
CPSC 531:
System Modeling and Simulation

Carey Williamson

Department of Computer Science

University of Calgary

Fall 2017

▪ Random number generation

— Properties of random numbers

— Linear Congruential Generator

— Seed selection and random streams

Outline

2

▪ Requirements

— Sequence generated has uniform distribution (continuous)
between 0 and 1

— The numbers in the sequence are independent of each
other

▪ RNG’s in computer simulation are pseudorandom

— Each number in the sequence is determined by one or
several of its predecessors

— Statistical tests can be used to determine how well the
requirements of uniformity and independence are met

Random Number Generators (RNG’s)

3

▪ Two important statistical properties:
— Uniformity

— Independence

▪ Random numbers, 𝑥1, 𝑥2, 𝑥3, …, must be
independently drawn from a uniform distribution
with PDF:

Properties of Random Numbers



 


otherwise ,0

10 ,1
)(

x
xf

4

▪ Uniformity and independence

▪ Should be able to reproduce a given sequence of
random numbers

— Helps program debugging

— Helpful when comparing alternative system design

▪ Should have provision to generate several streams of
random numbers

▪ Computationally efficient

Desirable Properties

5

▪ Starting with x0 = 5:

▪ The first 32 numbers obtained by the above procedure
10, 3, 0, 1, 6, 15, 12, 13, 2, 11, 8, 9, 14, 7, 4, 5, 10, 3, 0, 1, 6, 15,
12, 13, 2, 11, 8, 9, 14, 7, 4, 5.

▪ By dividing x's by 16:
0.6250, 0.1875, 0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250,
0.6875, 0.5000, 0.5625, 0.8750, 0.4375, 0.2500, 0.3125, 0.6250, 0.1875,
0.0000, 0.0625, 0.3750, 0.9375, 0.7500, 0.8125, 0.1250, 0.6875, 0.5000,
0.5625, 0.8750, 0.4375, 0.2500, 0.3125.

A Sample Generator

6

▪ Commonly used algorithm

▪ A sequence of integers x1,x2,… between 0 and m-1 is
generated according to

▪ xi = (a xi-1 + c) mod m

▪ where a and c are constants, m is the modulus and x0 is
the seed (or starting value)

▪ Random numbers u1,u2,… are given by ui = xi/m

▪ The sequence can be reproduced if the seed is
known

Linear Congruential Generator (LCG)

7

▪ Example

— xn = 7 xn-1 + 3 mod 10, x0 = 3

— sequence: 3, 4, 1, 0, 3, 4, 1, …

▪ Example

— xn = 4 xn-1 + 2 mod 9, x0 = 3

— sequence: 3, 5, 4, 0, 2, 1, 6, 8, 7, 3, 5, 4, …

Linear Congruential Generator (LCG)

8

▪ Can have at most m distinct integers in the sequence
— As soon as any number in the sequence is repeated, the

whole sequence is repeated

—Period: number of distinct integers generated before
repetition occurs

▪ Problem: Instead of continuous, the ui’s can only take
on discrete values 0, 1/m, 2/m,…, (m-1)/m

— Solution: m should be selected to be very large in order to
achieve the effect of a continuous distribution
(typically, m > 109)

— Approximation appears to be of little consequence

Properties of LCG

9

▪ Maximum Density
— Such that the values assumed by 𝑥𝑖 , 𝑖 = 1,2,… leave no large

gaps on [0,1]

▪ Maximum Period
— To achieve maximum density and avoid cycling

— Achieve by: proper choice of 𝑎, 𝑐,𝑚, and 𝑥0

▪ Most digital computers use a binary representation of
numbers

— Speed and efficiency are aided by a modulus, 𝑚, to be (or close
to) a power of 2

Characteristics of a Good Generator

10

▪ Mixed LCG
— c > 0

— Example:

▪ Multiplicative LCG
— c = 0

— Example:

— Generally performs as well as mixed LCG

Types of LCG

11

▪ Using a seed of x0 = 1:

5, 25, 29, 17, 21, 9, 13, 1, 5,…

Period = 8

▪ With x0 = 2:
10, 18, 26, 2, 10,…

Period is only 4

Note: Full period is a nice property but uniformity and
independence are more important

Example

12

▪ A currently popular multiplicative LCG is:

— 231-1 is a prime number and 75 is a primitive root of it
→ Full period of 231-2.

▪ This generator has been extensively analyzed and
shown to be good

Example RNGs

See the following book for advanced RNGs:

Numerical Recipes: The Art of Scientific Computing

http://www.nr.com/

13

▪ Seed selection
— Any value in the sequence can be used to “seed” the

generator

▪ Do not use random seeds: such as the time of day
— Cannot reproduce. Cannot guarantee non-overlap.

▪ Do not use zero:
— Fine for mixed LCGs

— But multiplicative LCGs will be stuck at zero

▪ Avoid even values:
— For multiplicative LCG with modulus m=2k, the seed should be odd

▪ Do not use successive seeds
— May result in strong correlation

Tips for Seed Selection

Better to avoid generators that have too many conditions on
seed values or whose performance (period and randomness)

depends upon the seed value. 14

▪ Multi-stream simulations: need more than one random stream

— Do not subdivide one stream: the sub-streams may be correlated

— Use non-overlapping streams

▪ A random-number stream:

— Refers to a starting seed taken from the sequence of random numbers
𝑥0, 𝑥1, …

▪ A single random-number generator with 𝑘 streams can act like 𝑘 distinct
virtual random-number generators

— Choose the seeds for each stream to be far apart

— To have streams that are 𝑏 values apart, stream 𝑖 could be defined by
starting seed:

𝑆𝑖 = 𝑥𝑏 𝑖−1

Older generators: 𝑏 = 105; Newer generators: 𝑏 = 1037

Random-Number Streams

15

▪ A complex set of operations leads to random results.
It is better to use simple operations that can be
analytically evaluated for randomness.

▪ Random numbers are unpredictable.
Easy to compute the parameters, a, c, and m from a
few numbers => LCGs are unsuitable for
cryptographic applications

Myths About Random-Number Generation (1 of 3)

16

▪ Some seeds are better than others. May be true for
some generators.

— Works correctly for all seeds except x0 = 37911

— Stuck at xn= 37911 forever

— Such generators should be avoided

— Any non-zero seed in the valid range should produce an
equally good sequence

— Generators whose period or randomness depends upon
the seed should not be used, since an unsuspecting user
may not remember to follow all the guidelines

Myths (2 of 3)

17

▪ Accurate implementation is not important.

— RNGs must be implemented without any overflow or
truncation
For example:

— Straightforward multiplication above may produce
overflow.

Myths (3 of 3)

18

