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Recap and Terminology

▪ (Pseudo-) Random Number
Generation (RNG)

▪ A fundamental primitive 
required for simulations

▪ Goal: Uniform(0,1)
▪ Uniformity
▪ Independence
▪ Computational efficiency
▪ Long period
▪ Multiple streams
▪ Common approach: LCG
▪ Careful design and seeding
▪ Never generates 0.0 or 1.0
▪ Covered in guest lecture (JH)
▪ Readings: 2.1, 2.2

▪ Random Variate Generation 
(RVG)

▪ Builds upon Uniform(0,1)
▪ Goal: any distribution
▪ Discrete distributions
▪ Continuous distributions
▪ Independence (usually)
▪ Correlation (if desired)
▪ Computational efficiency
▪ Common approach: the 

inverse transform method
▪ Straightforward math (usually)
▪ Might generate 0.0 or 1.0
▪ Covered in today’s lecture
▪ Readings: 6.1, 6.2
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▪ Random variate generation

— Inverse transform method

— Convolution method

— Empirical distribution

— Other techniques

Outline

3



▪ Input parameters such as inter-arrival times and 
service times are often modeled by random variables 
with some given distributions

▪ A mechanism is needed to generate variates for a 
wide class of distributions

Discrete-Event Simulation

This can be done using a sequence of random
numbers that are independent of each other and
are uniformly distributed between 0 and 1
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▪ Uniformly distributed between 0 and 1

— Consider a sequence of random numbers u1,u2,…,uN

— Uniformity: expected number of random numbers in each 
sub-interval is N/n

— Independence: value of each random number is not 
affected by any other numbers

Uniform Random Numbers

• • •
0 1

n equal 

sub-intervals
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A Bernoulli variate is useful for generating a binary outcome 
(0 or 1) to represent “success” (1) or “failure” (0)

Example: wireless network packet transmission

Example: coin flipping to produce “heads” or “tails”

Bernoulli trial (with parameter p)

p(1) = p, p(0) = 1 – p

▪ Random variate generation
— Generate 𝑢

— If 0 < 𝑢 ≤ 𝑝, 𝑥 = 1; 

— Otherwise 𝑥 = 0

Bernoulli Variate
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▪ Consider a tri-modal discrete distribution

— Example: size of an email message (in paragraphs, or KB)

— Example: p(1) = 0.5, p(2) = 0.3, p(3) = 0.2

▪ Cumulative distribution function, F(x)

Inverse Transformation Method: 
Discrete Distributions

1.0
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x
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▪ Algorithm
—Generate random number 𝑢

—Random variate 𝑥 = 𝑖 if 𝐹 𝑖 − 1 < 𝑢 ≤ 𝐹(𝑖)

▪ Example: F(0) = 0, F(1) = 0.5, F(2) = 0.8, F(3) = 1.0

— 0 < u ≤ 0.5 variate 𝑥 = 1

— 0.5 < u ≤ 0.8 variate 𝑥 = 2

— 0.8 < u ≤ 1.0 variate 𝑥 = 3

Inverse Transformation Method:
Discrete Distributions
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▪ Discrete uniform (with parameters a and b)

p(n) = 1/(b – a + 1)   for n = a, a + 1, …, b

F(n) = (n – a + 1)/(b – a + 1)

▪ Random variate generation
—Generate 𝑢

—𝑥 = 𝑎 + 𝑓𝑙𝑜𝑜𝑟(𝑢 ∗ 𝑏 − 𝑎 + 1 ) OR

—𝑥 = 𝑎 − 1 + 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(𝑢 ∗ 𝑏 − 𝑎 + 1 )

Discrete Uniform Variate
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▪ Geometric (with parameter p)

𝑝 𝑛 = 𝑝 1 − 𝑝 𝑛−1, n = 1,2,3, …

▪ Gives the number of Bernoulli trials until achieving 
the first success

▪ Random variate generation
—Generate 𝑢

—Geometric variate 𝑥 =
ln 𝑢

ln 1−𝑝

Geometric Variate
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▪ Algorithm
—Generate uniform random number 𝑢

—Solve 𝐹 𝑥 = 𝑢 for random variate 𝑥

Inverse Transformation Method: 
Continuous Distributions

F(x)

1

u

0
Variate 𝑥

x

F(x): Cumulative Distribution Function of X
= ℙ(𝑋 ≤ 𝑥)
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▪ Define the random variable 𝑌 as:
𝑌 = 𝐹(𝑋)

ℙ 𝑌 ≤ 𝑦 = ℙ 𝑋 ≤ 𝑥 = 𝑦

Therefore,
𝑌~𝑈(0, 1)

Proof

1

y

x

𝐹(𝑥)
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▪ Uniform (with parameters a and b)

F(x) = (x – a)/(b – a), 𝑎 ≤ 𝑥 ≤ 𝑏

▪ Random variate generation
—Generate 𝑢

—𝑥 = 𝑎 + 𝑏 − 𝑎 𝑢

Continuous Uniform Variate

1/( ) ,
( )

0 otherwise.
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▪ Exponential (with parameter 𝜆)

f (x) = 𝜆 e-𝜆 x

F(x) = 1 – e-𝜆 x

▪ Random variate generation
—Generate 𝑢

—𝑥 = −
1

𝜆
⋅ ln(𝑢)

▪ Can also use 𝑥 = −
1

𝜆
⋅ ln(1 − 𝑢)

Exponential Variate

Note: If 𝑢 is Uniform(0,1), then 1 − 𝑢 is Uniform(0,1) too!
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▪ Sum of n variables: 𝑥 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛
1. Generate n random variate 𝑦𝑖's 

2. The random variate 𝑥 is given by the sum of 𝑦𝑖’s

Example: the sum of two fair dice that are rolled

P(x=2) = 1/36; P(x=3) = 2/36; P(x=4) = 3/36;

P(x=5) = 4/36; P(x=6) = 5/36; P(x=7) = 6/36;

P(x=8) = 5/36; P(x=9) = 4/36; P(x=10) = 3/36;

P(x=11) = 2/36; P(x=12) = 1/36

Convolution Method
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▪ Geometric (with parameter p)

𝑝 𝑛 = 𝑝 1 − 𝑝 𝑛−1, n = 1,2,3, …

▪ Gives the number of Bernoulli trials until achieving 
the first success
—let 𝑏 = 0, 𝑛 = 0

—while (𝑏 == 0)

▪ Generate Bernoulli variate 𝑏 with 

parameter 𝑝

▪ Geometric variate 𝑛 = 𝑛 + 1

Geometric Variate

Inefficient!!
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▪ Binomial (with parameters p and 𝑛)

𝑝 𝑘 = ℙ(𝑋 = 𝑘) =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘 , 𝑘 = 0,1, … , 𝑛

Random variate generation
—Generate 𝑛 Bernoulli variates, 𝑦1, 𝑦2, … , 𝑦𝑛
—Binomial variate 𝑥 = 𝑦1 + 𝑦2 +⋯+ 𝑦𝑛

Binomial Variate
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▪ Poisson (with parameter 𝜆)

𝑝 𝑘 = ℙ 𝑋 = 𝑘 =
𝜆𝑘

𝑘!
𝑒−𝜆,  𝑘 = 0,1,2, …

▪ Random variate generation (based on the relationship 
with exponential distribution)

— let 𝑠 = 0, 𝑛 = 0

— while (𝑠 ≤ 1)
▪ Generate exponential variate y with parameter 

𝜆

▪ 𝑠 = 𝑠 + 𝑦

▪ 𝑛 = 𝑛 + 1

— Poisson variate 𝑥 = 𝑛 − 1

Poisson Variate
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▪ Normal (with parameters 𝜇 and 𝜎2)

▪ Random variate generation using approximation method
— Generate two random numbers u1 and u2

— Random variates 𝑥1and 𝑥2 are given by: 

𝑥1 = 𝜇 + 𝜎 −2 ln(𝑢1) ⋅ cos(2𝜋𝑢2)

𝑥2 = 𝜇 + 𝜎 −2 ln(𝑢1) ⋅ sin(2𝜋𝑢2)

Other Techniques: Normal Variate

𝑓 𝑥 =
1

𝜎 2𝜋
𝑒
−
1

2

𝑥−𝜇

𝜎

2

,   for −∞ ≤ 𝑥 ≤ +∞
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Could be used if no theoretical distributions 
fit the data adequately

▪ Example: Piecewise Linear empirical distribution

— Used for continuous data

— Appropriate when a large
sample data is available

— Empirical CDF is approximated 
by a piecewise linear function: 

▪ the ‘jump points’ connected 
by linear functions

Empirical Distribution

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Piecewise Linear
Empirical CDF
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▪ Piecewise Linear empirical distribution

— Organize 𝑋-axis into 𝐾 intervals

— Interval 𝑖 is from 𝑎𝑖−1 to 𝑎𝑖 for 𝑖 = 1,2,… , 𝐾

— 𝑝𝑖: relative frequency of interval 𝑖

— 𝑐𝑖: relative cumulative frequency of interval 𝑖, i.e., 𝑐𝑖 = 𝑝1 +⋯+ 𝑝𝑖

— Empirical CDF: 

▪ If 𝑥 is in interval 𝑖, i.e., 𝑎𝑖−1 < 𝑥 ≤ 𝑎𝑖, then:

𝐹 𝑥 = 𝑐𝑖−1 + 𝛼𝑖 𝑥 − 𝑎𝑖−1

where, slope 𝛼𝑖 is given by

𝛼𝑖 =
𝑐𝑖 − 𝑐𝑖−1
𝑎𝑖 − 𝑎𝑖−1

Empirical Distribution

• • •

𝑎0 𝑎𝐾𝑎𝑖−1 𝑎𝑖

𝐾 intervals

interval 𝑖
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▪ Suppose the data collected for 100 broken machine repair times are:

Example Empirical Distribution

i

Interval 

(Hours) Frequency

Relative 

Frequency

Cumulative 

Frequency Slope

1 0.0 < x ≤ 0.5 31 0.31 0.31 0.62

2 0.5 < x ≤ 1.0 10 0.10 0.41 0.2

3 1.0 < x ≤ 1.5 25 0.25 0.66 0.5

4 1.5 < x ≤ 2.0 34 0.34 1.00 0.68
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Piecewise Linear
Empirical CDF

Slope 𝛼3 =
𝑐3−𝑐2

𝑎3−𝑎2
= 0.5

𝑎0 𝑎2 𝑎3 𝑎4𝑎1
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▪ Random variate generation:

— Generate random number 𝑢

— Select the appropriate interval 𝑖 such that
𝑐𝑖−1 < 𝑢 ≤ 𝑐𝑖

— Use the inverse transformation method to compute the 
random variate 𝑥 as follows

𝑥 = 𝑎𝑖−1 +
1

𝛼𝑖
(𝑢 − 𝑐𝑖−1)

Empirical Distribution
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▪ Suppose the data collected for 100 broken machine repair times are:

▪ Suppose: 𝑢 = 0.83
𝑐3 = 0.66 < 𝑢 ≤ 𝑐4 = 1.00 ⇒ 𝑖 = 4

𝑥 = 𝑎3 +
1

𝛼4
𝑢 − 𝑐3

= 1.5 +
1

0.68
0.83 − 0.66

= 1.75

Example Empirical Distribution

i

Interval 

(Hours) Frequency

Relative 

Frequency

Cumulative 

Frequency Slope

1 0.25 < x ≤ 0.5 31 0.31 0.31 1.24

2 0.5 < x ≤ 1.0 10 0.10 0.41 0.2

3 1.0 < x ≤ 1.5 25 0.25 0.66 0.5

4 1.5 < x ≤ 2.0 34 0.34 1.00 0.68
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