
UDP PROTOCOL SPECIFICATION

CPSC 441 - Tutorial 6

Winter 2018

WHAT IS UDP?

2

• User Datagram Protocol

• A transport layer protocol – like TCP

FEATURES

3

• UDP is a minimal transport layer protocol.

• Unreliable and connection-less:

• UDP provides no guarantees to the upper layer protocol for

message delivery

• The UDP protocol retains no state of UDP messages once sent

• Messages may be delivered out of order.

• Provide integrity verification

• (via checksum) of the header and payload.

• UDP provides application multiplexing (via port numbers)

ENCAPSULATION

4

From: http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

UDP HEADER

5

• The UDP header consists of 4 fields, each of

which is 2 bytes.

• The use of two of those is optional in IPv4 (pink

background in table). In IPv6 only the source port

is optional.

• Source port number

• Identifies the sender's port , should be assumed

to be the port to reply to if needed.

• If not used, then it should be zero.

• Destination port number

• Identifies the receiver's port and is required

• Length

• Specifies the length in bytes; considers the

entire datagram: header and data

• The minimum length is 8 bytes = the length of

the header.

• The field size sets a theoretical limit of 65,535

bytes (8 byte header + 65,527 bytes of data) for

a UDP datagram

UDP HEADER

6

• The UDP header consists of 4 fields, each of

which is 2 bytes.

• The use of two of those is optional in IPv4 (pink

background in table). In IPv6 only the source port

is optional.

• Checksum

• The checksum field is used for error-checking of

the header and data. This field is mandatory for

IPv6.

• If no checksum is generated by the transmitter,

the field should be set to all-zeros.

• UDP uses pseudo header to define the

checksum. It is calculated over the combination

of pseudo header and UDP message.

• The pseudo header contains: the IP Source

Address field, the IP Destination Address

field, the IP Protocol field and the UDP Length

field.

TCP VS. UDP

7

TCP UDP

Reliable Unreliable

Connection-Oriented Connectionless

Segment Retransmission and Flow

Control Through Windowing
No Windowing or Retransmission

Segment Sequencing No Sequencing

Acknowledge Segments No Acknowledgement

UDP ADVANTAGES

8

• UDP’s header is much smaller than TCP’s. The header is being applied
to every segments, and adds up!

• Generating a UDP header has much simpler processing steps.

• UDP has no connection setup overhead, while TCP requires a 3-way
handshake.

UDP USE-CASES

9

UDP is widely used and recommended for cases where:

• Speed Is more important than reliability. An application values timely

delivery over reliable delivery

• Data exchanges are short and the order of reception of datagram

does not matter

• A best-effort for delivery is enough

• Applications require multicast or broadcast transmissions, not

supported by TCP.

WHO USES UDP?

10

• Domain Name System (DNS)

• Simple Network Management Protocol (SNMP)

• Dynamic Host Configuration Protocol (DHCP)

• Routing Information Protocol (RIP)

CHECKSUM

11

• “Checksum is the 16-bit the complement of the one's complement sum of a

pseudo header of information from the IP header, the UDP header, and the

data, padded with zero octets at the end (if necessary) to make a multiple of

two octets.” [RFC 768]

• Checksum is calculated for UDP header and data

• IP header also has a checksum, but it doesn’t cover data.

• UDP checksum test is performed only at the sender and receiver end stations

• The IP checksum test is performed in every intermediate node (router).

• UDP check sum is performed over a pseudo header.

• In addition to UDP header and data + the source and the destination IP address

• This prevent misrouting: in case the destination IP address in IP header was

corrupted, and it was not discovered by the IP checksum test, the UDP datagram

would arrive to the wrong IP address. UDP can detect this and silently drop the

datagram.

PSEUDO HEADER

12From: http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

SAMPLE CHECKSUM CALCULATION

13

“Checksum is the 16-bit the complement of the one's complement sum of a pseudo header of

information from the IP header, the UDP header, and the data, padded with zero octets at the end (if

necessary) to make a multiple of two octets.” [RFC 768]

Sample from: http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

SOCKET PROGRAMMING
WITH UDP

• Two sides of socket programming:

• Server side

• Client side

14

Socket Creation

Binding

Sending or Receiving data

Connection Termination

Server

Socket Creation

Sending or Receiving data

Connection Termination

Client

SERVER AND CLIENT INTERACTIONS

15

UDP

Client

UDP

Server

Send Data

Receive Data

Closing Connection

…

SOCKET CREATION

16

1. int mySocket;

2. mySocket = socket(AF_INET, SOCK_DGRAM,

IPPROTO_UDP);

3. if(mySocket == -1){

4. printf(“Could not setup a socket”);

5. }

• socket(domain, type, protocol)

• domain: communication domain - integer

• type: type of connection – SOCK_DGRAM for UDP

• Type: for using UDP over IP, should be set to

IPPROTO_UDP

BINDING

17

1. int status;

2. struct sockaddr_in ip_server;

3. struct sockaddr *server;

4. memset ((char*) &ip_server, 0,

sizeof(ip_server));

5. ip_server.sin_family = AF_INET;

6. ip_server.sin_port = htons(PORT);

7. ip_server.sin_addr.s_addr = htonl(INADDR_ANY);

8. server = (struct sockaddr *) &ip_server;

9. status = bind(mySocket, server,

sizeof(ip_server));

10. if(status == -1){

11. printf(“Could not bind to port\n”);

return -1;

12. }

• bind(socketid, &addrport, size)

• sockid: socket descriptor - integer

• type: the (IP) address and port of the machine –

struct sockaddr

• size: the size of the addrport structure.

SENDING

18

1. struct sockaddr *client;

2. struct sockaddr_in ip_client;

3. client = (struct sockaddr *) &ip_client;

4. int num_bytes = sendto(mySocket, SendBuff,

strlen(SendBuff), 0, client, sizeof(client));

5. if(num_bytes== -1)

6. printf(“Unsuccessful send\n”)

7. else

8. printf(“number of sent bytes =

%d\n”,num_bytes);• sendto(int socketid, const void

*sendbuf, int sendlen, int flags,

const struct sockaddr *to, int tolen)

• sockid: socket descriptor - integer

• sendbuf: buffer containing the data to be transmitted

• Sendlen: size in bytes of the data in the buffer

• flags: indicator specifying the way in which the call is

made

• to: the address of the target - struct sockaddr

• tolen: the size of the addrport structure

RECEIVING

19

1. if (readbytes = recvfrom(mySocket, messagein,

strlen(messagein), 0, client,

sizeof(client))<0)

2. {

3. printf(“Read error\n”);

4. return -1;

5. }

• recvfrom(int socketid, const void

*recvbuf, int recvlen, int flags,

const struct sockaddr *from, int

tolen)

• sockid: socket descriptor - integer

• recvbuf: buffer containing the receiving data

• recvlen: size in bytes of the data in the buffer

• flags: indicator specifying the way in which the call
is made

• to: the address of the target - struct sockaddr

• tolen: the size of the addrport structure

• http://en.wikipedia.org/wiki/User_Datagram_Protocol

• http://www.beej.us/guide/bgnet/output/html/singlepage/bgnet.html

• http://medusa.sdsu.edu/network/CS576/Lectures/ch11_UDP.pdf

• http://ipv6.com/articles/general/User-Datagram-Protocol.htm

• http://msdn.microsoft.com/en-us/library/ms881658.aspx

• http://www.youtube.com/watch?v=KSJu5FqwEMM

20

REFERENCES

http://en.wikipedia.org/wiki/User_Datagram_Protocol
http://ipv6.com/articles/general/User-Datagram-Protocol.htm
http://www.youtube.com/watch?v=KSJu5FqwEMM
http://ipv6.com/articles/general/User-Datagram-Protocol.htm
http://msdn.microsoft.com/en-us/library/ms881658.aspx
http://www.youtube.com/watch?v=KSJu5FqwEMM

