
C P S C  4 4 1  T U T O R I A L  –  J A N U A R Y  2 5 ,  2 0 1 2  

T A :  R U I T N G  Z H O U  

 

HTTP PROTOCOL 
SPECIFICATION 

The content of these slides are taken from the online tutorial “HTTP Made Really 
Easy, A Practical Guide to Writing Clients and Servers” by James Marshall 

(Extended and partially modified) 

http://www.jmarshall.com/easy/http/ 

http://www.jmarshall.com/easy/http/


WHAT IS HTTP? 

• HTTP stands for Hypertext Transfer Protocol.  

• Used to deliver virtually all files and other data (collectively 

called resources) on the World Wide Web 

• Usually, HTTP takes place through TCP/IP sockets. 

 

• A browser is an HTTP client 

• It sends requests to an HTTP server (Web server) 

• The standard/default port for HTTP servers to listen on is 80 

 

• A resource is some chunk of data that is referred to by a URL  

• The most common kind of resource is a file 

• A resource may also be a dynamically-generated content, e.g., query 

result, CGI scrip output, etc. 

• As a practical matter, almost all HTTP resources are currently either files or 

server-side script output. 

2 



STRUCTURE OF HTTP TRANSACTIONS 

• HTTP uses the client-server model:  
• An HTTP client opens a connection and sends a request message to 

an HTTP server;  

• The server then returns a response message, usually containing the 
resource that was requested.  

• After delivering the response, the server closes the connection (or not!). 
 

• Format of the HTTP request and response messages: 
• Almost the same, human readable (English-oriented) 

• An initial line specifying the method, 

• zero or more header lines, 

• a blank line (i.e. a CRLF by itself), and 

• an optional message body (e.g. a file, or query data, or query output). 
 

<initial line, different for request vs. response>  
Header1: value1  
Header2: value2  
Header3: value3  
<optional message body, like file or query data; may be many lines, may be binary>  

 
 

 

 
3 



INITIAL REQUEST LINE 

• The initial line is different for the request than for the response. 

• A request line has three parts, separated by spaces: 
• a method name,  
• the local path of the requested resource,  
• and the version of HTTP being used.  

 

• A typical request line is: 

 
 GET /path/to/file/index.html HTTP/1.1 
  
• GET is the most common HTTP method; it says "give me this resource".  
• Other methods include POST and HEAD, etc.  
• Method names are always uppercase. 

• The path is the part of the URL after the host name, also called 
the request URI (a URI is like a URL, but more general). 

• The HTTP version always takes the form "HTTP/x.x", uppercase. 
 

4 



INITIAL RESPONSE LINE 

• HTTP/1.0 200 OK 

• Status line: 
• The HTTP version,  

• A response status code that gives 

the result of the request,  

• An English reason phrase describing 

the status code.  

• Response categories: 

• 1xx  an informational message only 

• 2xx  success of some kind 

• 3xx redirects the client to another 
URL 

• 4xx an error on the client's part 

• 5xx an error on the server's part 

 

 

• The most common status 

codes are: 

• 200 OK The request succeeded, 
and the resulting resource is 

returned in the message body. 

• 404 Not Found  

• 301 Moved Permanently  

• 302 Moved Temporarily  

• 303 See Other (HTTP 1.1 only)The 
resource has moved to another 

URL  

 

• Check RFC 2616 for the 

complete list 

5 



HEADER LINES 

• Header lines provide information about the request, response, 
or  the object sent. 

 

• One line per header, of the form "Header-Name: value", 
ending with CRLF.  

 

• The header name is not case-sensitive (the value may be). 

 

• Header lines beginning with space or tab are actually part of 
the previous header line, folded into multiple lines. E.g., 
Header1: some-long-value-1a, some-long-value-1b  

HEADER1: some-long-value-1a,  

                  some-long-value-1b  

6 



HEADER LINES (CONT’D)  

• HTTP 1.1 defines 46 headers, and one (Host:) is required in 
requests.  
 

• The User-Agent: header identifies the program that's making 
the request, in the form "Program-name/x.xx", where x.xx is 
the (mostly) alphanumeric version of the program.  
• For example, Netscape 3.0 sends the header  
"User-agent: Mozilla/3.0Gold". 

 

• Response headers from the server: 
• The Server: header is analogous to the User-Agent: header: it identifies 

the server software  
• The Last-Modified: header gives the modification date of the resource 

that's being returned. It's used in caching and other bandwidth-saving 
activities. Use Greenwich Mean Time, in the format Last-Modified: Fri, 
31 Dec 1999 23:59:59 GMT 

 

7 



THE MESSAGE BODY 

• After headers, there may be a body of data 

 
• In a response this may be:  

• the requested resource 
• or perhaps explanatory text if there's an error.  

 

• In a request this may be:  
• the user-entered data 
• or uploaded files 

 

• If an HTTP message includes a body, there are usually header 
lines in the message that describe the body.  
• The Content-Type: header gives the MIME-type of the data 

e.g.,  text/html or image/gif. 
• The Content-Length: header gives the number of bytes in the body. 

 

8 



SAMPLE HTTP EXCHANGE 

HTTP Request 

GET /path/file.html HTTP/1.1 

Host: www.host1.com:80 

User-Agent: HTTPTool/1.0  

[blank line here] 

HTTP Response 

HTTP/1.1 200 OK  

Date: Fri, 31 Dec 1999 23:59:59 GMT  

Content-Type: text/html  

Content-Length: 1354  

 

<html>  

<body>  

<h1>Happy New Millennium!</h1>  

(more file contents) . . . </body>  

</html> 

9 



THE HEAD METHOD 

• A HEAD request is just like a GET request, except: 

• It asks the server to return the response headers only, not the 

actual resource. (i.e. no message body) 

• This is used to check characteristics of a resource without actually 

downloading it 

• HEAD is used when you don't actually need a file's contents. 

 

• The response to a HEAD request must never contain a 

message body, just the status line and headers. 

 

10 



THE POST METHOD 

• A POST request is used to send data to the server 
 

• A POST request is different from a GET request in the following 
ways: 
• There's a block of data sent with the request, in the message body.  

• There are usually extra headers to describe this message body, 
e.g., Content-Type: and Content-Length:. 

• The request URI is not a resource to retrieve; it's usually a program to handle 
the data you're sending. 

• The HTTP response is normally program output, not a static file. 

 

• The most common use of POST, is to submit HTML form data to 
CGI scripts. In this case: 
• The Content-Type: header is usually application/x-www-form-urlencoded,  

• The Content-Length: header gives the length of the HTML form data data. 
 

 

11 



THE POST METHOD EXAMPLE 

• Here's a typical form 
submission, using POST: 

 

  

• You can use a POST request to 
send whatever data you want, 
not just form submissions. Just 
make sure the sender and the 
receiving program agree on 
the format. 

 

• The GET method can also be 
used to submit forms. The form 
data is URL-encoded and 
appended to the request URI.  

 

 

POST /login.jsp HTTP/1.1 

Host: www.mysite.com 

User-Agent: Mozilla/4.0 

Content-Length: 27 
Content-Type: application/x-www-form-urlencoded 

 

userid=joe&password=guessme 

 

12 



PERSISTENT CONNECTIONS 

• Persistent HTTP connection: 

• To increase performance, some servers allow persistent HTTP 

connections 

 

• The server does not immediately close the connection after 

sending the response 

 

• The responses should be sent back in the same order as requests 

 

• The "Connection: close" header in a request indicates that the final 

request for the connection. The server should close the connection 

after sending the response. Also, the server should close an idle 

connection after some timeout period. 

 

 
13 



CACHING 

• To avoid sending resources that don't need to be sent, thus 

saving bandwidth 

 

• Proxy or web browser check if the required content is already 

available in the cache.  

• A copy of the previous content is saved in the cache 

• Upon a new request, first the cache is searched 

• If found in cache, return the content from cache 

• If not in cache, send request to the server 

 

• But what if the content is out of date?  

• We need to check if the content is modified since last access 

 

 
14 



THE DATE: HEADER 

• We need timestamp responses for caching.  

 

• Servers must timestamp every response with a Date: header 

containing the current time e.g.,  

  

 Date: Fri, 31 Dec 1999 23:59:59 GMT  

 

• All responses except those with 100-level status (but including 

error responses) must include the Date: header. 

 

• All time values in HTTP use Greenwich Mean Time. 

 

15 



CONDITIONAL GET 

• If-Modified-Since: This header is used with the GET method to 
check if a content is modified since the last access 
• If the requested resource has been modified since the given date, ignore 

the header and return the resource.  

• Otherwise, return a "304 Not Modified" response, including the Date: header 
and no message body, e.g.,  

 
HTTP/1.1 304 Not Modified  

Date: Fri, 31 Dec 1999 23:59:59 GMT  
[blank line here]  

 

• If-Unmodified-Since: header is similar, but can be used with any 
method.  
• If the requested resource has not been modified since the given date, 

ignore the header and return the resource.  

• Otherwise, return a "412 Precondition Failed" response, e.g., 

  
 HTTP/1.1 412 Precondition Failed [blank line here] 

16 



CONDITIONAL GET EXAMPLE 

Request 

GET /sample.html HTTP/1.1 

Host: example.com 

If-Modified-Since: Wed, 01 Sep 

 2004 13:24:52 GMT 

 

Response 

HTTP/1.1 304 Not Modified 

Expires: Tue, 27 Dec 2005 11:25:19 

 GMT 

Date: Tue, 27 Dec 2005 05:25:19 GMT 

Server: Apache/1.3.33 (Unix) 

 PHP/4.3.10 

 

17 



REDIRECTION EXAMPLE 

Request 1 

GET /~carey/index.html HTTP/1.1 

Host: www.cpsc.ucalgary.ca 

Connection: keep-alive 

User-Agent: Mozilla/5.0  […] 

Accept: text/html,application/ […] 

Accept-Encoding: gzip,deflate,sdch 

[…] 

\r\n 

 

Response 1 

HTTP/1.1 302 Found 

Date: Sat, 21 Jan 2012 01:10:43 GMT 

Server: Apache/2.2.4 (Unix) mod_ssl/2.2.4 OpenSSL/0.9.7a 

 PHP/5.2.9 mod_jk/1.2.25 

Location: http://pages.cpsc.ucalgary.ca/~carey/index.html 

\r\n 

18 

Request 2 

GET /~carey/index.html HTTP/1.1 
Host: pages.cpsc.ucalgary.ca 
Connection: keep-alive 
User-Agent: Mozilla/5.0  […] 
Accept: text/html,application/ […] 
Accept-Encoding: gzip,deflate,sdch 

[…] 
\r\n 

Response 2 

HTTP/1.1 200 OK 
Date: Sat, 21 Jan 2012 01:11:49 GMT 
Server: Apache/2.2.4 (Unix) […] 
Last-Modified: Mon, 16 Jan 2012 05:40:45 GMT 
Content-Length: 3157 
Keep-Alive: timeout=5 
Connection: Keep-Alive 
Content-Type: text/html 
\r\n 
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> 
<html> 
[…] 
</html> 
\r\n 



RESOURCES 

 

• James Marshall's “HTTP Made Really Easy, A Practical Guide to 

Writing Clients and Servers” 

• http://www.jmarshall.com/easy/http/ 

 

• RFC 2616 

• http://tools.ietf.org/pdf/rfc2616.pdf 

19 

http://www.jmarshall.com/easy/http/
http://www.jmarshall.com/easy/http/
http://tools.ietf.org/pdf/rfc2616.pdf

