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(Pseudo-) Random Number
Generation (RNG)

A fundamental primitive
required for simulations

Goal: Uniform(0,1)
Uniformity

Independence
Computational efficiency
Long period

Multiple streams

Common approach: LCG
Careful design and seeding
Never generates 0.0 or 1.0
Covered in guest lecture (JH)
Readings: 2.1, 2.2

Recap and Terminology

Random Variate Generation
(RVG)

Builds upon Uniform(0,1)
Goal: any distribution
Discrete distributions
Continuous distributions
Independence (usually)
Correlation (if desired)
Computational efficiency

Common approach: the
inverse transform method

Straightforward math (usually)
Might generate 0.0 or 1.0
Covered in today’s lecture
Readings: 6.1, 6.2



Outline
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= Random variate generation
— Inverse transform method
— Convolution method
— Empirical distribution
— Other techniques



@ Discrete-Event Simulation
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" |nput parameters such as inter-arrival times and
service times are often modeled by random variables
with some given distributions

= A mechanism is needed to generate variates for a
wide class of distributions

This can be done using a sequence of random

numbers that are independent of each other and
are uniformly distributed between 0 and 1




Uniform Random Numbers
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= Uniformly distributed between 0 and 1

— Consider a sequence of random numbers uy,U,, ..., Uy

n equal
sub-intervals

— Uniformity: expected number of random numbers in each
sub-interval is N/n

— Independence: value of each random number is not
affected by any other numbers



= Bernoulli Variate
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A Bernoulli variate is useful for generating a binary outcome
(O or 1) to represent “success” (1) or “failure” (0)

Example: wireless network packet transmission
Example: coin flipping to produce “heads” or “tails”

Bernoulli trial (with parameter p)

p(1) =p, p(0)=1-p

= Random variate generation
— Generate u
—If O<u<sp, x=1;
— Otherwise x =0
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Inverse Transformation Method:
Discrete Distributions

= Consider a tri-modal discrete distribution

— Example: size of an email message (in paragraphs, or KB)
— Example: p(1) = 0.5, p(2) = 0.3, p(3) = 0.2

= Cumulative distribution function, F(x)
1.0 -

F(x)

0.8

0.5




. Inverse Transformation Method:
L Discrete Distributions

= Algorithm
— Generate random number u
—Random variate x =i if F(i—1) <u < F(i)

= Example: F(0) =0, F(1) = 0.5, F(2) =0.8, F(3) = 1.0
—0<u<05 variate x = 1
—05<u<0.8 variate x = 2
—08<u<10 variate x = 3



Discrete Uniform Variate
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= Discrete uniform (with parameters a and b)

p(nN)=1b-a+1) forn=a,a+1, .. b
Fin)=(h—-a+1)/(b—-a+1)

= Random variate generation
— Generate u
—x=a+ floor(ux(b—a+ 1)) OR
—x =(a—1)+ceiling(u*x(b—a+ 1))



Geometric Variate
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= Geometric (with parameter p)
p(m) =p(1-p)""H,n=123,..

= Gives the number of Bernoulli trials until achieving
the first success

= Random variate generation

— Generate u

In(u)
In(1-p)

— Geometric wvariate Xx =[
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. Inverse Transformation Method:
CALGARY Continuous Distributions

= Algorithm
— Generate uniform random number u

—Solve F(x) =u for random variate x

1+
Fo) oyl /

F(X): Cumulative Distribution Function of X
=P(X < x)

Variate x
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= Define the random variable Y as:
Y = F(X)

Therefore,

Proof
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= Uniform (with parameters a and b)

1/(b—a) a<x<b,
0 otherwise.

FX)=(x—-a)/(b—-a),a<x<bh

= Random variate generation

— Generate u
—x=a+ (b —a)u

Continuous Uniform Variate
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&) Exponential Variate
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= Exponential (with parameter A)
f(x) =21 erx
F(x) =1—e*x

= Random variate generation

— Generate u
— X = — G) - In(u)

" Canalsousex = — G) -In(1 — u)

Note: If u is Uniform(0,1), then 1 — u is Uniform(0,1) too!
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Convolution Method
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= Sum of nvariables:x =y, +y, + -+ vy,
1. Generate n random variate y;'s
2. The random variate x is given by the sum of y;’s

Example: the sum of two fair dice that are rolled
P(x=2) = 1/36; P(x=3) = 2/36; P(x=4) = 3/36;
P(x=5) = 4/36; P(x=6) = 5/36; P(x=7) = 6/36;
P(x=8) = 5/36; P(x=9) = 4/36; P(x=10) = 3/36;
P(x=11) = 2/36; P(x=12) = 1/36



Geometric Variate
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= Geometric (with parameter p)
p(m) =p(1-p)""H,n=123,..

= Gives the number of Bernoulli trials until achieving
the first success
—let b=0, n=0
—while (b==0)

= Generate Bernoulli variate b with
parameter p

" Geometric variate n=n+1

Inefficient!!
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Binomial Variate
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= Binomial (with parameters p and n)

p(k) = P(X = k) = (’;) pk(1—p)"* k=01,..,n

Random variate generation
—Generate n Bernoulli variates, Yi1,V2, -, Vn

—Blnomial variate x=y;+y,+ -+ Yy,

17



Poisson Variate
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= Poisson (with parameter 1)

Ak ]
p(k) =P(X =k) =2-e7%, k=012,..

= Random variate generation (based on the relationship
with exponential distribution)
—let s=0, n=0

—while (s<1)
" Generate exponential variate y with parameter

A
"S=s5+Yy
"n=n+1

— Poisson variate x=n —1
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Other Techniques: Normal Variate
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= Normal (with parameters u and o?)

_ 2
! e_%(%) , for—oc0o < x <+

flx) =

oV 2T

Random variate generation using approximation method
— Generate two random numbers U, and u,

— Random variates x;and x, are given by:

X1 = U+ 0\/—2 In(uy) - cos(2mu,)
Xy, = U+ a\/—Z In(u,) - sin(2mu,)
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Empirical Distribution
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Could be used if no theoretical distributions
fit the data adequately

= Example: Piecewise Linear empirical distribution

N

— Used for continuous data

— Appropriate when a large
sample data is available

— Empirical CDF is approximated
by a piecewise linear function:

* the ‘jump points’ connected
by linear functions

L 2

Piecewise Linear
Empirical CDF
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Empirical Distribution
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= Piecewise Linear empirical distribution
— Organize X-axis into K intervals
— Intervaliisfroma;_;toa;for i =1,2,..,K
— p;: relative frequency of interval i
— ¢;: relative cumulative frequency of interval i, i.e., ¢c; = p; + -+ p;

interval i
| | | | L ) |\‘ | | l l
| | | | | | | | |
aO ai—l al aK
— Empirical CDF: K intervals

= Ifxisinintervali,i.e., a;_1 < x < a;, then:
F(x) =ci-q +ai(x—a;_q)

where, slope «; is given by

Ci — Ci—1

a =———
a; — aj—
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Example Empirical Distribution
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= Suppose the data collected for 100 broken machine repair times are:

Interval Relative Cumulative
[ (Hours) Frequency Frequency Frequency Slope
1 0.0<x=<0.5 31 0.31 0.31 0.62
2 0.5<x=<1.0 10 0.10 0.41 0.2
3 1.0<x<15 25 0.25 0.66 0.5
4 1.5<x<20 34 0.34 1.00 0.68

A

.o | Piecewise Linear
08 - Empirical CDF

0.7 -

0.6 - C3—Co
__ Slope a3 = = 0.5
asz—a;

0.5 A

0.4 A

0.3 -

0.2 -

0.1 -

L Z

Ag a, a, as Ay
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Empirical Distribution
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= Random variate generation:
— Generate random number u

— Select the appropriate interval i such that
Ci—1 <uc< Ci
— Use the inverse transformation method to compute the
random variate x as follows

1
X =aj_q1+ o (u—ci—1)
l
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Suppose the data collected for 100 broken machine repair times are:

Example Empirical Distribution

Interval Relative Cumulative
[ (Hours) Frequency Frequency Frequency Slope
1 0.25<x=<0.5 31 0.31 0.31 1.24
2 0.5<x=<1.0 10 0.10 0.41 0.2
3 1.0<x<15 25 0.25 0.66 0.5
4 1.5<x<20 34 0.34 1.00 0.68

Suppose: u = 0.83

cz=066<u<c,=100=>i=4

1

X = dg +a—(u—cg)

4

1
=154+ —(0.83 — 0.66)
= 1.75

0.68
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