
TCP PROTOCOL SPECIFICATION

CPSC 441 - Tutorial 6

Winter 2018

WHAT IS TCP?

2

• Transmission Control Protocol

• Connection-Oriented and Reliable transport layer protocol

FEATURES

3

• Connection-Oriented

• Byte Order Preservation

• Flow and Congestion control

• Reliability

TCP HEADER

4

• 10 requiring fields totaling 160 bits in size.

• Options (Pink field) is optional!

• Source and Destination Ports

• Communication endpoints for sending and receiving
data

• Sequence number

• The accumulated sequence number of the first data
byte of this segment

• Initial sequence number is random (When SYN is set)

• Acknowledgment number

• Contains the next sequence number that the sender
of ACK expects to receive. It acts as a receipt of all
bytes in the previous segment (Works when ACK is
set)

• Data offset

• Represents the number 32-bit words in the TCP
header. It should be 5 words at least and 15 words at
most

• Reserved

• Should be set to zero

TCP HEADER

5

• 10 requiring fields totaling 160 bits in size.

• Options (Pink field) is optional!

• Flags

• URG: Shows that Urgent pointer field is active

• ACK: Indicates that Acknowledgment field is

significant

• PSH: Activates Push function. Asks to push the

buffered data to the receiving application

• RST: Reset the connection

• SYN: Synchronize sequence numbers (Only first

packets of each end should have this flag set)

• FIN: Data from the sender is Finished

• CWR: Congestion Window Control

TCP HEADER

6

• 10 requiring fields totaling 160 bits in size.

• Options (Pink field) is optional!

• Window Size

• The number of bytes that the receiver is currently

willing to receive

• Checksum

• Used for error checking of the header and data

• Urgent pointer

• Is an offset from the sequence number indicating the

last urgent data byte

3-WAY HANDSHAKE

7

1. Client sends SYN packet with initial sequence

number of X

2. Server responds with its own SYN packet

with initial sequence number of Y and

acknowledgment number of X+1 (which is

next expected byte)

3. Client send a packet with sequence number

of X+1 and acknowledgment number ofY+1

T
C

P

C
lie

n
t T

C
P

Se
rve

r

connect()

listen()

accept()

…

RETRANSMISSION TIME-OUT

9

Lost ACK Scenario:

• Sender sends a packet with data and waits for the

receiver’s ACK

• Receiver send the ACK but somehow the packet is

lost

• After waiting for a specific amount of time and not

getting the ACK, sender retransmit the same packet

of data. The event is called a Retransmission Time-

Out (RTO)

• Receiver sends the ACK again

connect()

T
C

P

C
lie

n
t T

C
P

Se
rve

r

timeout

…
…

FAST RETRANSMISSION

10

T
C

P

C
lie

n
t T

C
P

Se
rve

r

…

• Receiver expects N, gets N+1:

• Immediately sends ACK(N)

• This is called a duplicate ACK

• Does NOT delay ACKs here!

• Continue sending dup ACKs for each subsequent

packet (not N)

• Sender gets 3 duplicate ACKs:

• Infers N is lost and resends

• 3 is chosen so out-of-order packets don’t trigger Fast

Retransmit accidentally

• Called “fast” since we don’t need to wait for a full RTT

CONNECTION TERMINATION

11

close()

T
C

P

C
lie

n
t T

C
P

Se
rve

r

…

close()

Timed Wait

• Either side may terminate a

connection. (In fact, connection can

stay half-closed.) Let's say the server

closes (typical in WWW)

• Server sends FIN with seq Number

(SN+1) (i.e., FIN is a byte in

sequence)

• Client ACK's the FIN with SN+2

("next expected")

• Client sends it's own FIN when ready

• Server ACK's client FIN as well with

SN+1

CONGESTION CONTROL

12

Server perceives that there is congestion if:

• Timeout happens or

• The receipt of three duplicate ACKs

So then:

• It decreases the rate

• When it gets ACKs, starts increasing rate again

• Three major components:

1. Slow start (mandatory)

2. Congestion avoidance (mandatory)

3. Fast recovery

13

CONGESTION CONTROL
ALGORITHM

We go to this

state, when 3

duplicate

ACKS happens

TIMER IN C

14

• Library: #include <time.h>

• Function: clock()

• CLOCKS_PER_SEC

void setTimeout(int milliseconds)

{

if (milliseconds <= 0)

{

printf("Count milliseconds for timeout is less or

equal to 0\n");

return;

}

// a current time of milliseconds

int milliseconds_since = clock() * 1000 / CLOCKS_PER_SEC;

// needed count milliseconds of return from this timeout

int end = milliseconds_since + milliseconds;

// wait while until needed time comes

do {

milliseconds_since = clock() * 1000 / CLOCKS_PER_SEC;

} while (milliseconds_since <= end);

}

//c

void wait(long seconds)

{

sleep(seconds);

}

TIMER IN C++

15

• Library: #include <time.h>

• Function: clock()

• Type: clock_t

• CLOCKS_PER_SEC

void setTimeout(int milliseconds)

{

clock_t start, end;

// a current time of milliseconds

clock_t start = clock() * 1000 / CLOCKS_PER_SEC;

int gap;

do {

end = clock() * 1000 / CLOCKS_PER_SEC;

gap = (int) end-start;

} while (gap < milliseconds);

}

//waits for 1 second or 1000 milliseconds

//c++

void wait(long seconds)

{

seconds = seconds * 1000;

Sleep(seconds);

}

MULTI-PROCESS/MULTI-
THREAD

16

C Programming:

fork

C++ Programming:

thread

#include <stdio.h>

#include <string.h>

#include <sys/types.h>

void main(void)

{

pid_t pid;

int i;

fork();

pid = getpid();

if (pid>0)

{

for (i = 1; i <= 10; i++)

{

printf("This line is from pid %d\n", pid);

}

}

else

{

printf("This is parent\n");

}

}

• https://en.wikipedia.org/wiki/Transmission_Control_Protocol

• https://www.tutorialspoint.com/c_standard_library/time_h.htm

• http://www.cplusplus.com/forum/general/8255/

• http://www.cplusplus.com/reference/thread

17

REFERENCES

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://www.tutorialspoint.com/c_standard_library/time_h.htm
http://www.cplusplus.com/forum/general/8255/
http://www.cplusplus.com/reference/thread

