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Motivational Quote

“If you can’t measure it, you can’t improve it.”
- Peter Drucker
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(Slightly Revised) Motivational Quote

“If you can’t measure it, you can’t improve it.”
- Peter Drucker

model
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▪ Input models are the driving force for many simulations

▪ Quality of the output depends on the quality of inputs

▪ There are four main steps for input model development:

1. Collect data from the real system

2. Identify a suitable probability distribution to represent the 
input process

3. Choose parameters for the distribution

4. Evaluate the goodness-of-fit for the chosen distribution and 
parameters

Simulation Input Analysis
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▪ Data collection is one of the biggest simulation tasks

▪ Beware of GIGO: Garbage-In-Garbage-Out

▪ Suggestions to facilitate data collection:
— Analyze the data as it is being collected: check adequacy

— Combine homogeneous data sets (e.g. successive time 
periods, or the same time period on successive days)

— Be aware of inadvertent data censoring: quantities that are 
only partially observed versus observed in their entirety; 
gaps; outliers; risk of leaving out long processing times

— Collect input data, not performance data (i.e., output)

Data Collection
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▪ Where did this data come from?

▪ How was it collected?

▪ What can it tell me?

▪ Do some exploratory data analysis (see next slide)

▪ Does this data make sense?

▪ Is it representative?

▪ What are the key properties?

▪ Does it resemble anything I’ve seen before?

▪ How best to model it?

Data Analysis Checklist (meta-level)
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▪ How much data do I have? (N)

▪ Is it discrete or continuous?

▪ What is the range for the data? (min, max)

▪ What is the central tendency? (mean, median, mode)

▪ How variable is it? (mean, variance, std dev, CV)

▪ What is the shape of the distribution? (histogram)

▪ Are there gaps, outliers, or anomalies? (tails)

▪ Is it time series data? (time series analysis)

▪ Is there correlation structure and/or periodicity?

▪ Other interesting phenomena? (scatter plot)

Data Analysis Checklist (detailed-level)
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Non-Parametric Approach: does not care about the actual 
distribution or its parameters; simply (re-)generates observations 
from the empirically observed CDF for the distribution.

- less work for the modeler, but limited generative capability 
(e.g., variety; length; repetitive; preserves flaws in data)

Parametric Approach: tries to find a compact, concise, and 
parsimonious model that accurately represents the input data.

- more work, but potentially valuable model (parameterizable)

1. Histograms (visual/graphical approach)

2. Selecting families of distributions (logic/statistics)

3. Parameter estimation (statistical methods)

4. Goodness-of-fit tests (statistical/graphical methods)

Identifying the Distribution
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▪ Histogram: A frequency distribution plot useful in 
determining the shape of a distribution

— Divide the range of data into (typically equal) intervals 
or cells

— Plot the frequency of each cell as a rectangle

▪ For discrete data: 
— Corresponds to the 

probability mass function

▪ For continuous data: 
— Corresponds to the 

probability density function 

Histograms (1 of 3)
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▪ The key problem is determining the cell size
— Small cells: large variation in the number of observations 

per cell 
— Large cells: details of the distribution are completely lost
— It is possible to reach very different conclusions about the 

distribution shape 

▪ The cell size depends on:
— The number of observations
— The dispersion of the data

▪ Guideline:
— The number of cells ≈ the square root of the sample size

Histograms (2 of 3)
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 Example: It is possible to reach very different conclusions 
about the distribution shape by changing the cell size

Histograms (3 of 3)

Same data 

with different 

interval sizes
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▪ A family of distributions is selected based on:

— The context of the input variable

— Shape of the histogram

▪ Frequently encountered distributions:

— Easier to analyze: Exponential, Geometric, Poisson

— Moderate to analyze: Normal, Log-Normal, Uniform

— Harder to analyze: Beta, Gamma, Pareto, Weibull, Zipf

Selecting the Family of Distributions (1 of 4)
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▪ Use the physical basis of the distribution as a guide

▪ Examples:
— Binomial: number of successes in 𝑛 trials

— Poisson: number of independent events that occur in a 
fixed amount of time or space

— Normal: distribution of a process that is the sum of a 
number of (smaller) component processes

— Exponential: time between independent events, or a 
processing time duration that is memoryless

— Discrete or continuous uniform: models the complete 
uncertainty about the distribution (other than its range)

— Empirical: does not follow any theoretical distribution

Selecting the Family of Distributions (2 of 4)
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▪ Remember the physical characteristics of the process
— Is the process naturally discrete or continuous valued?

— Is it bounded?

— Is it symmetric, or is it skewed?

▪ No “true” distribution for any stochastic input 
process

▪ Goal: obtain a good approximation that captures the 
salient properties of the process (e.g., range, mean, 
variance, skew, tail behavior)

Selecting the Family of Distributions (3 of 4)
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How to check if the chosen distribution is a good fit?

▪ Compare the shape of the pmf/pdf of the 
distribution with the histogram:

— Problem: Difficult to visually compare probability curves

— Solution: Use Quantile-Quantile plots

Selecting the Family of Distributions (4 of 4)

Example: Oil change time at MinitLube

• Histogram suggests “exponential” dist.

• How well does Exponential fit the data?
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▪ Q-Q plot is a useful tool for evaluating distribution fit
— It is easy to visually inspect since we look for a straight line

▪ If 𝑋 is a random variable with CDF 𝐹(𝑥), then the 𝑞-
quantile of 𝑋 is given by 𝑥𝑞 such that:

𝐹 𝑥𝑞 = ℙ 𝑋 ≤ 𝑥𝑞 = 𝑞, 0 < 𝑞 < 1

▪ When 𝐹(𝑥) has an inverse, then 𝑥𝑞 = 𝐹−1(𝑞)

Quantile-Quantile Plots (1 of 8)
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▪ 𝑥𝑞
𝑆: empirical 𝑞-quantile from the sample

▪ 𝑥𝑞
𝑀: theoretical 𝑞-quantile from the model

▪ Q-Q plot: plot 𝑥𝑞
𝑆 versus 𝑥𝑞

𝑀 as a scatterplot of points

Quantile-Quantile Plots (2 of 8)
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▪ 𝑋: a random variable with CDF 𝐹(𝑥)

▪ {𝑋𝑖 , 𝑖 = 1,… , 𝑛}: a sample of 𝑋 consisting of 𝑛 observations

▪ Define 𝐹𝑛(𝑥): empirical CDF of 𝑋,

𝐹𝑛 𝑥 =
number of 𝑋𝑖

′𝑠 ≤ 𝑥

𝑛

▪ {𝑋 𝑗 , 𝑗 = 1,… , 𝑛}: observations ordered from smallest to largest

𝑋(1) ≤ 𝑋(2) ≤ ⋯ ≤ 𝑋(𝑛)

▪ It follows that

𝐹𝑛 𝑥 =
𝑗

𝑛
where 𝑗 is the rank or order of 𝑥, i.e., 𝑥 is the 𝑗-th value among 𝑋𝑖’s.

Quantile-Quantile Plots (3 of 8)
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▪ Problem:
— For finite value 𝑥 = 𝑋(𝑛), we have 𝐹𝑛

−1 1 = 𝑋(𝑛)
— But from the model we generally have: 𝐹−1 1 = ∞
— How to resolve this mismatch?

▪ Solution: slightly modify the empirical distribution

෨𝐹𝑛 𝑋 𝑗 = 𝐹𝑛 𝑋 𝑗 −
0.5

𝑛
=
𝑗 − 0.5

𝑛

▪ Therefore, 

෨𝐹𝑛
−1

𝑗 − 0.5

𝑛
= 𝑋(𝑗)

▪ and, thus,

empirical
𝑗−0.5

𝑛
−quantile of X = 𝑋(𝑗)

Quantile-Quantile Plots (4 of 8)
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▪ 𝐹(𝑥): the CDF fitted to the observed data, i.e., the model

▪ Q-Q plot: plotting empirical quantiles vs. model quantiles

—
𝑗−0.5

𝑛
-quantiles for 𝑗 = 1,… , 𝑛

▪ Empirical quantile = 𝑋(𝑗)

▪ Model quantile =  𝐹−1
𝑗−0.5

𝑛

▪ Q-Q plot features:
— Approximately a straight line if 𝐹 is a member of an appropriate 

family of distributions

— The line has slope 1 if 𝐹 is a member of an appropriate family of 
distributions with appropriate parameter values

Quantile-Quantile Plots (5 of 8)
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▪ Example: Check whether the door installation times follow a normal 
distribution.

— The observations are ordered from smallest to largest:

— 𝑋(𝑗)’s are plotted versus 𝐹−1
𝑗−0.5

𝑛
where 𝐹 is the normal CDF with 

sample mean (99.93 sec) and sample STD (1.29 sec)

Quantile-Quantile Plots (6 of 8)

𝑗 value 𝑗 value 𝑗 value 𝑗 value

1 97.12 6 99.34 11 100.11 16 100.85

2 98.28 7 99.50 12 100.11 17 101.21

3 98.54 8 99.51 13 100.25 18 101.30

4 98.84 9 99.60 14 100.47 19 101.47

5 98.97 10 99.77 15 100.69 20 102.77
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▪ Example (continued): 
Check whether the door installation 
times follow a normal distribution.

Quantile-Quantile Plots (7 of 8)

Straight line, 

supporting the 

hypothesis of a 

normal distribution

Superimposed density 

function of the Normal 

distribution scaled by the 

number of observation, 

that is 20 × 𝑓(𝑥)
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▪ Consider the following while evaluating the linearity 
of a Q-Q plot:

— The observed values never fall exactly on a straight line

— Variation of the extremes is higher than the middle.

— Linearity of the points in the middle of the plot (the main 
body of the distribution) is more important.

Quantile-Quantile Plots (8 of 8)
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Next step after selecting a family of distributions.

▪ If observations in a sample of size 𝑛 are 
𝑋1, 𝑋2, … , 𝑋𝑛 (discrete or continuous), the sample 
mean and variance are:

ത𝑋 =
σ𝑖=1
𝑛 𝑋𝑖

𝑛
,       s2 =

σ𝑖=1
𝑛 𝑋𝑖− ത𝑋 2

𝑛−1
=

σ𝑖=1
𝑛 𝑋𝑖

2−𝑛 ത𝑋2

𝑛−1

Parameter Estimation (1 of 4)
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▪ If the data are discrete and have been grouped into a 
frequency distribution with 𝑘 distinct values:

ത𝑋 =
σ𝑗=1
𝑘 𝑓𝑗𝑋𝑗

𝑛
,    

s2 =
σ𝑗=1
𝑘 𝑓𝑗 𝑋𝑗 − ത𝑋

2

𝑛 − 1
=
σ𝑗=1
𝑘 𝑓𝑗𝑋𝑗

2 − 𝑛 ത𝑋2

𝑛 − 1

where 𝑓𝑗 is the observed frequency of value 𝑋𝑗

Parameter Estimation (2 of 4)
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▪ Vehicle Arrival Example: number of vehicles arriving at an intersection 
between 7: 00 am and 7: 05 am was monitored for 100 random workdays. 

𝑛 = 100

෍
𝑗=1

𝑘

𝑓𝑗𝑋𝑗 = 364

෍
𝑗=1

𝑘

𝑓𝑗𝑋𝑗
2 = 2080

— The sample mean and variance are

ത𝑋 =
364

100
= 3.64

𝑠2 =
2080−100∗ 3.64 2

99
= 7.63

Parameter Estimation (3 of 4)

# Arrivals (𝑋𝑗) Frequency (𝑓𝑗)

0 12

1 10

2 19

3 17

4 10

5 8

6 7

7 5

8 5

9 3

10 3

11 1
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▪ The histogram suggests 𝑋 is a Poisson distribution

— However, the sample mean is not equal to sample variance

— Reason: each estimator is a random variable (not perfect)

Parameter Estimation (4 of 4)

27



▪ Conduct hypothesis testing on input data distribution 
using well-known statistical tests, such as:

— Chi-square test

— Kolmogorov-Smirnov test 

▪ Note:  you don’t always get a single unique correct 
distributional result for any real application:

— If very little data are available, it is unlikely to reject any 
candidate distributions

— If a lot of data are available, it is likely to reject all 
candidate distributions

Goodness-of-Fit Tests (1 of 2)
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Objective: to determine how well a (theoretical) 
statistical model fits a given set of empirical 
observations (sample)

▪ Vehicle Arrival Example: 

— The histogram suggests 𝑋 might be a Poisson distribution

— Hypothesis:
𝑋 has a Poisson distribution with rate 3.64

— How can we test the hypothesis?

Goodness-of-Fit Tests (2 of 2)
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Intuition:

▪ It establishes whether an observed frequency 
distribution differs from a model distribution

— Model distribution refers to the hypothesized distribution with 
the estimated parameters

— Can be used for both discrete and continuous random variables

— Valid for large sample sizes

▪ If the difference between the distributions is smaller than 
a critical value, the model distribution fits the observed 
data well, otherwise, it does not.

Chi-Square Test (1 of 11)
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Concepts:

▪ Null hypothesis 𝐻0:
The observed random variable 𝑋 conforms to the model distribution

▪ Alternative hypothesis 𝐻1: 
The observed random variable 𝑋 does not conform to the model distribution

▪ Test statistic 𝜒2:
The measure of the difference between sample data and the model 
distribution

▪ Significance level 𝛼:
The probability of rejecting the null hypothesis when the null hypothesis is 
true. Common values are 0.05 and 0.01.

Chi-Square Test (2 of 11)
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Approach:

▪ Arrange the 𝑛 observations into a set of 𝑘 intervals or cells, where interval 
𝑖 is given by 𝑎𝑖−1, 𝑎𝑖

— Suggestion: set the interval length such that at least 5 observations fall in each 
interval

▪ Recommended number of class intervals (𝑘):

▪ Caution: Different grouping of data (i.e., 𝑘) can affect the hypothesis 
testing result.

Chi-Square Test (3 of 11)

Sample Size, n Number of Class Intervals, k

20 Do not use the chi-square test

50 5 to 10

100 10 to 20

> 100 n
1/2

 to n/5
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Test Statistic:

▪ 𝑂𝑖: the number of observations 𝑋𝑗 that fall in interval 𝑖

▪ 𝐸𝑖: the expected number of observations in interval 𝑖 if taking 𝑛 samples 
from the model distribution:

— Continuous model with fitted PDF 𝑓(𝑥): 

𝐸𝑖 = 𝑛 ⋅ න
𝑎𝑖−1

𝑎𝑖

𝑓 𝑥 𝑑𝑥

— Discrete model with fitted PMF 𝑝(𝑥): 

𝐸𝑖 = 𝑛 ⋅ ෍

𝑎𝑖−1≤𝑥<𝑎𝑖

𝑝 𝑥

Chi-Square Test (4 of 11)
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Test Statistic:

▪ Test statistic 𝜒2 is defined as

𝜒2 =෍

𝑖=1

𝑘
𝑂𝑖 − 𝐸𝑖

2

𝐸𝑖

▪ 𝜒2 approximately follows the chi-square distribution 
with 𝑘 − 𝑠 − 1 degrees of freedom

— 𝑘: the number of intervals

— 𝑠: the number of parameters of the model (i.e., hypothesized distribution) 
estimated by the sample statistics
▪ Uniform: 𝑠 = 0

▪ Poisson, Exponential, Bernoulli, Geometric: 𝑠 = 1

▪ Normal, Binomial: 𝑠 = 2

Chi-Square Test (5 of 11)
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▪ The distribution is not symmetric

▪ Minimum value is 0

▪ Mean = degrees of freedom

Chi-Square Test (6 of 11)

Chi-Square PDF

𝑑𝑓 = 2

𝑑𝑓 = 5

𝑑𝑓 = 10
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Intuition:

▪ 𝜒2 measures the normalized squared difference between 
the frequency distribution of the sample data and 
hypothesized model

▪ A large 𝜒2 provides evidence that the model is not a 
good fit for the sample data:
— If the difference is greater than a critical value then reject the 

null hypothesis

— Question: what is an appropriate critical value?

— Answer: it is pre-specified by the modeler.

Chi-Square Test (7 of 11)
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Critical Value:

▪ For significance level 𝛼, the critical value 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 is defined such that:

ℙ 𝜒𝑘−𝑠−1
2 ≥ 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙

2 = 𝛼

▪ 𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2 = 𝜒𝑘−𝑠−1,1−𝛼

2

the (1 − 𝛼)-quantile of 
chi-square distribution 
with 𝑘 − 𝑠 − 1
degrees of freedom

Chi-Square Test (8 of 11)

Chi-Square distributed random 

variable with 𝑘 − 𝑠 − 1
degrees of freedom.

Chi-square PDF

Shaded area = 𝛼

RejectDo not reject

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2
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▪ We say that the null hypothesis 𝐻0 is rejected at the significance level 𝛼, 
if:

𝜒2 > 𝜒𝑘−𝑠−1,1−𝛼
2

▪ Interpretation:

— The test statistic can be 
as large as the critical value

— If the test statistic is greater 
than the critical value then, 
the null hypothesis is rejected

— If the test statistic is not greater 
than the critical value then, 
the null hypothesis 
can not be rejected

Chi-Square Test (9 of 11)

Chi-square PDF

Shaded area = 𝛼

RejectDo not reject

𝜒𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙
2
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Chi-Square Test (10 of 11)



▪ Vehicle Arrival Example (continued): 
𝐻0: the random variable is Poisson distributed (with 𝜆 = 3.64).

𝐻1:  the random variable is not Poisson distributed.

— Degrees of freedom is 𝑘 − 𝑠 − 1 = 7 − 1 − 1 = 5, hence, the 
hypothesis is rejected at the 0.05 level of significance:

𝜒2 = 27.72 > 𝜒0.95,5
2 = 11.1

Chi-Square Test (11 of 11)

!

)(

x

e
n

xnpE

x

i






0 12 2.6

1 10 9.6

2 19 17.4 0.15

3 17 21.1 0.83

4 10 19.2 4.41

5 8 14.0 2.57

6 7 8.5 0.26

7 5 4.4

8 5 2.0

9 3 0.8

10 3 0.3

>11 1 0.1

100 100.0 27.72

7.87

11.63

Combined because 

of min 𝐸𝑖
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▪ Intuition: 

— Formalizes the idea behind examining a Q-Q plot

— The test compares the CDF of the hypothesized 
distribution with the empirical CDF of the sample 
observations based on the maximum distance between 
two cumulative distribution functions.  

▪ A more powerful test that is particularly useful when:

— Sample sizes are small

— No parameters have been estimated from the data

Kolmogorov-Smirnov Test
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▪ If data is not available, some possible sources to 
obtain information about the process are:

— Engineering data: often product or process has performance ratings 
provided by the manufacturer or company that specify time or 
production standards

— Expert option: people who are experienced with the process or similar 
processes, often, they can provide optimistic, pessimistic and most-
likely times, and they may know the variability as well

— Physical or conventional limitations: physical limits on performance, 
limits or bounds that narrow the range of the input process

— The nature of the process

▪ The uniform, triangular, and beta distributions are 
often used as input models.

Selecting Model without Data (1 of 2) 
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▪ Example: Production planning simulation.

— Input of sales volume of various products is required, salesperson of 
product XYZ says that:

▪ No fewer than 1,000 units and no more than 5,000 units will 
be sold.  

▪ Given her experience, she believes there is a 90% chance of 
selling more than 2,000 units, a 25% chance of selling more 
than 3,000 units, and only a 1% chance of selling more than 
4,000 units.

— Translating these information into a cumulative probability of being 
less than or equal to those goals for simulation input: 

Selecting Model without Data (2 of 2)

i Interval (Sales) Cumulative Frequency, ci

1 1000  x 2000 0.10

2 2000 < x 3000 0.75

3 3000 < x 4000 0.99

4 4000 < x 5000 1.00

43



▪ So far, we have considered:

— Single variate models for independent input parameters

▪ To model correlation among input parameters

— Multivariate models

— Time-series models

Multivariate and Time-Series Models
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