwidth needed to fulfill the expectations of its customers. Conversely, if the ISP is able to
increase the hit probability of queries, i.e. increase the value of q, then the value of nmax decreases because the need
for the external bandwidth is lower.
The impact of σ̂ . The quality of service enjoyed by P2P users throughout the world can be highly diverse, because
users belong to ISPs that can offer very different contracts (e.g. in terms of subscription cost), for example because they
operate in more or less competitive markets, with consequently different expectations by the customers. Therefore,
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the average capacity of an arbitrary peer of the community to using P2P applications (modelled by σ̂ ) can deviate
substantially from the service level obtained by peers within the considered ISP.

To investigate the impact of σ̂ , we consider a scenario in which q = 0.9, γ = 1, r = 1000. Recall that, in our
basic parameters setting, the minimum level of satisfaction required by the ISP customers is σmin ∼ 0.34. In Fig. 4
(lower-right plot) we have plotted the behavior of Bmin as a function of n for three different values of σ̂ , i.e. 0.2, 0.333,
and 0.5. These values correspond to an average service level outside the reference ISP that is lower, similar, or higher,
respectively, than the service level expected by peers belonging to the ISP. We observe that, if users outside the ISP
enjoy (on average) a better (worse) service, the amount of external bandwidth that the ISP has to allocate increases
(decreases). This is essentially due to the fact that the number of copies stored by users is proportional to their service
level. The larger (smaller) the number of copies that exist within the ISP, the higher (lower) the probability that a
query finds an object internally, thus avoiding the consumption of external bandwidth.

Curves such as those depicted in Fig. 4 can help an ISP to select a strategy to manage P2P traffic. If the population
size is above nmax, no external bandwidth is needed to support P2P traffic, provided that users are indeed able to locate
copies of the desired objects within the ISP. This can be achieved by redirecting all queries towards internal peers, or
by providing to the users a customized P2P application running within the ISP network boundaries. The feasibility
of this solution, however, strongly depends on the degree of replication r of contents, confirming that this parameter
is indeed crucial for the system performance. This actually motivates the in-depth analysis of content replication that
will be presented in Section 6.

5.2. Analysing UISP

To determine whether it is really profitable for an ISP to start a service with given characteristics, we need to
consider the costs associated with the required bandwidth Bmin, i.e. evaluate the utility function Eq. (2) for B = Bmin
and check if it is positive. Actually, it may well be that the total income obtained from the subscription fee of the
customers does not cover the expenses due to fixed costs (β1) and to the bandwidth contracted by the higher-tier ISP
(proportional to β2). It turns out that there exists a minimum value of n, denoted by nmin, below which the ISP has no
incentive to start the service, because by so doing, its utility would be negative. The value of nmin corresponds to the
positive root of the second-order equation UISP(n) = 0 in which B = Bmin.
The impact of c. From the ISP viewpoint it is especially interesting to evaluate how UISP (and threshold nmin) depends
on the subscription cost c. Indeed, on one side, larger values of c produce proportionally bigger incomes from the
subscribers (equal to n c); on the other side, for larger values of c, users demand better and better service levels. So
how to choose the value of c? To address this issue we consider a scenario in which γ = 1.0, r = 1000, q = 1.0,
σ̂ = 0.6, β1 = 500 and β2 = 5. We consider four different values of c, 0.6, 1.0, 1.4, 1.6, with corresponding minimum
service levels σmin =

ec
−1
α

.
Fig. 5 (upper-left plot) depicts UISP as a function of n for the four considered values of c. We observe that the

optimal value of c depends on the number of users. For large number of customers (n > 25 000) the higher profit is
obtained from the largest value of c, i.e. c = 1.6. However, the situation changes as the number of potential users
decreases. Indeed, setting a smaller c eases the starting of the service (nmin reduces), and can provide positive utilities
for values of n where larger c’s are not feasible. Using the model, the optimum value of c for a given number of
users can be found numerically, and the resulting values are shown in Fig. 5 (upper-right plot), together with the
corresponding values of UISP. Notice that c cannot exceed the value cmax = log(αq + 1) ∼ 1.8, because it cannot
provide a successful retrieval probability greater than the probability q that a query is solved by the P2P application.
Moreover, even by tuning c, there exists a minimum value of n below which the ISP does not gain any profit by
starting the service.
The impact of q . We consider a scenario in which γ = 1.0, r = 1000, σ̂ = σmin, β1 = 1000 and β2 = 10, and vary
the value of q = 0.35, 0.5, 0.75, 1.0.

Fig. 5 (lower-left plot) depicts UISP as a function of n for the considered values of q. We observe that the optimal
utility for the ISP is always achieved for the largest q . Also, the threshold nmin is very sensitive to q.
The impact of r and β2. At last, we investigate the dependency of nmin on the average number of replicas r , while
also varying the cost β2 per bandwidth unit incurred by the ISP. We considered a scenario in which c = 1, α = 5,
γ = 1.0, q = 1.0, σ̂ = 0.6, β1 = 500.
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Fig. 5. UISP as a function of n, for different values of c (upper-left plot); optimum c as function of n, and corresponding maximum UISP (upper-
right plot); UISP as a function of n, for different values of q (lower-left plot); nmin as a function of r , for different values of β2 (lower-right
plot).

Fig. 5 (lower-right plot) depicts the threshold nmin as a function of r for β2 = 3, 4, 5, 6. We observe again the
crucial role played by r in making the service lucrative to the ISP for a given customer base. The impact of β2 on nmin
is especially significant when r is small. This can be explained by recalling that the higher the value of r , the lower
the need for an external bandwidth, hence β2 is less important than fixed costs represented by β1.

6. Modeling object popularity and replication

As we have seen, one fundamental parameter that affects the system performance is r , which has been introduced
in the simple model to compute the probability that at least one replica of a requested content exists within the ISP
network. Parameter r represents the average number of replicas of an arbitrary object that are available in the global
P2P system at the time the object is requested. This number depends on both the level of popularity and the extent
of replication of objects within the P2P community. Notice that these two metrics, for a given object, evolve over
time, and their instantaneous values are not necessarily correlated: when a content reaches its highest popularity, there
might be just a few copies of it in the system; similarly, there can be a large number of replicas of an object at the time
the object has lost much of its popularity. The analysis is made complex by the fact that objects are heterogeneous and
highly dynamic: new contents are constantly added into the system, and their popularity can change over time in very
different ways. Some contents lose popularity very soon after they are introduced (e.g. videos related to sport events),
whereas others can keep their popularity almost unchanged for many years (e.g. popular songs).

The usual approach taken in the literature to model the popularity of objects is to consider their rank distribution,
which is typically assumed to be Zipf. New objects are then inserted at some popularity rank index according to the
same distribution; pre-existing objects of equal or lesser popularity are pushed down, and the resulting distribution
is re-normalized to keep the total probability equal to 1 [5]. Unfortunately, this model does not permit the temporal
evolution of contents popularity and replication to be computed in an easy way.

Since existing techniques do not allow r to be evaluated, we have developed a new approach, based on native system
parameters, that is able to compute the entire distribution of the number of replicas of an object that are present in the
system at the time the object is requested. We believe the proposed methodology is an independent contribution of
this paper.
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Fig. 6. Example of evolution of popularity for two different objects.

We consider that the popularity of an object can be quantified by some metric that evolves according to a generic
function of time, independently for each object. The absolute value of this metric is not important, since what matters is
just the relative popularity value of an object with respect to other objects present in the system at a given point in time.

We assume that new objects are inserted into the system according to a Poisson process of rate Nλo. Upon arrival
of object i , a popularity curve pi (t) belonging to a common family of curves P is instantiated and associated with the
new file. The set P comprises, in general, all continuous, bounded functions defined over [0, ∞]. We assume that the
probability that an object is requested at a given point in time is equal to its current popularity value, divided by the
sum of the popularity of all available objects. As we will see, the number of objects in the whole P2P network is large
enough for us to assume that the sum of the popularity of all objects is constant. It follows that the number of copies
of an object, inserted at time ti , that have been downloaded up to time t is proportional to

∫ t
ti

pi (τ − ti )dτ .
Since we are interested not in the number of times an object has been downloaded, but in the number of copies

still available in the system, we need to account for the fact that users tend to cancel files from the hard disk of their
computers, for instance to make room to new objects. We do so by allotting to each new object i a cancelation rate
δi (possibly dependent on its particular popularity curve pi ) and assuming that copies are removed by users after an
exponentially distributed amount of time of mean τi = 1/δi . We obtain the number of available copies Ai (t) of object
i at time t as being by

Ai (t) = G
∫ t

ti
pi (τ − ti )e−δi (t−τ)dτ (8)

where G is a constant, and Ai (t) = 0 for t < ti .
As an example, Fig. 6 depicts two objects whose popularity evolves in very different ways over time: object 1,

inserted at time t1 soon reaches a high value, but its popularity decays quickly, for instance because it refers to an
event of the news that is no longer interesting a few days after its appearance. Object 2, inserted at time t2, gains
popularity more slowly, but maintains its popularity for a much longer time; it could represent, for example, a popular
song. Now suppose that a peer issues a request at time t∗. At this time, object 2 has great popularity, thus it will be
more likely to be requested than object 1. However, by this time, object 1 will have been downloaded many more
times (in a number proportional to the integral of its popularity curve up to time t∗); therefore, it will be more likely
to be found (assuming that the cancelation rate is the same for both objects).

Our model can be regarded as a Poisson shot-noise process [13], where a shot represents the evolution over time of
the number of available copies of a given object inserted into the system, i.e. Ai (t). We can thus exploit well-known
results on such stochastic processes to study the dynamics of objects in the system. In particular, we can characterize
the distribution of the total number Z(t) of copies of all objects present in the system at a given point in time:

Z(t) =

∑
i∈Z

Ai (t).

Let Si =
∫

∞

ti
Ai (t)dt . For simplicity, we assume Si to have finite expectations, so that process Z(t) is stationary.3

Under this assumption we have E[Z ] = NλoE[S]. Since the number of different objects (and copies) available in the

3 In reality Z(t) is likely to be non-stationary, as we can argue that the total number of objects (and copies) shared by the P2P community
increases over time. We neglect such long time-scale dynamics in this paper. The impact of the non-stationarity of the process is subject to future
work.
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system is extremely large, the coefficient of variation of Z(t) is very small [13], and we can readily assume that Z(t)
is constant, i.e. Z(t) = Z . The constant G to be used in (8) is then given by:

G =
Z

Nλo

(
E

[∫
∞

0

∫ t

0
pi (τ )e−δi (t−τ)dτdt

])−1

.

Now, let f (ω, δ) be the joint pdf of the parameters ω that specify a generic popularity curve pω(t) and the
associated cancelation rate δ.

Let Aω,δ(t) = G
∫ t

0 pω(τ )e−δ(t−τ)dτ . The probability P(A > a) that a query is directed to an object available in a
number of copies greater than a can be computed as

P(A > a) =
1
K

∫
ω,δ

f (ω, δ)

∫
t :Aω,δ(t)>a

pω(t)dtdωdδ. (9)

where K is a normalization constant

K =

∫
ω,δ

f (ω, δ)

∫
∞

0
pω(t)dtdωdδ.

From (9) one can compute the pdf f A(a) of the number of available copies of a requested object. We remark that our
model is intended to capture the macroscopic dynamics of objects available in the P2P community, and provides great
flexibility in coping with the heterogeneous nature of contents, by considering different families of popularity curves
and cancelation rates.

7. Model refinements

The simple model described in Section 4 could be refined in many different ways. Here, we remove one
fundamental limitation of the simple model, that is, the assumption that the finite bandwidth on the access links
of the users does not affect the system performance. This is, indeed, a crucial point, since the exploitation of traffic
locality is indeed effective only when the upload bandwidth available on the access link of internal peers can be used
in place of the external bandwidth Bd .

To account for the finite downstream bandwidth bd of the users (see Fig. 1), we adopt an M/G/1-Processor Sharing
model with rate limit bd to describe the sharing of the external bandwidth Bd . This approach has also been used
in [14] to model elastic flows through a bottleneck link. To maintain the queue stable under any load condition, we
explicitly model user impatience as follows: when an object starts to be downloaded, we assume that the user inspects
the rate achieved by the flow at the very beginning of the data transfer (let this rate be equal to b), and decides to keep
it going with a probability pg that depends on the ratio between the achieved rate and the access bandwidth bd . With
probability 1 − pg the transfer is instead prematurely aborted. Probability pg can be modelled as an arbitrary function
of the ratio b/bd . We have chosen the following dependency of pg as a function of b/bd :

pg(b) =

(
b
bd

)η

where η ≥ 0 is a tunable parameter accounting for different degrees of user impatience. Fig. 7 depicts how probability
pg depends on η according to the chosen formula. The case η = 0 corresponds to the case of infinite patience
(pg = 1). As η → ∞, the user becomes more and more intolerant, claiming always to obtain a rate close to the
bandwidth he/she has paid for.

This model of user impatience can be easily incorporated into our bandwidth-sharing model by introducing arrival
rates of flows that depend on the number of flows in progress. Using the same technique described in [15], it can be
shown that the resulting model is still insensitive to the object size distribution. Let λe = nλqq(1 − p) be the arrival
rate of flows at the processor-sharing queue representing link Bd (before drops). The probability π(i) that i flows are
in progress at an arbitrary time instant can be computed as
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Fig. 7. Probability pg that a user keeps doing a data transfer as a function of the initial achieved rate b.

Fig. 8. Refined model for the outcome of queries generated by ISP subscribers.

π(i) =


π(0)

(
λe

bd

)i 1
i !

if i ≤ m,

π(0)

(
hm

m!

)1−η (
λe hη

Bd

)i 1
i !η

if i > m
(10)

where h = Bd/bd , and m denotes the integer part of h, i.e., m = bhc; probability π(0) is obtained imposing that∑
∞

i=0 π(i) = 1. We observe that the queue is always stable, provided that η > 0. In the case of η = 0, the queue is
stable if λe/Bd < 1. Finally, the rate at which flows using the external bandwidth Bd end successfully, denoted by µe,
is given by

µe = [1 − π(0)]Bd −

m∑
i=1

[π(i)(Bd − ibd)]. (11)

To account for the finite upstream bandwidth bu of the users, we model each internal peer j as an M/G/1-processor-
sharing queue with service capacity bu , rate limit bd , and flow arrival rate λin

j , 1 ≤ j ≤ n. A schematic representation
of our refined model is shown in Fig. 8. Notice that the aggregate internal arrival rate of flows λin

=
∑n

j=1 λin
j is

equal to nλqqp. For each internal queue we can apply the same formulas derived for the bandwidth-sharing model
of link Bd , having substituted bu for Bd , and λin

j for λe. Each peer provides a throughput µin
j computed by a formula

analogous to (11). The overall system throughput is then computed as µ = µe +
∑n

j=1 µin
j .

The only remaining difficulty is how to distribute the internal load among the peers, as represented in Fig. 8 by the
splitting node S. A simple approach would be to consider all nodes identical. In this case we would have λin

j = λin/n,
∀ j . However, peers are very heterogeneous, and, in particular, the fraction of time during which a peer is online, as
well as the number of files made available by a peer, is expected to be highly diverse within the user population.
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Fig. 9. Peer selection probability as a function of number of replicas, for ν = 0.8.

Fig. 10. Peer selection probability as a function of number of replicas, for ν = 1.2.

This fact produces an uneven load distribution among the peers that can saturate the upload bandwidth on some of
the most available peers, thus giving rise to internal bottlenecks that can disrupt the exploitation of traffic locality.
Due to the relevance of this issue, we propose here an analytical approach to compute the load distribution among the
peers, which makes use of the distribution of replicas for a requested object computed in Section 6, thus justifying
and strengthening the proposed technique to modeling object popularity and replication.

We assume that the availability of resources at peers is described by a generic weight function w( j); we consider
the normalized weight function wn( j) =

w( j)∑n
k=1 w(k)

. The quantity wn( j) represents the probability that peer j is
selected as an uploader in the case in which there exists exactly one replica of the requested content within the ISP
network. The problem is to evaluate the selection probability of each peer in case there are multiple replicas of a
content. Since each peer is supposed to have only one copy of an object, our analysis maps onto the known problem of
computing the inclusion probability of a finite set of items in a sampling procedure without replacement and varying
draw probabilities [16]. This problem is, in general, very difficult to solve exactly. Therefore we have followed the
approach proposed in [16], that provides an asymptotic analysis for large population sizes. We have verified that
existing asymptotic formulas provide a very good approximation for the typical values of n that we consider, by
comparing results against detailed simulations of successive sampling.

Following [16] we define the implicit function t (y) by the relation

n − y =

n∑
s=1

e−wn(s)t (y), 0 ≤ y < n. (12)

The probability that peer j has a replica, given that the object is replicated ai times, is given by

u( j) =
1 − e−wn( j)t (ai )

ai
. (13)

The peer selection probability is then obtained by normalizing probabilities u( j) to sum up to one.
As an example, consider the case of 1000 peers, characterized by a weight function w( j) which behaves as a

power-law, i.e. w( j) ∝ j−ν . This is a realistic weight function, because it has been observed that availability of
resources at peers is highly skewed, with a small fraction of peers providing a significant percentage of the total
resources available in the P2P community. Figs. 9 and 10 show the probability that each of the 1000 peers is selected
as an uploader, as a function of the number of replicas of a content available within the ISP network, for ν = 0.8
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Fig. 11. Bmin as a function n, for different values of η, bd = 1000 (left plot); Bmin as a function of n, for different values of bd , η = 4 (right plot).

and ν = 1.2, respectively. Notice that, as the number of replicas increases, the distribution approaches a uniform
distribution (i.e. p( j) = 1/1000, ∀ j); however, this happens more slowly when ν is larger.

To obtain the final load splitting distribution in the ISP network, we need to make an average of the peer selection
probabilities weighted by the conditional probabilities P(ai ) that there are ai replicas available in the ISP network,
given that there exists at least one replica (since we already know that the query has been solved internally). To
compute P(ai ), we start from the pdf f A(a) of the number of copies of a requested object that are present in the whole
P2P community, as derived in Section 6. The probability that a copy in available at an online internal peer is Poi =

pon
n
N

λo+λqσ

λo+λq σ̂
. The probability that there are m such replicas is given by Q(m) =

∑
i≥m f A(i)

(
i
m

)
Pm

oi (1 − Poi )
i−m .

Finally, P(ai ) is obtained as Q(ai )/
∑

j≥1 Q( j).

8. Results with finite access bandwidth

In this section we present a few results obtained by solving the refined model that accounts for finite user access
bandwidth, as described in Section 7. We will first isolate the impact of finite download bandwidth bd , keeping the
assumption that the upload bandwidth bu of each user is infinite. Then, we will consider the more complex case in
which both bd and bu are finite.
The impact of bd . We consider a scenario in which γ = 1, q = 0.9, σmin = σ̂ = 0.5. The impact of bd can be
very different, depending on the degree of user impatience, which has been modelled by parameter η (see Fig. 7). To
explore the joint impact of bd and η, we conduct two different experiments. In the first one we fix bd = 1000, and let
η vary. The results of these experiments are shown in the left part of Fig. 11, in which we plot Bmin as function of n.
In the second one we fix η = 4, and let bd vary. The results of these experiments are shown in the right part of Fig. 11.
Notice that, although we vary bd , the content demand generated by the users is kept constant. When either bd � Bd ,
or η ∼ 0, the results are almost indistinguishable from those obtained by the simple model introduced in Section 4.
The reason is that in these conditions the shared link is fully utilized almost all the time; thus, we do not make any
significant error by assuming that it contributes a constant throughput equal to Bd . The behavior deviates from that
predicted by the simple model when bd is comparable to Bd , and, at the same time, η is not too small. In this case,
the number of active flows is small enough for the link to fail to be fully utilized with non-negligible probability. For
large values of η (e.g. 12), note that the required values of Bmin concentrate at multiples of bd . This can be explained
by the fact that, when users are extremely impatient, they tend to abort a transfer whenever they do not obtain a rate
equal to bd . As a consequence, values of Bmin in between two consecutive multiples of bd are not useful, and Bmin has
to be varied (in the limit of η → ∞) with granularity equal to bd in order to have any impact on system performance;
hence the ‘cloud’ shape of the curves in Fig. 11.
The impact of bu . We now show the most interesting phenomena that we have observed while considering the joint
impact of finite bd and finite bu . In this case, the distribution of the number of replicas of a requested content is impor-
tant; thus, we can take full advantage of the popularity and replication model developed in Section 6. We consider a
family of popularity curves pw(t) which decay exponentially over time, i.e. pw(t) = V e−θ t . We assume that both the
initial popularity value V and the decay parameter θ are random variables. The cancelation rate δ is assumed to be the
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Fig. 12. Ccdf of the number of replicas of a requested object in the whole P2P community.

Fig. 13. Conditional pdf of the number of online replicas within the ISP network.

same for all objects. More specifically, we consider the following three scenarios: (A) V uniform in [1, 10], θ uniform
in [0.001, 1], δ = 0.001; (B) V uniform in [1, 10], θ uniform in [0.001, 1], δ = 0.02; (C) V uniform in [1, 10], θ

uniform in [0.001, 3], δ = 0.02. Notice that the unit of measure of θ and δ is days−1. We assume that the total number
of copies in the P2P community is Z = 4 · 108 (an average of eight objects per peer). This is consistent with the fact
that the total amount of data stored by peers, according to online statistics reported by popular P2P file-sharing clients,
is of the order of several thousand TBytes, while the average object size is around 30 MB [5].

We fix the number of ISP users to n = 20 000, and consider an online probability pon = 0.05 such that, on average,
we have 1000 online peers in the ISP network. The complementary cumulative distribution function of the number
of copies of a requested object in the whole P2P system is depicted in Fig. 12 for the three considered scenarios. In
Fig. 13 we have plotted the resulting conditional pdf P(ai ) of the number of online replicas within the ISP network,
computed as explained at the end of Section 7. We observe that the mean number of replicas of a requested object
increases when we increase either the cancelation rate δ or the popularity decay parameter θ (notice that the total
number of copies in the system is kept constant).

In the following experiments we fix q = 0.9, σ̂ = σmin = 0.5. We first take scenario (A), with γ = 0.9, and
assume that bu = bd , i.e. the upload bandwidth of the users is equal to their download bandwidth. To account for
user diversity, we consider a power-law user weight function with ν = 1.2, the same as that considered in Fig. 10.
In Fig. 14 we show the minimum required bandwidth Bmin for different values of the user impatience parameter η.
Quite surprisingly, Bmin can exhibit a non-monotonic behavior as we increase the value of bu = bd , especially when
users are very impatience. This can happen when Bmin is comparable with bd , and can be explained by the fact that
the benefit resulting from increased upload bandwidth bu is offset by the effect of transfer aborts by users who do not
get a correspondingly high download rate when they have to use the external link bandwidth.

In general, to exploit traffic locality better, it is preferable to provide to the users a larger upload bandwidth bu ,
rather than a larger download bandwidth bd , contrary to common practice (e.g. ADSL lines). This is illustrated in



M. Garetto et al. / Performance Evaluation 64 (2007) 819–837 835

Fig. 14. Bmin as a function bu = bd , for different values of the impatience parameter η.

Fig. 15. Bmin as a function of bu for η = 0.5 and different values of bd .

Fig. 15, where we fix η = 0.5 and vary the ratio between bu and bd . Even if users are quite patient (η = 0.5), it can
be very detrimental to the ISP to provide values of bd much larger than bu . This choice can shift the point at which
the external bandwidth is no longer necessary (Bmin = 0), or even result in increasing values of Bmin for increasing
user access rates. We conclude that asymmetric access rates are ill-suited to P2P traffic, and this should be taken into
account by ISPs that want to be friendly towards P2P usage.

Next, we consider scenario (B), in which the number of replicas of an object is large enough that p ∼ 1, i.e. it
is very likely that a copy of a requested object is available at an internal peer. Here, we show another interesting
phenomenon, that is, γ = 1 (perfect exploitation of traffic locality) is not always optimal, especially when the ISP
provides an excessively small upload bandwidth to the users. This is illustrated in Fig. 16, in which we plot Bmin as
a function bu = bd , with η = 1, for different values of γ . When bu is larger than 250, γ = 1 allows the ISP not
to provide any external bandwidth (Bmin = 0). However, when bu < 250, γ = 1 is not feasible, i.e. the bandwidth
available within the ISP network is not enough to guarantee the throughput demanded by subscribers. In this case, the
ISP has artificially to redirect queries out of its network (γ < 1), forcing the downloads to use the external bandwidth.
Actually, for each value of bu < 250 there exists a critical γ , illustrated in Fig. 16 by a thick solid line, such that values
of γ larger than this critical value are not feasible (i.e. users are not satisfied by the service). However, unnecessarily
reducing γ below the critical value results in increasingly higher values of Bmin (see Fig. 16).

At last, we show the impact of different levels of user heterogeneity, by considering user weight functions
w( j) = j−ν with different exponents ν. We consider scenario (C), with γ = 0.8, η = 1. This time, we compute
the maximum service level σ that can be provided to the users, assuming that the average service level obtained by
other peers in the community is constant, σ̂ = 0.5. The results are shown in Fig. 17, as a function of bu = bd .
We observe that, the more even the internal load distribution (small ν), the bigger the effectiveness of traffic locality
and thus the quality of service that can be offered to the subscribers. Notice that at all considered points Bmin = 0.
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Fig. 16. Bmin as a function of bu = bd , for different values of γ .

Fig. 17. Maximum σ as a function of bu = bd , for different values of ν.

Conversely, for a given desired service level, curves such as those in Fig. 17 can be used to compute the minimum
upload bandwidth that has to be provided to the users.

9. Conclusions and further developments

The shift from traditional Internet applications to P2P applications is a rather new phenomenon with significant
implications for ISPs, which are still not well understood. Although different strategies have been proposed to manage
P2P traffic in a network, there is an increasing need of modeling techniques to evaluate their applicability and
effectiveness in specific network contexts. This paper represents a first step towards an analytical understanding of
the tussle between ISPs and P2P users. Our modeling framework takes into account a variety of factors that affect
the system performance, and in particular the ability to exploit traffic locality to reduce transit costs. Our analysis has
revealed many interesting, sometimes counter-intuitive, phenomena occurring while varying the system parameters.
We are planning to extend our analysis along different directions. An important refinement of the model would be
to consider users with different service level expectation for the same subscription fee, so that the ISP has to choose
how many of them to attract. Another interesting development is the study of the interaction among multiple ISPs
competing with each other for the same population of users.
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